
796 l2 / Modeling Computation

an identifier starts with a letter or an underscore (-) that
is foliowed by one or more lowercase letters, uppercase
letters, underscores, and digits.

i""t! Several extensions to Backus Naur form are commonly used
u""'"

to define phrase-structure grammars. In one such extension,
a question mark (?) indicates that the symbol, or group of
symbols inside parentheses, to its left can appeat zero or once
(that is, it is optional), an asterisk (+) indicates that the symbol
to its left can appear zero or more times, and a plus (*) indi-
cates that the symbol to its left can appear one or more times.

These extensions are part of extended Backus-Naur form
(EBNF), and the symbols ?, *, and * are called metacharac-
ters. ln EBNF the brackets used to denote nonterminals are

usually not shown.

34. Describe the set of strings defined by each ofthese sets of
productions in EBNF.

a) string::: L-lD?Ll
L:::alblc
D:::0 I 1

b) string ::::iign D+ | D+
sign ::: - |

D :::01 1 l2l 3 l4l 5 I 6 | 7 I 8 | e
c) string ::: L*(D-t)? L*

L:::xly
D:::0 | I

35. Give production rules in extended Backus Naur form that
generate all decimal numerals consisting of an optional
sign, a nonnegative integer, and a decimal fraction that
is either the empty string or a decimal point followed by
an optional positive integer optionally preceded by some

numbcr of zeros.

36. Give production rules in extended Backus Naur form that
generate a sandwich if a sandwich consists of a iower slice

of bread; mustard or mayonnaise; optional lettuce; an op-
tionai slice of tomato; one or more slices of either turkey,

chicken, or roast beef (in any combination); optionally
some number ofslices ofcheese; and a top slice ofbread.

|2,t)

37. Give production rules in extended Backus-Naur form

for identiflers in the C programming language (see

Exercise 33).

38. Describe how productions for a grammar in extended

Backus-Naur form can be translated into a set of pro-

ductions for the grammar in Backus-Naur form.

This is the Backus Naur form that describes the syntax of

expressions in postfix (or reverse Polish) notation.

\expression) 11: (term) | (term) \term) (addOperator)

\addOperator) ::: *
\t er m) : : : (fa c t o r) | \f itc t o r) (fa c t o r) \mtr I O p e rat o r)

(mulOperator):::*l I
(factor) ::: (identifier) | \expression)

\identiJier) ::: a I b) .'. I z

39. For each of these strings, determine whether it is gener-

ated by the grammar given for postfix notation. If it is,

find the steps used to generate the string

a) abc* I b) xy--
d) wx1,z-x/ e) ade-*

40. Use Backus Naur form to describe the syntax of expres-

sions in inflx notation, where the set ofoperators and iden-

tifiers is the same as in the BNF for postfix expressions

given in the preamble to Exercise 39, but parentheses must

surround expressions being used as factors.

41. For each of these strings, determine whether it is gener-

ated by the grammar for infix expressions from Exercise

40. lfit is, find the steps used to generate the string.

a) x-t1-tz b) alb) cld
c) m*(nIp) d) *m-nl p-Q
e) (m-fn)*(p-q)

42. Let G be a grammar and let R be the relation contarn-

ing the ordered pair (w6, w1) if and only if wi is directly
derivable from u,6 in G. What is the reflexive transitive
closure of R?

I2

c) xy-zx

L2.2 Finite-State Machines with Output

'j'}"f'{i

lirt:,', l,ls'oi

lntroduction

Many kinds of machines, including components in computers, can be modeled using a structure

called a finite-state machine. Several types offinite-state machines are commonly used in models.

All these versions of finite-state machines include a finite set of states, with a designated starting
state, an input alphabet, and a transition function that assigns a next state to every state and input
pair. Finite-state machines are used extensively in applications in computer science and data

networking. For example, finite-state machines are the basis for programs for spell checking,
grammar checking, indexing or searching large bodies oftext, recognizing speech, transforming
text using markup languages such as XML and HTML, and network protocols that specify how

computers com mun icate.

,2

I

d
,-

)f

12-t-l
I2.2 Finire-State Machines with Output jg|

In this section, we will stutly those finite-state machines that produce output. we wili showhow finite-state machines can be used to model a t";il;;;;;5, u -u.r.,in. that derays input,

Srl}:ilJ}]:rtot
integers, and a machine that deteimines ,"l,"tn", a bit string .o*uin, u

Before giving formal definitions, we will.show how a vending machine can be modelecl. Avending machine acceptsnickers (5 cents), dimes (r0.cen,ri"ra"q"".ters (25 cents). wren atotal of 30 cents or more has been deposiieo, the machine i--"oiit"ly returns the amount inexcess of 30 cents' when 30 cents has been deposited ancl;;t;;;.r, refunded. the customercan push an orange button and receive an orange juice or push a recl button and recei'e anapple juice' we can describe how the machine worls by. specifying its states, how it changes

;ilj'jJ::lrlx?Jt
is receivecl and the output that is producerr rfr lu.ry combination of input

The machine can be in any of seven different states.ri, i : 0. I ,2.....6, where s; is thestate where the machine has collected 5i cents. The machine starts rn state s0, with 0 centsreceived. The possibleinputs are 5 cents, l 0 cents, 25 cents, the orange button (o), andthe redbutton (R). The possible outputs are nott,ing (n), 5 cents, rri
".ntr,

is cents,20 cents,25 cents,an orangejuice, and an applejuice.
we illustrate how this model of the machine woris with this example. Suppose that a studentputs m a dime followed by a quarter, receives 5 cents back, and then pushes the orange buttonfor an orange juice' The machine starts in state s6. The first input is l0 cents, which chanses

TABLE I State Table for a Vending Machine.

Next State

Input
r0 25

Input
l0 25

')r .r2 55 J9 Jit

.12 ^t3 ^!6 J1 S1

5i s4 J'r, ")2 J2

J4 55 Sr, .tl ,!q

')5 ^16 sr, ,r4 .!4

sr' J6 J6 s-s ,!s

sr, Jr, Jr, J9 sg

nnnnn
ntt.niln
nt1 5nn
n n l0 n n
n n 15 n n
n520ilt1
5 l0 2s oJ A.r

t.5. l-5

I0. ri ,/

l.''' R. n n],t R. r R. n0. tt o. n o. rr it. ,i, ; 'i,

L/. u'angc.iuice

FIGURE I AVendingMachine.

798 12 / Modeling Computation r 2-14

the state of the machine to s2 and gives no output. The second input is 25 cents. This changes

the state from s2 to s6, and gives 5 cents as output. The next input is the orange button, which
changes the state from s6 back to se (because the machine returns to the start state) and gives

an orange juice as its output.
We can display all the state changes and output of this machine in a table. To do this we

need to specify for each combination of state and input the next state and the output obtained.
Table 1 shows the transitions and outputs for each pair of a state and an input.

Another way to show the actions of a machine is to use a directed graph with labeled edges,

where each state is represented by a circle, edges represent the transitions, and edges are labeled

with the input and the output for that transition. Figure I shows such a directed graph for the

vending machine.

Finite-State Machines with Outputs

We will now sive the formal definition of a finite-state machine with outout.

DEFINITION 1 Afinite-statemachine M : (5,1, O, -f,g, s0) consistsofafinite set S of states, afrniteinput

?##i:;l#'::^:::'::'"::,;:f fr :,1,;:{i{;':::#:i:";{*,#":::trf,il:l"l,:ffi 1

Let M : (S, 1, O, "f, S, ss) be a finite-state machine. We can use a state table to represent the

values of the transition function / and the output function g for all pairs of states and input,
We previously constructed a state table for the vending machine discussed in the introduction
to this section.

EXAMPLE 1 The state table shown in Table 2 describes a finite-state machine with S - {so, sr, ,s2, r3},
{0, 1}, and O : {0, 1}. The values of the transition function / are displayed in the first
columns, and the values of the output function g are displayed in the last two columns.

Another way to represent a finite-state machine is to use a state diagram, which is a directed
graph with labeled edges. In this diagram, each state is represented by a circle. Arrows labeled
with the input and output pair are shown for each transition.

EXAMPLE 2 Construct the state diasram for the finite-state machine with the state table shown in Table 2.

Solution: The state diasram for this machine is shown in Fisure 2.

EXAMPLE 3 Construct the state table for the finite-state machine with the state diasram shown in Fisure 3.

Solution:Thestatetab1eforthismachineisshowninTable3.<
An input string takes the starting state through a sequence of states, as determined by the

transition function. As we read the input string symbol by symbol (from left to right), each input
symbol takes the machine from one state to another. Because each transition produces an output,
an input string also produces an output string.

Suppose that the input string is x : x1x2 . .. 16. Then, reading this input takes the machine
from state s0 to state,s1, where sr : .f(so, 11), then to state.r2, where s2: .f(s1, r2), and so on,

I_

two

12.2 Finite-State Machines with Output 799
12-I 5

withsy:f@i-t,x)fori:1,2,"',k,endingatstate s1':f(s1'-1'rr)'Thissequenceof
transitions produces an output stiing y1y2-. . yp, where.]lr : g(so, r1) is the output correspond-

ing to the tiansition from se to y,-yz I g("t, x2) is the output corresponding to the transition

fromsltos2,andsoon. In genetal,"y1:g1";-t,x7)for i:l'2''."'k'Hence'wecanextend
the definition of the output function g to input strings so that g(x): y,.where gr is the output

corresponding to the input string r. This notation is useful in many applications'

EXAMPLE 4 Find the output string generated by the finite-state machine in Figure 3 if the input string is

10101 1.

TABLE 2

State

f aD

Input
0 I

Input

0 I

S0

J3

^ll so

,.t3 ,99

st s2

s2 sl

1

I

0

0

0

I

I

0

Solution: The outPut
Table 4.

t.0 S1

rY
s9

a"': qr\
0.0 \

"<,t^

1,

FIGURE 2 The State Diagram for the

Finite-State Machine Shown in Table 2.

obtained is 001000. The successive states and outputs are shown rn

TABLE 3

State

f o6

Input
0 I

Input

0 I

S0

Sl

S.

S4

S3

S1

,53

S4

J0

S4

i
I

0

0

0

0

i
0

0

0

We can now look at some examples of usefu1 finite-state machines. Examples 5,6, and

7 illustrate that the states of a finite-state machine give it limited memory capabilities. The states

can be used to remember the properties of the symbols that have been read by the machine'

However, because there are onty dtrit"ty many different states, finite-state machines cannot be

used for some important purpoies. This will be illustrated in Section 12.4.

EXAMPLE 5 An important element in many electronic devices is a unit-delay machine, which produces as

output the input string delaye aUy u specified amount of time. How can a finite-state machine

be constructed that delays an input string by one unit of time, that is, produces as output the bit

string 0r1x2 . . .xk-t given the input bit string x62 ' ' 'xt?

FIGURE 3 A Finite-State Machine.

TABLE 4

Input U 1 0

State S0 r-l .tl r2 S3 J0 S3

Output 0 0 I 0 00

800 12 / Modeling Computation

). I

F'IGURE 4 A Unit-DelavMachine,

Solution: A delay machine can be constructed that has two possible inputs, namely, 0 and 1. The

machine must have a start state s6. Because the rnachine has to remember whether the previous

input was a 0 or a 1, two other states.rl and s2 are needed, where the machine is in state s1 if the

previous input was I and in state s2 if the previous input was 0. An output of 0 is produced forthe
initial transition from se. Each transition from s1 gives an output of 1, and each transition from
s2 gives an output of 0. The output corresponding to the input of a string x1 . . . x7, is the string
that begins with 0, followed by x1, followed by x2, . . . , ending with 17. 1. The state diagram for
this machine is shown in Fisure 4.

EXAMPLE 6 Produce a finite-state machine that adds two integers using their binary expansions.

Solution: When (x,, . . . xr xo): and(y, . . . ytyo)z are added the following procedure (as described
in Section 3.6) is followed. First, the bits re and /0 are added, producing a sum bit z0 and a carry
bit c0. This carry bit is either 0 or 1. Then, the bits 11 and y1 are added, together with the carry
ca. This gives a sum bit z1 andacaffy bit c1 . This procedure is continued until the nth stage,

where rr, yr, and the previous eztt! cr-1 are added to produce the sum bit z, and the carry bit
c,,, which is equal to the sum bit zn_1.

A finite-state machine to carry out this addition can be constructed using just two states.

For simplicity we assume that both the initial bits x,, and y, are 0 (otherwise we have to make
special arrangements concerning the sum bit z,*1). The start state se is used to remember that

the previous carry is 0 (or for the addition of the rightmost bits). The other state, s1 , is used to

remember that the previous carry is 1.

Because the inputs to the machine are pairs of bits, there are four possible inputs. We

represent these possibilities by 00 (when both bits are 0), 01 (when the first bit is 0 andthe
second is 1), 10 (when the first bit is 1 and the second is 0), and 11 (when both bits are 1).

The transitions and the outputs are constructed from the sum of the two bits represented by

the input and the carry represented by the state. For instance, when the machine is in state s1

and receives 01 as input, the next state is s1 and the output is 0, because the sum that arises is

0+l+1:(10)2'ThestatediagramforthismachineisshowninFigure5.<

10. I 10.0

FICURE 5 A Finite-State Machine for Addition.
.-J

I,l_rl
'.\r)y'

"/Stirrt a--Y---'(so) 1. 0 (

(.1.

\
s^

i:l
1'

l

l2- 17 12.2 Finite-State Machines with Outout 801

'Q.>

(*'
f.

w4\r.o/I lsr €l'/ \, o'o\./\,/\--.-
--.'

0.0

FIGURE 6 A Finite-State Machine That Gives an Output of I
If and Only If the Input String Read So Far Ends with I 1 l.

EXAMPLE 7 In a certain coding scheme, when three consecutive 1s appear in a message, the receiver of the
message knows that there has been a transmission error. Construct a finite-state machine that
gives a I as its current output bit if and only if the last three bits received are all ls.

Solution: Three states are needed in this machine. The start state.r0 remembers that the previous
input value, if it exists, was not a 1. The state s1 remembers that the previous input was a 1,
but the input before the previous input, if it exists, was not a 1. The state s2 remembers that the
previous two inputs were ls.

An input of I takes ss to s1, because now a l, and not two consecutive 1s, has been read; it
takes s1 to s2, because now two consecutive ls have been read; and it takes s2 to itself, because
at least two consecutive ls have been read. An input of 0 takes every state to se, because this
breaks up any string of consecutive ls. The output for the transition from s2 to itself when a I
is read is 1, because this combination of input and state shows that three consecutive 1s have
beenread.AllotheroutputSare0.ThestatediagramofthismachineisshowninFigure6.<

The final output bit of the finite-state machine we constructed in Example 7 is 1 if and only
if the input string ends with I I l. Because of this, we say that this finite-state machine recognizes
the set of bit strings that end with 1 1 1. This leads us to Definition 2.

DEFINITION2 LetM -(,S,1, O,.f,S,se)beafinite-statemachine andL c 1*.Wesaythat M recognizes
,;;

tr:{?""?'jH ililliriT
x belongs to t if and only if the last output bit produced by

TYPES OF FINITE-STATE MACHINES Many different kinds of finite-state machines have
been developed to model computing machines. In this section we have given a deflnition of
one type of finite-state machine. In the type of machine introduced in this section, outputs
correspond to transitions between states. Machines of this type are known as Mealy machines,
because they were first studied by G. H. Mealy in 1955. There is another important type of finite-
state machine wli output, where the output is determined only by the state. This type of finite-
state machine is known as a Moore machine, because E. F. Moore introduced this type of
machine in 1956. Moore machines are considered in a sequence of exercises at the end of this
section.

In Example 7 we showed how a Mealy machine can be used for language recognition.
However, another type of finite-state machine, giving no output, is usually used for this purpose.
Finite-state machines with no output, also known as finite-state automata, have a set of final
states and recognize a string if and only if it takes the start state to a final state. We will study
this type of finite-state machine in Section 12.3.

