CS 190/264: Quantum Computation

Instructor: Sandy Irani

Homework 6

Due: November 21, 2018, 2PM

Note: The assignment for undergraduates and graduate students is the same this week.

1. The algorithm that uses order finding to factor must eliminate the possibility that $N=p^{\alpha}$, where p is prime. If $\alpha=1$, then N is prime and can not be factored. If $N=x^{\alpha}$, for any integers x and α , where $\alpha>1$ and x>1, then x is a non-trivial factor of N.

- (a) If $N=x^{\alpha}$, for any integers x and α , where $\alpha>1$ and x>1, then what is the largest that α could possibly be?
- (b) Give a classical algorithm to determine if an input integer N is equal to x^{α} , where x and α are integers larger than 1. If n is the number of bits to specify N, then your algorithm should run in time at most polynomial in n. You can **only** use addition and multiplication operations as well as the fast exponentiation algorithm presented in class. However, since we are not taking the results mod N, if you are calculating x^y , you need to make sure that the result is not too large. In other words, you should only comput x^y if you are sure that the number of bits required to specify x^y is polynomial in n.
- 2. Suppose that a=1276, N=1875, and Q=2048. Suppose you know that k and r are relatively prime and are both less than N. Furthermore,

$$\left| \frac{a}{N} - \frac{k}{r} \right| \le \frac{1}{2Q}.$$

Use continued fractions to derive a set of candidates for k and r. You can write a program to do this if you like, but don't use any online calculators for continued fractions. I did this one by hand with a calculator.

- 3. Consider the Order Finding Algorithm for $N=12,\,x=5,$ and Q=16.
 - (a) What is the current state of the algorithm after step 3? The state after step 3 is:

$$\frac{1}{\sqrt{Q}} \sum_{y=0}^{Q-1} |y\rangle | x^y \bmod N \rangle.$$

You need to express this state using the specific values of N, x, and Q given above. Since this may be a bit tedious to do by hand, you are welcome to write a program to do the calculation for you.

(b) If the second register is measured, then what are the possible outcomes?

1

- (c) Suppose you measure the second register and the outcome is the largest of all the possible outcomes. Then what is the state after measurement?
- 4. N = 337123, and x = 29680.
 - (a) Verify that x is a square root of $1 \mod N$. You can use a calculator, but write down in your solution the condition you are checking.
 - (b) Use x to factor N. Show enough work to indicate that you know how to apply the algorithm to factor N. You can use a gcd calculator if you like.