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ABSTRACT
This paper proposes a privacy preserving framework formonitoring

applications that embodies the principle of minimal data disclosure.

Utility in monitoring context is measured as number of events (e.g.,

anomalous behavior, violation of building fire code, etc.) that went

undetected. Depending upon the context, often such applications

to be useful require bounded guarantees on the number of false

negatives. Differential privacy, wherein one adds noise based on

a predetermined ϵ , may lead to unacceptable level of accuracy (if

ϵ is small) or significant loss of privacy (if ϵ is high), and, further-
more, offers no guarantee on accuracy of detection. We propose a

minimally invasive framework framework that offers a guaranteed

bound on event that may go undetected (false negatives), while

minimizing the privacy loss.

1 INTRODUCTION
Much of the prior work on privacy has been motivated by the

need for data sharing while ensuring privacy of sensitive data.

Examples include privacy-preserving sharing of demographic data

(e.g., US Census), medical data to support research (e.g., cancer

registries), or collecting click-stream data for vulnerability analysis

(e.g., from browsers). Over the past decade, differential privacy [1]

has emerged as one of the most popular privacy notion. It provides

a formal mathematical guarantee that individual records are hidden

even with the release of aggregate statistics and it is possible to bind

the information leakage by a total privacy budget across multiple

data releases. This has led to a wide range of adoption of differential

privacy in a number of products at the US Census Bureau [2],

Google [7], and Uber [5].

With advances in sensing, computation, and communication

capabilities, a new class of IoT applications are emerging that pro-

vide the ability to monitor, in real-time, physical spaces such as

nursing home, office buildings, homes, etc. through diverse sensors

[8]. As part of our ongoing effort, we have built one such sensor-

enabled monitoring testbed, entitled TIPPERS [8] that exploits WiFi

connectivity data to compute occupancy levels at different spatial

granularities (building, floors, regions, and rooms) at UCI. TIPPERS

has been used to build a diverse set of applications such as building

analytics to understand the space utilization and real-time monitor-

ing to understand dynamic occupancy density. A sample occupancy

heat-map of a floor inside the building is shown in Figure 1. Such

data is used to detect anomalies of occupancy inside the building

(e.g., significant violation of the fire code, abnormally high/low

occupancy levels). A monitoring application requires that every

Figure 1: Occupancy Heatmap of a Building in UCI.
event of interest remains detectable with high probability - i.e, the

false negative rate is bounded.

While continuously captured sensor data provides novel oppor-

tunities to build new functionalities, such data increases the risk of

sensitive inferences about individuals [4] significantly. Our prior

work in the context of TIPPERS has shown that occupancy data,

with enough background knowledge, can lead to inferences about

location of individuals, which, in turn, can leak sensitive informa-

tion (e.g., faculty arriving late to classes, staff consistently leaving

work early, smoking habits of individuals, etc.). Our goal in this

work is to explore a privacy preserving framework for monitoring

applications that ensures privacy but does not interfere with the

purpose for which monitoring application is built in the first place.

We note that the traditional approach of using differential pri-

vacy, as in the case of data sharing applications, does not suffice

in our context. Differential privacy, used directly, will introduce

noise into the query answers and the noisy occupancy levels can

lead to undetected events of interest. Such a strategy would not

offer any bound on the level of false negatives. What is needed is

a monitoring system which (i) meets the accuracy requirement of

the applications and (ii) minimizes the privacy loss of individuals.

We denote such a system by accuracy aware minimally invasive
monitoring (MiM). We explore MiM in the context of iceberg count-
ing query that, in the monitoring context, identify rooms whose

occupancy are over a prespecified threshold.

Data exploration with accuracy guarantees for iceberg queries

has also been recently proposed in APEx [3]. APEx, however, cannot

be directly applied to MiM for several reasons. First, APEx considers

a simpler, data-independent, but less intuitive accuracy requirement

than MiM. Also, no existing differentially private algorithms are

designed for iceberg counting query with a bounded false negative

rate in mind. Furthermore, in APEx false negatives as well as false

positives are both part of the application utility. In contrast, in MiM

while false negatives characterize utility, false positives result in

privacy loss. The reason is that the monitoring setting, depending

upon the application in question, an anomalous event (e.g., violation

of building policy) can warrant a deeper exploration of the space

enabling the administrative staff, to investigate the space in question



more invasively (e.g., via a physical inspection). A false positive,

thus, may result in not just the true occupancy data to be leaked, it

may also leak the actual identities of the individuals in the location.

Hence, limiting the privacy loss not only requires controlling the ϵ
(as in differential privacy) with which occupancy data is released,

but also minimizing the number of false positives.

In this work, we propose the first solution to achieve a realistic

accuracy and privacy requirements in Minimally Invasive Monitor-

ing applications and discuss interesting novel research directions.

In summary the contribution of our paper is as follows:

• We introduce the concept of Minimally invasive Monitoring

that has a wide applicability in building privacy preserving IoT

applications.

• We introduce a new accuracy requirement for monitoring queries

which is dependent on false negative rate.

• Wepropose a set of differentially privatemechanisms that achieves

bounded false negative rate with the same privacy budget and

then present a model to choose one with the least false positives

among these mechanisms.

• Experiments performed on real and synthetic datasets show the

efficacy of our proposed approach.

The organization of this paper is as follows. In Section 2 we

present our query model of monitoring queries and their accuracy

requirement and privacy definition. We summarize our algorithms

in Section 3. Section 4 shows our preliminary evaluation results

using two synthetic datasets and one real dataset. Last, we discuss

future directions in Section 5.

2 PROBLEM SETUP
We consider iceberg counting query which takes into an attribute of

domain size L and a threshold c . Let xi (D) be the frequency of the

i − th value of this attribute in the dataset D. This query returns

the attribute values with frequencies no less than equal to c . We

refer to this query by

Q
{1, ...,L }
>c (D) = {i ∈ [1,L] | xi (D) > c}.

Definition 2.1 (Accuracy Requirement (β-False Negative Rate)).
The accuracy requirement of a mechanismM : D → O that answers

an iceberg counting query Q1, · · · ,L
>c is defined as:

∀i ∈ A, Pr (i < M(D)|i ∈ A) ≤ β (1)

where, A is the set of ids for the attribute values with frequency

higher than c .

We use differential privacy as the measure of privacy in our

setup. An algorithm is said to follow differential privacy, given an

input dataset D, if the output of the algorithm does not change

significantly, when a single tuple is added or removed from the

input dataset. Formally it is defined as follows:

Definition 2.2 (Differential Privacy). A randomized mechanism

M : D → O satisfies ϵ-differential privacy, if

Pr [M(D) ∈ O] ≤ eϵPr [M(D ′) ∈ O] (2)

for any set of outputs O ∈ O, and any pair of neighboring databases

D, D’ where D and D’ differs by only one tuple.

Algorithm 1 Baseline Algorithm

procedure ThresholdShiftLM(Q
{1, ...,L }
>c ,D, β , ϵ)

α ← ln(1/(2β))/ϵ
return O ← {i ∈ [1,L] | xi (D) + ηi > c − α ,ηi ∼ Lap(1/ϵ)}

end procedure

Definition 2.3 (False Positives). LetM be a randomizedmechanism

that answers an iceberg counting query Q
{1, ...,L }
>c on dataset D,

given an output O ofM , the number of false positives is

nf p (O) = |{i ∈ O |i < Q
{1, ...,L }
>c (D)}| (3)

Definition 2.4 (PrivacyMetric). We use (i) the total privacy budget

(ϵ) used in answering an iceberg counting query Q
{1, ...,L }
>c and (ii)

the number of false positivesnf p in the query answer as the privacy

metric used in the differentially private mechanism.

ProblemStatement.GivenQ {1, ...,L }>c and a datasetD, wewould
like to first (i) identify a set of ϵ-differentially private mechanisms

that achieve β-false negative rate, denoted byMϵ,β , and then (ii)

to findM ∈ Mϵ,β that has the smallest number of expected false

positives, i.e.,minarдM ∈Mϵ,β EO∼M (D)nf p (O).

3 OUR APPROACH
In this section, we will first present a set of ϵ-differentially private

mechanisms that achieve β-false negative rate (Section 3.1) and then
a cost model for estimating the expected number of false positives

in the mechanism output to choose the optimal mechanism among

the given set of mechanisms (Section 3.2).

3.1 Algorithm Design
Given Q

{1, ...,L }
>c , the objective is to bind β false negative rate of an

ϵ-differentially private mechanism. Here is our first algorithm that

achieves this goal.

Baseline Algorithm. As shown in Algorithm 1, we first relax the

threshold in the iceberg counting query Q
{1, ...,L }
>c to Q

{1, ...,L }
>c−α ,

where α = ln(1/β)/ϵ . Then we add ηi noise drawn from Laplace

distribution to each count xi (D) with mean 0 and variance 2/ϵ2

and return the set of ids for noisy counts higher than or equal to

c − α . This approach binds the probability of false negatives by β .

Theorem 3.1. Algorithm 1 satisfies ϵ-differential privacy and
achieves β-false negative rate.

Proof. It is easy to see the algorithm satisfies ϵ-differential pri-
vacy. Then, we show that false negative rate is bounded,

Pr [{i < O |i ∈ Q
{1, ...,L }
>c (D)}]

= Pr [xi (D) + ηi ≤ c − α |xi (D) > c]

≤ Pr [ηi > α] ≤ e
− ln( 1

2β )

2
≤ β

□

We generalize the baseline algorithm by shifting the thresholds

multiple times, and denote it by progressive algorithm.
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Algorithm 2 Progressive Algorithm

1: procedure ProgressiveLM(Q
{1, ...,L }
>c , D, β ,{ϵ1 < . . . < ϵm =

ϵ}, {β1, · · · , βm },
∑m
j=1 βj = β)

2: [η1, . . . ,ηL] ← Lap(1/ϵ1)
L

3: α1 ← ln(1/(2β1))/ϵ1
4: O ← {i ∈ [1,L] | qi (D) + ηi > c − α1}
5: for j = 2, . . . ,m do
6: α j ← ln(1/(2βj ))/ϵj
7: [η1, . . . ,ηL] ← PrivacyRelax(ϵj−1, ϵj , [η1, . . . ,ηL])
8: O ← {i ∈ O | qi (D) + ηi > c − α j }
9: end for
10: return O
11: end procedure

Progressive Algorithm. The key idea of this algorithm is to pro-

gressively relax the thresholds from a larger shift to a smaller shift,

i.e., α1 > α2 > · · · > αm , where each α j depends on the privacy

cost and false negative rate assigned to each iteration. We elimi-

nate certain number of ids from the output O in every iteration,

as summarized in Algorithm 2. This algorithm takes a sequence

of {ϵj } with increasing values and a sequence of {βj } which has a

sum of β . First, we relax c to c − α1, where α1 = ln(1/(2β1))/ϵ1 and
finds the ids with noisy counts greater than this threshold. Then

this process repeats. In i-th iteration (Line 7), instead of sampling

independent noise, we draw correlated noise according to the algo-

rithm proposed by the authors in [6] to correlate the noise of j-th
iteration with the noise of (j − 1)-th iteration. This PrivacyRelax
function takes the inputs of ϵj−1, ϵj and the set of noise drawn in

the previous iteration and outputs the new set of noise for iteration

j. Noise drawn in this way ensures that the overall privacy loss

of this algorithm is ϵ . This approach has the same property as the

baseline algorithm.

Theorem 3.2. Algorithm 2 satisfies ϵ-differential privacy and
achieves β-false negative rate.

Proof. (sketch) The privacy guarantee is based on the results

of prior work [6] and the β-false negative rate is by union bound,

as the sum of βj is bounded by β . □

There are many possible settings for Algorithm 2, including the

number of iterationsm and the sequences for ϵj and βj .

3.2 Algorithm Selection
Different algorithms result in different number of false negatives,

even on the same dataset. We would like to choose the algorithms

described in the previous section with the smallest expected number

of false positives. We observe that the number of false positives

in the output nf p (O) of a given algorithm depends on the data

distribution. For example, when the number of iterationm is 1 in

Algorithm 2, which is the baseline algorithm, the resulted number

of false positives have different empirical averages among datasets

of different distributions . Similarly, our progressive algorithm at

m > 1 also results in different number of false positives when

data distribution varies. For this paper, we reduce the scope of the

problem by limiting the set of ϵ-differentially private mechanisms

that achieve β-false negative rate to the Baseline Algorithm and

the Progressive Algorithm withm = 2.

We also assume some knowledge about the data distribution

at a low granularity is publicly available (we will discuss this in

Section 5 ). For m ≤ 2, we consider there are approximately h1
number of counts that are less than x1 and h2 number of counts

that are less than x2 and more than x1, where x1 < x2 < c .
For the Baseline AlgorithmMB , we assume our query relaxation

point c − α is between x2 and c to eliminate maximum number

of false positives. In the worst case, the expected number of false

positives is:

EO∼MB (D)nf p (O) = (h1 + h2)Pr (η > c − α − x2 |0 < x2 < c − α)

= (h1 + h2)
1

2

(2β)
c−α−x

2

α

(4)

For the Progressive algorithm MP withm = 2, we assume our

first query relaxation point c−α1 is between x1 and x2. In the worst

case, the expected number of false positives after first step is:

EO∼MP
step−1(D)nf p (O)

= h1Pr (η > c − α1 − x1 |0 < x1 < c − α1) + h2

= h1
1

2

(β)
c−α

1
−x

1

α
1 + h2

(5)

Our second query relaxation point c − α2 is between x2 and c . The
expected number of false positives forMP after both steps becomes

EO∼MP (D)nf p (O)

= EO∼MP
step−1(D)nf p (O)Pr (η > c − α2 − x2 |0 < x2 < c − α2)

=

(
h1

1

2

(β)
c−α

1
−x

1

α
1 + h2

)
1

2

(β)
c−α

2
−x

2

α
2

(6)

If we choose our ϵ1 as follows:

ln( 1β )

c − x2
< ϵ1 <

ln( 1β )

(
1 + ln

( (h1+h2)(2β )(c−x2)/α−2h2(β )(c−x2)/α2
h1β (c−x1)/α2

)
/ln(β)

)
c − x1

(7)

where α = ln(1/(2β))/ϵ and α2 = ln(1/β)/ϵ , then the expected

number of false positives forMp of two iterations (Equation 6) is

smaller than that forMB (Equation 4). We show in Section 4, this

condition effectively gives fewer empirical false positives.

Database L x1 h1 x2 h2 c NT P
D1 268 10 240 25 28 100 2

D2 364 10 300 40 60 100 4

D3 503 10 400 40 103 100 3

Table 1: Datasets and Queries

4 PRELIMINARY RESULTS
In this section, we evaluate our proposed algorithms (Baseline Algo-

rithm and Progressive Algorithm) using one real and two syntheti-

cally generated data sets. The real dataset is created from the data

collected in the TIPPERS system. These datasets include location

of users inside a building mimicking the set up of monitoring envi-

ronments. We refer to the real data set as D1 and the synthetically

generated data sets as D2, and D3. The details of the datasets are

3



0.1003 × 10−2 4 × 10−2 6 × 10−2

Epsilon

0

10

20

30

40

50

60

70

Av
g 

Fa
lse

 P
os

iti
ve

s

Progressive Algorithm
Baseline Algorithm

4 × 10−2 5 × 10−2 6 × 10−2

Epsilon

10

20

30

40

50

60

70

Av
g 

Fa
lse

 P
os

iti
ve

s

Progressive Algorithm
Baseline Algorithm

4 × 10−2 5 × 10−2 6 × 10−2

Epsilon

20

40

60

80

100

Av
g 

Fa
lse

 P
os

iti
ve

s

Progressive Algorithm
Baseline Algorithm

Figure 2: Average number of false positives for the Baseline Algorithm and the Progressive Algorithm at optimal settings
(based on Equation 7). From left to right are results for D1, D2 and D3 shown.

shown in Table 1. We choose an ICQ query for each dataset where

the threshold values c and the resulted number of true positives

(NT P ) is also shown in Table 1.

In all the experiments, we choose β-false negative rate to be

β = 0.05. The number of times we ran each algorithm was 100 and

in the results we plot average results of those 100 iterations.

Accuracy Requirement. We ran our algorithms for multiple val-

ues of epsilon for all the three data sets and showed their accuracy

guarantees. Figure 3 plots that the average number of false nega-

tives (solid lines) for the Baseline Algorithm and the bound β ×NT P
where NT P is the number of true positives (dashed line). The av-

erage values are within the bound for all three datasets. We found

similar results for the Progressive Algorithm.
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Figure 3: Average number of false negatives vs Epsilon for
the Baseline Algorithm

Expected False Positives. Figure 2 shows the average number

of false positives for the Baseline Algorithm (blue dots) and the

Progressive Algorithm (red dots) at various total privacy budget ϵ .
The values for ϵ1 in the Progressive Algorithm are sampled from

the range based on Equation 7. For all the three data sets, it can

be observed that the number of false positives for the Progressive

Algorithm is smaller than the number of false positives for baseline

algorithm for most settings. There are few cases where the chosen

values for {ϵ1, ϵ2 = ϵ} result in more false positives than the Base-

line Algorithm, due to the approximation error in the model for the

expected false positives. Improving this model is a future direction

for our work.

5 DISCUSSION
In this section we discuss some of the challenges that we face as we

extend our initial ideas towards a more comprehensive solution.

• In our existing work we have assumed that an accurate/close to

accurate public knowledge is available about the data distribution.

This is a valid assumption in certain settings where occupancy

levels and fluctuations are predictable (e.g., class rooms holding

classes with known enrollments). For situations when distribu-

tions are not known, we need to learn the distribution privately

possibly using a small amount of privacy budget. Extending our

approach to an optimal two-phase algorithm (e.g., how to split

the privacy budget across phases) remains a challenge.

• We need to determine how to improve the cost model for the

expected number of false positives of different strategies.

• We need to develop more formally a privacy metric that can

enable comparison between two strategies with the same privacy

budget and the same number of false positives.

• In our initial development of the idea, we have fixed the number

of steps in the progressive approach. The number of steps can

have impact on the quality of the strategy. We, thus, need to

explore optimal mechanisms to decide on the number of steps to

use in the progressive strategy as a function of the distribution.

• Our development has focused on simple iceberg queries. We will

need to generalize the work to a more general class of event

detectors.
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