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Finite Mixture Models

We are given a data set D = {x1, . . . , xN} where xi is a d-dimensional vector measurement. Assume that
the points are generated in an IID fashion from an underlying density p(x). We further assume that p(x) is
defined as a finite mixture model with K components:

p(x|Θ) =
K∑

k=1

αkpk(x|zk, θk)

where:

• The pk(x|zk, θk) are mixture components, 1 ≤ k ≤ K. Each is a density or distribution defined over
p(x), with parameters θk.

• z = (z1, . . . , zK) is a vector of K binary indicator variables that are mutually exclusive and exhaustive
(i.e., one and only one of the zk’s is equal to 1, and the others are 0). z is a K-ary random variable
representing the identity of the mixture component that generated x. It is convenient for mixture
models to represent z as a vector of K indicator variables.

• The αk = p(zk) are the mixture weights, representing the probability that a randomly selected x was
generated by component k, where

∑K
k=1 αk = 1.

The complete set of parameters for a mixture model with K components is

Θ = {α1, . . . , αK , θ1, . . . , θK}

Membership Weights

We can compute the “membership weight” of data point xi in cluster k, given parameters Θ as

wik = p(zik = 1|xi,Θ) =
pk(xi|zk, θk) · αk∑K

m=1 pm(xi|zm, θm) · αm

, 1 ≤ k ≤ K, 1 ≤ i ≤ N.
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This follows from a direct application of Bayes rule.

The membership weights above reflect our uncertainty, given xi and Θ, about which of the K compo-
nents generated vector xi. Note that we are assuming in our generative mixture model that each xi was
generated by a single component—so these probabilities reflect our uncertainty about which component xi

came from, not any “mixing” in the generative process.

Gaussian Mixture Models

For x ∈ Rd we can define a Gaussian mixture model by making each of the K components a Gaussian
density with parameters µ

k
and Σk. Each component is a multivariate Gaussian density

pk(x|θk) =
1

(2π)d/2|Σk|1/2
e−

1
2
(x−µ

k
)tΣ−1

k (x−µ
k
)

with its own parameters θk = {µ
k
,Σk}.

The EM Algorithm for Gaussian Mixture Models

We define the EM (Expectation-Maximization) algorithm for Gaussian mixtures as follows. The algorithm
is an iterative algorithm that starts from some initial estimate of Θ (e.g., random), and then proceeds to
iteratively update Θ until convergence is detected. Each iteration consists of an E-step and an M-step.

E-Step: Denote the current parameter values as Θ. Compute wik (using the equation above for membership
weights) for all data points xi, 1 ≤ i ≤ N and all mixture components 1 ≤ k ≤ K. Note that for each data
point xi the membership weights are defined such that

∑K
k=1 wik = 1. This yields an N × K matrix of

membership weights, where each of the rows sum to 1.

M-Step: Now use the membership weights and the data to calculate new parameter values. Let Nk =∑N
i=1 wik, i.e., the sum of the membership weights for the kth component—this is the effective number of

data points assigned to component k.

Specifically,

αnew
k =

Nk

N
, 1 ≤ k ≤ K.

These are the new mixture weights.

µnew
k

=
(

1
Nk

) N∑
i=1

wik · xi 1 ≤ k ≤ K.

The updated mean is calculated in a manner similar to how we could compute a standard empirical average,
except that the ith data vector xi has a fractional weight wik. Note that this is a vector equation since µnew

k
and xi are both d-dimensional vectors.
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Σnew
k =

(
1

Nk

) N∑
i=1

wik · (xi − µnew
k

)(xi − µnew
k

)t 1 ≤ k ≤ K.

Again we get an equation that is similar in form to how we would normally compute an empirical covariance
matrix, except that the contribution of each data point is weighted by wik. Note that this is a matrix equation
of dimensionality d× d on each side.

The equations in the M-step need to be computed in this order, i.e., first compute the K new α’s, then
the K new µ

k
’s, and finally the K new Σk’s.

After we have computed all of the new parameters, the M-step is complete and we can now go back
and recompute the membership weights in the E-step, then recompute the parameters again in the E-step,
and continue updating the parameters in this manner. Each pair of E and M steps is considered to be one
iteration.

Initialization and Convergence Issues for EM

The EM algorithm can be started by either initializing the algorithm with a set of initial parameters and then
conducting an E-step, or by starting with a set of initial weights and then doing a first M-step. The initial
parameters or weights can be chosen randomly (e.g. select K random data points as initial means and select
the covariance matrix of the whole data set for each of the initial K covariance matrices) or could be chosen
via some heuristic method (such as by using the k-means algorithm to cluster the data first and then defining
weights based on k-means memberships).

Convergence is generally detected by computing the value of the log-likelihood after each iteration and
halting when it appears not to be changing in a significant manner from one iteration to the next. Note that
the log-likelihood (under the IID assumption) is defined as follows:

log l(Θ) =
N∑

i=1

log p(xi|Θ) =
N∑

i=1

(
log

K∑
k=1

αkpk(xi|zk, θk)
)

where pk(xi|zk, θk) is the Gaussian density for the kth mixture component.


