CS 190/264: Quantum Computation

Homework 2

Due: October 17, 2018, 2PM

Instructor: Sandy Irani

Note: graduate students are not required to do problems 3-6, but are required to problem 9, 10, and 11. Undergraduates are required to do problems 1-8.

- 1. Suppose a Hermetian operator A that operatorates on vectors in \mathbb{C}^4 has eigenvectors $|v_1\rangle$, $|v_2\rangle$, $|v_3\rangle$, $|v_4\rangle$. Moreover the set $|v_1\rangle$, $|v_2\rangle$, $|v_3\rangle$, $|v_4\rangle$ form an ortho-normal basis of \mathbb{C}^4 . The eigenvalue of $|v_i\rangle$ is λ_i . Suppose that $\lambda_1 > \lambda_2 > \lambda_3 = \lambda_4$. Give a different set of four egenvectors of A that also form an ortho-normal basis of \mathbb{C}^4 .
- 2. Consider a linear operator A with eigenstates $|v_1\rangle, \ldots, |v_N\rangle$, and corresponding eigenvalues $\lambda_1, \ldots, \lambda_N$.
 - (a) Express A in outer-bracket notation in the $\{|v_i\rangle\}$ basis.
 - (b) Let A^2 be the linear operator obtained by applying A twice. The matrix representation of A^2 is just the matrix representation of A squared. Express A^2 in outer-bracket notation in the $\{|v_i\rangle\}$ basis. (Hint: take your outer-bracket notation for A in the previous question and see what happens when you apply it twice. Then simplify the expression as much as possible.)
- 3. Suppose the state $|\phi\rangle=\frac{1}{2}|0\rangle-\frac{\sqrt{3}}{2}|1\rangle$ is measured in the $|+\rangle$, $|-\rangle$ basis. What is the probability of each outcome and what is the state afterwards (depending on the outcome of the measurement)?
- 4. Consider a two-qubit system. Suppose that the second qubit is measured.
 - (a) Give an expression for the projector P_0 which projects onto the subspace spanned by the states in which the outcome of the measurement is 0. Do the same for P_1 which projects onto the subspace spanned by the states in which the outcome of the measurement is 1.
 - (b) For the state

$$|\phi\rangle = \frac{1+i}{3}|00\rangle + \frac{\sqrt{2}}{3}|01\rangle + \frac{-i\sqrt{2}}{3}|10\rangle + \frac{-1}{\sqrt{3}}|11\rangle,$$

give the probability of each outcome of the measurement and the state afterwards.

- 5. Express each of the following linear opeartors as a 4×4 matrix.
 - (a) $X \otimes I$
 - (b) $I \otimes X$
 - (c) $Z \otimes X$

- 6. Give the result of each operator applied to the state $|\Phi\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$.
 - (a) $X \otimes I$
 - (b) $I \otimes X$
 - (c) $Z \otimes X$
- 7. Consider an *n*-qubit system.
 - (a) Let $I_{2,3,\dots,n}$ denote the identity operator applied to qubits 2 through n. What are the dimensions of $I_{2,3,\dots,n}$ in matrix form?
 - (b) Give a schematic representation of $H \otimes I_{2,3,...,n}$.
 - (c) Give a schematic representation of $I_{1,2,\dots,n-1} \otimes H$, where $I_{1,2,\dots,n-1}$ is the identity operator applied to qubits 1 through n-1.
- 8. If A is a linear operator, then the matrix representation of A^{\dagger} is obtained by taking the conjugate-transpose of the matrix representation of A. To get the conjugate-transpose of a matrix, take the transpose of the matrix and then take the complex conjugate of each entry in the matrix.
 - (a) What is $|v\rangle^{\dagger}$ (the conjugate-transpose of $|v\rangle$)?
 - (b) For any two matrices A and B, if the number of columns of A is equal to the number of rows of B, then $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$. Use this fact to show that $(A|v\rangle)^{\dagger} = \langle v|A^{\dagger}$.
 - (c) Give an expression for $(|v\rangle\langle w|)^{\dagger}$ that does not use the \dagger operation.
 - (d) Prove that

$$\left(\sum_{j=1}^{n} c_j A_j\right)^{\dagger} = \sum_{j=1}^{n} c_j^* A_j^{\dagger}.$$

You can use the fact that $(A + B)^{\dagger} = A^{\dagger} + B^{\dagger}$.

(e) The outer-bracket representation of A in basis $|\phi_1\rangle,\ldots,|\phi_N\rangle$ is

$$\sum_{j=1}^{N} \sum_{k=1}^{N} \langle \phi_j | A | \phi_k \rangle | \phi_j \rangle \langle \phi_k |.$$

Give an expression for A^{\dagger} in outer-bracket notation using the same basis. Your expression should not use the \dagger operation.

(f) Let $|v_1\rangle, \ldots, |v_N\rangle$ set of eigenvectors for A with eigenvalues $\lambda_1, \ldots, \lambda_N$. In class we saw that the uter-bracket representation of A in basis $|v_1\rangle, \ldots, |v_N\rangle$ is

$$\sum_{j=1}^{N} \lambda_j |\phi_j\rangle \langle \phi_j|.$$

Give an expression for A^{\dagger} in outer-bracket notation using the λ 's and the $|v\rangle$'s. Your expression should not use the \dagger operation.

For graduate students: skip problems 3-6, and do the following problem:

- 9. Prove that the eigenvalues of a unitary operator can be written in the form $e^{i\theta}$ for some real θ .
- 10. Prove that two eigenvectors of a Hermitian matrix with different eigenvalues are orthogonal. A Hermetian matrix has real eigenvalues. You can also used the fact that if A is Hermetian, then $A^{\dagger} = A$.
- 11. The Hadamard operator on one qubit may be written as

$$H = \frac{1}{\sqrt{2}} \left[(|0\rangle + |1\rangle)\langle 0| + (|0\rangle - |1\rangle)\langle 1| \right].$$

Give a closed form expression for $H^{\otimes n}$ using outer-bracket notation in the standard basis. (Hint: You will need to use the *dot product* of two strings. If x and y are two n-bit strings, then $x \cdot y = \sum_{j=1}^{n} x_j \cdot y_j$, where x_j is the j^{th} bit of x and y_j is the j^{th} bit of y.)