Monday, November 26, 2018 10:53 AM

We now combine the algorithm for phase
estimation and Grover Search to approximate The number of x E 30, 15° such than $f(x)=1$ for some function of to which we have black-box $ncws$. Let G correspond to the unitary thensformation
Which is one iteration of Grover's algorithm: rotation about 147. Define $S_f = 3x | f(x) = 13 | S_f| = M$ $|\psi\rangle = \frac{1}{\sqrt{N-M}} \frac{1}{xq^{eq}} |\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x \in \mathcal{F}_{0y15^n}} |\psi\rangle$ $|\psi\rangle = \sqrt{\frac{N-h}{N}} |\psi\rangle + \sqrt{\frac{n}{N}} |\psi_1\rangle$ $| \varphi_i \rangle = \frac{1}{\sqrt{M}} \sum_{\chi \in \mathcal{G}_i} | \chi \rangle$

Monday, November 26, 2018 10:53 AM B with real Coefficients. FOR any state inside the 2-dimensional
Sontspace spanned by les ad las, 6 is
a counter-clockwise rotation by 20
Where O is the angle between 14's ad les $\frac{1}{9}74$ 614 2θ . $|\phi\rangle$ \Rightarrow $|b_0$ $\cos \theta = \int \angle \psi | \phi \rangle = \sqrt{\frac{N-M}{N}}$ $s| \cdot \theta$ = $|\n\downarrow \phi_1|$ $\sqrt{2\sqrt{\frac{M}{m}}}$ ral rotation log γ in 2-d space spanned
orthorornal tasis le> ad la>: In general $\overline{16}$ Cro 8 - sin 8 \rightarrow $|b_{0}\rangle$ Input $|v\rangle$ = $cos \phi |e\rangle + sin \phi |a\rangle$ $\left[\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right] \left[\begin{array}{c} \cos\theta \\ \sin\theta \end{array}\right] = \left[\begin{array}{c} \cos(\theta+\theta) \\ \sin(\theta+\theta) \end{array}\right]$ USES angle Sun identities.

 $2\pi i \oint e^{2i\theta}$ Approximate Counting - page 3 Monday, November 26, 2018 10:53 AM If We express & restricted to the 2-dimensional
Subspace spanned by les a las we get: $\begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ Sil $\theta = \sqrt{\frac{p}{k}}$ Eigenvalues of this metix are cette ad citer The two eigenvectors of G live inside the 1
Subspace spanned by les and las We don't need to know what $|v_1\rangle$ and $|v_2\rangle$ are
other than that they are an alternate basis Since It's is also in his subspace: $|\psi\rangle = \alpha_1 |v_1\rangle + \alpha_2 |v_2\rangle$ 126

Quantum Page 3

 $|4\rangle = O_1 |1\rangle + O_2 |1\rangle$
 $\frac{1}{\sqrt{20}}$ $\frac{1}{\sqrt{20}}$ $\frac{1}{\sqrt{20}}$ $\frac{1}{\sqrt{20}}$ $\frac{1}{\sqrt{20}}$ $\frac{1}{\sqrt{20}}$

 $\begin{array}{ccc} & A & B & C \\ & & A & B & C \\ & & & A & B & C \end{array}$ Monday, November 26, 2018 $1:10$ PM Idea: run the phase estimation algorithm to estimate the phase of an eigenvalue of 6. e stimate the phase of
The input will be ψ . W 1/ 2 200 14> is the superposition of the two If the Phase Estimation algorithm is successful
(no errors) we estimate $\frac{29}{21.29}$ with probability $\frac{|\alpha|}{2}$
21 - 20 with probability $\frac{|\alpha|}{2}$ It doesn't matter what the probabilities are
as long as we can distinguish between the two. Recall that $sin\theta = \sqrt{M_N}$. S_{0} if $M \le N/2$ Hen $S_{0} \theta \le N/2$ \Rightarrow $6.5\pi/4$ -b 20 $\leq \pi/2$ In this case, we can easily distinguish between 20 and $2T-20$ $5\pi l_2$ \geq 3 $\pi/2$

Monday, November 26, 2018 1:26 PM

We can artificially ensure that MSN/2 by
adding an extra tit y to the input and $f'(x,y) = f(x) \wedge y$ n bits $\frac{1}{n}$ th. $N' = 2^{n+1}$ Note $f'(x,0) = 0$ $\forall x.$ $M' \in 2^{n}$ An oracle for f can be transformed into an
oracle for f! \triangledown $\ket{\mathfrak{o}}$ \mathbf{w} $H^{\otimes m}$ FT^{-1} \Rightarrow \mathcal{P} \downarrow Complexity: WY H^{gnt} σ^2 $\int_{0}^{v^{0}}$ $0(pdy(n).2^m)$ \bar{L} $\sqrt{0(z^{2})}$ cals to G. $|o\rangle$ $|\psi\rangle$

Wednesday, November 28, 2018 9:17 AM

The eigenvalue of G is $e^{i2\theta} = e^{2\pi i \phi}$. \Rightarrow $\theta = \pi \varphi$. We estimate φ to within $\pm 2^{(m\pi)}$ And then use the following to determine M: \Rightarrow $\left(\frac{M}{N}F\sin^{2}\theta = \sin^{2}\left(\pi\phi\right) \right)$
 $M = N \cdot S\sin^{2}\left(\pi\phi\right)$ We will show that the error in $M \leq \left(2\sqrt{MN} + \frac{M}{2^{N}}\sqrt{N}\right)2^{2m}\sqrt{N}$
 $\frac{log M}{2}2^{m}=\sqrt{N} \Rightarrow \Delta M \text{ is } \left(0\left(\sqrt{M}\right)\right)$ $M =$ (Remember the complexity of the algorithm was . IN)

Wednesday, November 28, 2018 9:17 AM

Approximate Counting - page 8 ~ 1 Wednesday, November 28, 2018 10:31 AM Worst lise final $\frac{1}{2} \left(\frac{1}{\phi + \bar{z}^{n-1}} - 2 \right) \Psi$ T $\sqrt{\frac{q}{\varphi+z^{m-1}}-2\varphi}$ $\frac{2^{-m-1}}{(p+2^{m-1})}-20$ $\frac{\pi}{2}$ Worst Case Error is: 256 $\[\text{ln} 2 \left(\frac{\pi}{2} - \frac{\pi}{2} \left(\frac{2^{-n-1}}{\varrho + \gamma m+1} + 2 \varrho \right) \right) = \sin^2 \left(\frac{\pi}{2} \left(\frac{2^{-n-1}}{\varrho + \gamma m+1} + 2 \varrho \right) \right)\]$ β_{n} 0 $\leq \theta \leq \pi/2$, $\omega_{0}(\theta) = g_{n}(\pi/2 - \theta)$ upper bound #1/2 Want $\frac{1}{\beta}$ $\frac{1}{11N} = Q \leq \frac{1}{4}$ 2^{-m-1} + 2 (0) Select $m = \left\lceil \frac{a_{3}N}{2} \right\rceil + 2$ $rac{\frac{1}{8}\sqrt{N}}{\frac{1}{\pi\sqrt{N}}+\frac{1}{8\sqrt{N}}}$ = $\frac{1}{1+\frac{8}{\pi}}\left(\frac{1}{3}\right)$ $2^{n+1} \ge 8\sqrt{n}$. \overline{L} $ErrN$ 2 $\sin^2(\frac{\pi}{2}, \frac{5}{6})$ 4.94.)

We
\n
$$
\mathcal{L} = e^{2\pi i \psi}.
$$
\n
$$
\mathcal{L} = e^{2\pi i \psi}.
$$
\nWe can take ψ to within 2^m , $\psi_2 = e^{2\pi i \psi}$.
\n
$$
\mathcal{L} = e^{2\pi i \psi}.
$$
\n
$$
\mathcal{L} = e^{2\pi i
$$