- PDF Download
e DIGITAL Associion oe 3728975.pdf
ACM LIBRARY i sciner @m open) 12 Jamuney 2026
Total Citations: 0

Total Downloads: 425

{§# Latest updates: https://dl.acm.org/doi/10.1145/3728975
Published: 22 June 2025
Accepted: 31 March 2025
RESEARCH-ARTICLE Received: 31 October 2024
Automated Test Transfer across Android Apps using

Large Language Models

Citation in BibTeX format

BENYAMIN BEYZAEI, University of California, Irvine, Irvine, CA, United
States

SAGHAR TALEBIPOUR, University of Southern California, Los Angeles,
CA, United States

GHAZAL RAFIEIL University of Southern California, Los Angeles, CA,
United States

NENAD MEDVIDOVIC, University of Southern California, Los Angeles,
CA, United States

SAM MALEK, University of California, Irvine, Irvine, CA, United States

Open Access Support provided by:
University of California, Irvine

University of Southern California

Proceedings of the ACM on Software Engineering, Volume 2, Issue ISSTA (June 2025)
https://doi.org/10.1145/3728975
EISSN: 2994-970X

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3728975
https://dl.acm.org/doi/10.1145/3728975
https://dl.acm.org/doi/10.1145/contrib-99661637540
https://dl.acm.org/doi/10.1145/institution-60007278
https://dl.acm.org/doi/10.1145/institution-60007278
https://dl.acm.org/doi/10.1145/contrib-99659638480
https://dl.acm.org/doi/10.1145/institution-60029311
https://dl.acm.org/doi/10.1145/institution-60029311
https://dl.acm.org/doi/10.1145/contrib-99661637638
https://dl.acm.org/doi/10.1145/institution-60029311
https://dl.acm.org/doi/10.1145/institution-60029311
https://dl.acm.org/doi/10.1145/contrib-81100011427
https://dl.acm.org/doi/10.1145/institution-60029311
https://dl.acm.org/doi/10.1145/institution-60029311
https://dl.acm.org/doi/10.1145/contrib-81100267865
https://dl.acm.org/doi/10.1145/institution-60007278
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60007278
https://dl.acm.org/doi/10.1145/institution-60029311
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3728975&targetFile=custom-bibtex&format=bibtex

Automated Test Transfer across Android Apps using Large
Language Models

BENYAMIN BEYZAEI, University of California at Irvine, USA
SAGHAR TALEBIPOUR®, University of Southern California, USA
GHAZAL RAFIEI", University of Southern California, USA
NENAD MEDVIDOVIC, University of Southern California, USA
SAM MALEK, University of California at Irvine, USA

The pervasiveness of mobile apps in everyday life necessitates robust testing strategies to ensure quality and
efficiency, especially through end-to-end usage-based tests for mobile apps’ user interfaces (Uls). However,
manually creating and maintaining such tests can be costly for developers. Since many apps share similar
functionalities beneath diverse Uls, previous works have shown the possibility of transferring UI tests across
different apps within the same domain, thereby eliminating the need for writing the tests manually. However,
these methods have struggled to accommodate real-world variations, often facing limitations in scenarios
where source and target apps are not very similar or fail to accurately transfer test oracles. This paper
introduces an innovative technique, LLMIGRATE, which leverages Large Language Models (LLMs) to efficiently
transfer usage-based UI tests across mobile apps. Our experimental evaluation shows LLMIGRATE can achieve
a 97.5% success rate in automated test transfer, reducing the manual effort required to write tests from scratch
by 91.1%. This represents an improvement of 9.1% in success rate and 38.2% in effort reduction compared to
the best-performing prior technique, setting a new benchmark for automated test transfer.

CCS Concepts: » Software and its engineering — Software notations and tools.
Additional Key Words and Phrases: Mobile UI testing, Large language models, Test transfer

ACM Reference Format:

Benyamin Beyzaei, Saghar Talebipour, Ghazal Rafiei, Nenad Medvidovi¢, and Sam Malek. 2025. Automated Test
Transfer across Android Apps using Large Language Models. Proc. ACM Softw. Eng. 2, ISSTA, Article ISSTA098
(July 2025), 24 pages. https://doi.org/10.1145/3728975

1 Introduction

Testing mobile apps’ user interfaces (Uls) is crucial and ensures a seamless user experience across
different devices and platforms. Manually testing mobile UlIs requires significant time and effort
and is prone to human error. Many approaches have been proposed in recent years to address these
issues and automate the testing process [23-25, 31, 35, 36, 39, 43, 44, 46, 49, 54, 55, 57, 61, 64, 70—
72,75,81, 82, 86, 88,92, 95, 96]. Many of these automated testing approaches focus on crash detection
or maximizing certain criterion such as activity coverage [35, 39, 72, 77, 81, 88]. However, recent

“Both authors contributed equally to this research.

Authors’ Contact Information: Benyamin Beyzaei, University of California at Irvine, Irvine, USA, bbeyzaei@uci.edu; Saghar
Talebipour, University of Southern California, Los Angeles, USA, talebipo@usc.edu; Ghazal Rafiei, University of Southern
California, Los Angeles, USA, grafiei@usc.edu; Nenad Medvidovi¢, University of Southern California, Los Angeles, USA,
neno@usc.edu; Sam Malek, University of California at Irvine, Irvine, USA, malek@uci.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2994-970X/2025/7-ARTISSTA098

https://doi.org/10.1145/3728975

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

HTTPS://ORCID.ORG/0009-0001-4616-9552
HTTPS://ORCID.ORG/0000-0002-2082-7334
HTTPS://ORCID.ORG/0009-0001-5319-3489
HTTPS://ORCID.ORG/0000-0002-1906-4878
HTTPS://ORCID.ORG/0000-0001-6152-7402
https://doi.org/10.1145/3728975
https://orcid.org/0009-0001-4616-9552
https://orcid.org/0000-0002-2082-7334
https://orcid.org/0000-0002-2082-7334
https://orcid.org/0009-0001-5319-3489
https://orcid.org/0000-0002-1906-4878
https://orcid.org/0000-0001-6152-7402
https://doi.org/10.1145/3728975

ISSTA098:2 Beyzaei et al.

studies [42, 53, 62] have indicated that developers prefer Ul tests that target specific functionalities
of an app. For instance, in a shopping app, the tester wants to ensure that a user is able to successfully
register, search for a product, and add the product to the shopping cart.

Test Transfer—also known as Test Migration —is a solution proposed in recent years for automati-
cally creating new usage-based tests for a mobile app by using already existing tests from a similar
app [28, 59]. The concept of test transfer is based on the idea that apps within a specific domain,
such as shopping, mail clients, or web browsers, despite potential differences in appearance and
the way they are programmed, share very similar functionalities. Therefore, it is possible to use the
already existing usage-based tests from one app to automatically create tests that exercise analogous
functionalities in another app within the same domain. For instance, use a test for validating the
login functionality in Geek , a shopping app, to automatically create tests for validating the login
functionality in other popular shopping apps such as Yelp or Zalando [5].

The existing test transfer solutions can be divided into two categories: (1) similarity-based
approaches, which focus on matching events between the source and target apps using a distance
metric [26, 27, 52, 58, 65, 66, 74, 76], and (2) classification approaches that define the test transfer
problem as a classification task [44].

The similarity-based techniques have demonstrated high effectiveness in cases where the source
and target apps are very similar. However, these approaches face significant limitations in more
complex cases, especially where a straightforward one-to-one correspondence between the event
sequences representing specific functionalities in the source and target apps does not exist [66, 102].
This limitation is mainly due to the fact that these approaches focus on directly mapping events
between the source and target apps. As a result, they encounter limitations in adapting to cases
where such direct mappings do not exist, which is often the case in real-world apps.

The only existing machine learning-based method, AppFlow [44], has shown to be dependent on
the categories of apps that are used for its training, hampering its generalizability. This technique
also requires considerable manual effort to adapt to a new app category, further limiting its
usefulness.

Recent advances in Al have led to the development of Large Language Models (LLMs), which
have shown significant promise in automating various software engineering tasks such as code
generation [63], code summarization [22], and software testing [89]. These models, trained on a large
amount of data, are capable of accurately understanding the semantics of user interfaces, including
screens and widgets [68]. Intrigued by these results, we set out to investigate the degree to which
the rich semantics embedded in LLMs can be applied to advance the state-of-the-art in test transfer.

This paper proposes LLMIGRATE, the first approach to employ multimodal LLMs for transferring
Ul tests across mobile apps, offering an end-to-end solution without requiring access to the app’s
source code. The proposed technique relies solely on dynamic analysis of the app, as static analysis
typically makes the approach less practical for use with proprietary apps for which the source code
is not available. This approach takes the binaries of two apps—the source and target apps—along
with a Ul test originally created for the source app as its inputs and generates a corresponding test
that targets the same functionality in the target app.

LLMIGRATE'’s transfer process consists of two main steps: (1) Source Abstraction, and (2) Test
Migration. In the source abstraction phase, the source test is converted to a version represented in
natural language, which we call the Abstract Source Test. This is achieved by executing the source
test on the source app to extract the required features and consulting with the LLM to understand
the semantics of the source test. During the second step, test migration, the abstract source test
in natural language, which was generated in the first phase, is adapted to the target app. This is
achieved by dynamically exploring the target app, extracting features at each step, and selecting
the optimal actions with the help of LLM.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

Automated Test Transfer across Android Apps using Large Language Models ISSTA098:3

659 & 0 66 - o0 omGE - A Za] 0 8=
> DOD
Register
= Orders 0>
[regse | £ happytestuser4027@gmail cor 8 Reward Points N
| o >
Extra 10% off for new customers, use -
coupon code: IAMNEW. © wishiist N
Buy clothes from 3 AED —
Y Review(s) >
New Arrivals About s >
| o 0 tortcsins >
\\
U NG Q@ consctus s
nnnnnnn o Toonane
@ Hep >
12 3 456 7 8 90
Language S @ Aboutus >
i qgqwerr tyuiop
g EP privacy Policy >
99.75 AED 23.10AED 49 ¢ Dk g
x a s
. _ . . 9 J £ Settings >
G = & =
¢ zxcvbnma@
1> Rateus on Play >
" 1 w #® - a 7123 # 1 - 2
2 o

Fig. 1. Registration test in DODuae [1].

. " e .]

® zalando T e S e — YR o6 @96 =
Welcome, Happy Q s

Ataste of you [[J p— Q

Sign in for a more personal Sign in or register Register Fashion Sto L

experience Inasnap Inasnap

Here's more of our exclusive @
deals!
15% off all our summer categories.

| one quik thing

Where would you like to start? e @
vnoqam&_ . . @ :

S ri22.10s

dwe 'ty uiop

asdfghijk.l

Clothing T-Shirts 4 Tops Dresses Skints

© zxcvbnma@

Fig. 2. Registration test in Zalando [5].

We evaluated LLMIGRATE by applying it to transfer Ul tests for apps in five different app categories.
In each category, tests were transferred across different apps, resulting in a total of 120 transfers.
Both the tests and the apps are reused from the dataset introduced by CRAFTDROID [58]. The
transfer outcomes are evaluated based on the precision, recall, reduction, and success rate metrics,
and the results were compared to those obtained from the existing techniques evaluated on the
same benchmark [58, 66, 97]. LLMIGRATE achieved a 97.5% success rate, reducing the manual effort
required to write tests from scratch by 91.1%. This represents an improvement of 9.1% in success
rate and 38.2% in effort reduction compared to the best-performing technique previously evaluated
on the CRAFTDROID benchmark. Notably, LLMIGRATE attains these gains with an average transfer
time of 247 seconds, surpassing the efficiency of prior methods.

2 Background and Terminology

Figure 1 depicts the required steps to register a new user on DODuae, a popular shopping app,
while Figure 2 demonstrates the same on Zalando, another widely used shopping app. As outlined
in Section 1, the core concept of test transfer is to leverage an existing test from one app, such as
DODuae, to automatically generate a test that targets the same functionality in another app, in this
specific example, Zalando. We use this example to introduce the concepts relevant to our approach.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

ISSTA098:4 Beyzaei et al.

Source Abstraction

q 0 Test i g
[:] * E Augrizntor i © ‘ 9) ©

Source App Source Test Mecencenmanans . Augmented Test

Test Migration

L=
P RRELLELD s Event T, + LLMResponse
| P ’ 0 oo P I__g i
o— i Automator ! AUT State, Errors i AUT State, Errors, 1§ |
e rememe———————— ¢ | AR " Performed Events,... + |\
Target App |

Generated Target Test

Fig. 3. LLMIGRATE’s approach overview.

The source app is the app for which an existing UI test is available—in this case, DODuae. This
test, called source test (e.g., the registration test on DODuae), will be transferred to the target app,
an app in the same domain as the source app, which in this example is Zalando. The resulting test
after the transfer, which is the final outcome of the transfer technique, is termed the target test (e.g.,
the registration test on Zalando). To evaluate the effectiveness of our approach, we compare the
target test against a manually created test for the target app, referred to as the ground truth test.
This ground truth test mirrors the same functionality as the source test and serves as an oracle for
measuring the performance of our test transfer technique.

A UI test is structured as a sequence of events. The events can be classified into three categories:
UI events, system events, and oracle events. Ul events represent a user’s actions in the app to interact
with its user interface, such as taps, swipes, and text inputs. System events are generated by the
underlying operating system, such as pressing the back button on Android devices. Oracles, also
known as assertions in the relevant literature, are responsible for verifying the expected outcomes
at various stages of a test. An oracle in the context of UI testing can be defined as a predicate
function F : (w,c) — {True, False}, where w represents a widget of the app, and c is a condition
to be evaluated pertaining to w. The function yields True if the widget w fulfills the criterion c;
otherwise, the outcome is False resulting in the failure of the assertion.

We represent events in all of these categories as a triple (action, event_type, widget). Here, the
action denotes the type of action, such as click, as well as any necessary auxiliary inputs, such as the
text input for keyboard events. The event_type can either be "gui”, "oracle” or "system", specifying
the nature of event. The widget denotes a target Ul element in terms of its attributes. Some events
may not be dependent on a specific widget, such as back or scroll, or may not require any auxiliary
input.

3 Approach

Figure 3 shows a high-level overview of LLMIGRATE. It takes three primary inputs: 1) a source test,
2) the binary of the source app, and 3) the binary of the target app. Its output is the target test.
As shown in Figure 3, LLMIGRATE’s approach involves two main phases: 1) Source Abstraction,
in which the source test is translated to a natural language representation called the abstract source
test, and 2) Test Migration, in which the core functionality of transferring the test to the target app
happens by analyzing and understanding the semantics of the target app’s UL In the following sub-
sections, we will discuss these phases in more detail, and the components involved in each of them.

3.1 Source Abstraction

During the source abstraction phase, the source test, which is dependent on a specific application,
programming language, platform, and testing framework, is translated to an internal representation

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

Automated Test Transfer across Android Apps using Large Language Models ISSTA098:5

called the abstract source test. This internal representation describes the source test in natural
language and is independent of any testing framework and programming language. Also, since it is in
the form of natural language, the abstract test is easily readable and comprehensible by both humans
and LLMs. The translation is performed in two steps: 1) Test Augmentation, and 2) Abstraction.

3.1.1 Test Augmentation. The purpose of this step is two-fold. First, it aims to make the test
independent of any specific programming language and testing framework. Second, it collects all
the useful attributes from the elements that are interacted with in the source test, which might not
necessarily be available in the test but can be helpful in understanding its semantics.

In order to achieve this, the source test is executed on a device running the source app event by
event. This involves our Test Augmentor component communicating with the source app by utilizing
the Appium testing framework [33]. After the execution of each of the events, this component
extracts the Ul layout hierarchy of the source app. This layout hierarchy is in the form of an XML
tree and represents the Ul elements in the current state of the source app. The Test Augmentor
then locates the specific widget interacted with during that particular step by analyzing the XML
hierarchy, using its locator, such as resource-id. The additional useful textual attributes are then
captured from the layout hierarchy for the located widget, such as content-desc, text, or class.

Once this information is collected, each event is represented as a triple (action, event_type,
widget), as mentioned in Section 2. The final augmented test is a sequence of these events, which
is independent of any specific programming language or testing framework. Figure 4 provides
examples of GUI and oracle events after the augmentation process.

We support a limited set of Ul interactions and primarily focus on two conditions for oracles: (1)
the presence of an element, and (2) the invisibility of an element. The set of UI events and oracles
supported in our work is consistent with those in the prior test transfer literature [58, 65, 66, 97].
Our augmentation module is available publicly on the project repository [17].

{ {
"action": ["send_keys", "56.6"], "action": ["wait_until_element_presence", 10],
"event_type": "gui", "event_type": "oracle",
"class": "android.widget.EditText", "class": "android.widget.EditText",
"resource-id": "anti.tip:id/bill", "resource-id": "anti.tip:id/total",
"text": "0.00" "text": "65.09"

¥ }

action | event_type widget

Fig. 4. Examples of GUI and oracle events after the test augmentation step.

3.1.2 Abstraction. In this step, the augmented test, the output of the previous step, is translated
to a representation in natural language, called the Abstract Source Test, which serves as a short,
one-paragraph summary of the source test that describes each of its Ul and oracle events.

To achieve this, we use the LLM Agent module, which is responsible for creating prompts and
communicating with the off-the-shelf LLMs. To create the prompts for each of the tasks in our
approach that require communication with LLM, we have manually created a prompt template
that includes the task definition and the necessary structure to introduce each of the input features.
This prompt template definition is a one-time manual effort needed for each task, such as test
abstraction. Once the template is defined, for every query instance, the LLM Agent integrates the
variable input features into the prompt template.

The utilized off-the-shelf LLM accepts two types of prompts: 1) system prompt, which is a
general prompt that familiarizes the agent with the task and provides a general context, and 2) user
prompt, which is task-specific. Prompt 1 represents the user prompt template for the abstraction
task, defining the requirements for the abstract test. This includes specifications such as its length

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

ISSTA098:6 Beyzaei et al.

and the information it should include. Note that, in all of the prompts demonstrated throughout the
paper, the text presented in color green, represents the variable input features that are substituted
in the prompt template for each specific query. For each task, we also provide a system prompt
(not shown here) that specifies the context for the LLM. Due to space constraints, the complete
prompt details are available in our publicly accessible repository [17].

Prompt 1: Source Abstraction Prompt

This is the test and each step is a JSON object. You should explain what this test does in a single paragraph. Don’t add
the details of the steps and keep it short but make sure to mention the exact values of inputs and texts. [...] Also explain
which step is the final step and which step makes the test complete and emphasize on the functionality that is under test.

Augmented Test Steps (Generated with Test Augmentor module from a test script)

Once the required prompt is created, the Source Test Agent consults the off-the-shelf LLM using
its provided API and collects the response. The following presents an example of the abstract source
test for the registration task of the DODuae app, which was described earlier in Section 2.

This test contains three oracles and evaluates the registration functionality of the "mobilapp.opencart.doduae”
app. It begins by verifying the presence of the dashboard element (oracle), then navigates to the "Me" section
(GUI event), and confirms the presence of the register button (oracle). The test proceeds by clicking the "Register"
button (GUI event), entering "sample@gmail.com” as the email address and "samplepassword" as the password
(GUI events), and clicking the "Register" button again (GUI event). The final step, which completes the test, is an
oracle that checks for the presence of the text "sample@gmail.com" to confirm successful registration.

3.2 Test Migration

In this phase, the abstract source test is transferred to the target app by dynamically exploring
and analyzing it. It involves the following interconnected components as shown in Figure 3: 1) Ul
Automator, which is responsible for communicating with the device running the target app to
collect information and execute commands on it, 2) Explorer component, which coordinates the main
logic of the transfer process, such as tracking the executed events and determining the transfer
completion, and 3) LLM Agent, which, as discussed in Section 3.1.2, is responsible for consulting
with the LLM.

The workflow of the test migration phase is performed as a repetitive loop, executing steps 1
to 6 depicted in orange in Figure 3. In each iteration of the loop, the goal is to find the optimal next
event executable in the target app such that the executed sequence in the target app is one step
closer to replicating the source test.

The dynamic exploration of the target app always starts from the initial screen that appears
when the app is first installed and launched. In the first step, the XML UI layout hierarchy rep-
resenting the elements in the current screen of the target app is captured by the UI Automator
component. Given that this layout hierarchy in its original form contains redundant information,
which makes it considerably large, the Ul Automator component processes it to clean the layout
hierarchy, retaining only the necessary elements identified based on their type. The final set of
retained elements includes 15 different widget types, including android.widget.EditText and
android.widget.ImageButton, that are widely used across Android apps. This set of widget types
is configurable in the tool.

The complete set can be found in our implementation [17], and if needed, extended.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

Automated Test Transfer across Android Apps using Large Language Models ISSTA098:7

T T
sampe Todo ETh: e
geBution™
<android.widget.EditText text="Sample Todo" /> o
i i et imageBution
candroid.widget.Editlext /> @ com.exampled/fab_ad.seminder” />
<android.widget.TextView /> a
<android.widget.ImageButton @ e This Is an ImageButton with an icon (iikely a clock or
clickable="true" 3
focused="false" long-clickable="false"
com. example:id/ password="false" §
fab_add_reminder + resource-id="com.example:id/fab_add_reminder" —|Z|— —>| Event Agent
scrollable="false" selected="false" text="" /> 5
<android.support.v7.widget.RecyclerView /> 4
<android.widget.TextView /> = o g
com. example: <android.widget. ImageButton e B I
jRd/zabrand clickable="true" focused="false" long-clickable="false" 5
password="false" resource-id="com.example:id/fab_add"
scrollable="false" selected="false" text="" />
el LLL] Current State XML L = Allows theuser o save o add te o fem
v]
Current State Screenshot LLM Response

Fig. 5. An example of the screen analysis task performed by the screen analyzer sub-agent.

We refer to the processed layout hierarchy and a screenshot captured from the app screen as the
Current State of the app. The current state is the main source of information about the target app at
each step of the transfer process.

Once the app state is collected, it is passed to the Explorer component in the second step. If the
Explorer component detects that no previous steps have been executed on the target app, it simply
passes the app state to the LLM Agent to identify the optimal initial event to be executed on the
current state of the target app in step 3.

In order to detect the optimal event on the target app, the initial step is to understand the semantics
of the current app state, including the processed XML UI layout hierarchy and the app screenshot.
To achieve this, we have utilized the capabilities of LLMs, as they have demonstrated a strong under-
standing of structured texts such as XML and HTML [34, 40, 41, 83] and are capable of effectively
analyzing screenshots of web and mobile apps [103]. Specifically, this task is managed by the Screen
Analyzer sub-agent, as illustrated in Figure 5. The screen analyzer consults the LLM to analyze both
the XML layout hierarchy and the screenshot, matching the widgets within the hierarchy to the cap-
tured screenshot. Prompt 2 represents the specific prompt template used for the screen analysis task.

The outcome of the screen analysis task is an analysis report, which, as shown in Figure 5,
includes the key elements of the screen along with their locators, natural language functionalities,
and the potential actions they can support.

The rationale for using multimodal inputs for the screen understanding task is that relying
solely on the textual info obtained from the layout hierarchy can sometimes be insufficient, which
may lead to suboptimal event selection. For instance, consider the example of adding an entry
in a Todo app, demonstrated in Figure 5. In this case, two highlighted widgets exist with textual
attributes fab_add and fab_add_reminder, respectively. By only relying on textual information,
it can be ambiguous to determine which of the two widgets should be used to add a new task, since
the term "reminder" is often used interchangeably with "task" or "to-do" in the domain of to-do
apps. However, by incorporating the visual information from the captured screenshot, the screen
analyzer agent is able to use the images and icons and conclude that the functionality of the second
widget is to allow the user to add a reminder to a to-do item.

Prompt 2: Screen Analysis Prompt

The attached image is a screenshot of an Android application. Below is the XML representation of the same screenshot:
Current State (XML)

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

ISSTA098:8 Beyzaei et al.

Your task is to analyze both the image and the XML file. Describe the key widgets you observe in the screenshot and
match them to their corresponding XML elements. For each widget, indicate whether:

- It is clickable or long-clickable.

- It is an EditText field, allowing for text input (send_keys).

- Scrolling is possible within it.

And also explain what is the possible functionality of the widget. Be detailed in your descriptions and clearly highlight
the key widget behaviors.

Next, the LLM Agent, specifically the Initial Event Generator sub-agent, defines the initial action
selection task as a question-answering task and utilizes a specific prompt template for this task.
The variable input features for this task include: 1) The abstract source test, which guides the agent
in identifying the next best event; 2) the XML UI layout hierarchy, which provides information
about the existing elements in the target app; and 3) the screen analysis report generated in the
previous step. Prompt 3 provides the corresponding prompt template for the initial event selection
task. Note that in all the prompts presented in the paper, the sections of the prompts written in gray
serve as section headings and descriptive summaries. These elements do not exist in the original
prompt text but are included in the paper to provide the purpose and content of specific sections of
the prompts.

Prompt 3: Initial Event Selection Prompt

Abstract Source Test: This is a sequence of events intended to perform a user interface (UI) test on the source app

Source App Package Name application. We define it as a source test: Abstract Source Test

Task Definition: This part defines the role of a mobile test engineering assistant responsible for migrating automated
tests between Android applications. The focus is on ensuring compatibility with the target app, initializing properly,
and adapting test actions based on the target app’s current state.

You have the initial screen of the target application along with the source test definition above. Now, you are migrating
the source test to another application. Given this scenario, which event do you believe is the best to perform next? [...]

Event Definition: This section defines the types of events that can be used when migrating tests: GUI events interact
with the app’s interface, Oracle events check the state of the app, and System events handle system-level actions.

You can choose between three types of events: 1. GUI events 2. oracle events 3. system events

1. GUI events include event_type as GUL class of the element, resource-id of the element, action and other necessary
fields if they exist like text, hint, content-desc and naf. You should generate this event based on the current state of the
target application [...]

2. oracle events include event_type as oracle and the action which can be one of the

"wait_until_element_presence" or "wait_until_element_invisible". If you return an oracle event you just need to include
event_type and action fields not anything else. [...]

3. system events include event_type as system [...]

Application State: Here is the initial screen of the current application in XML format: Current State (XML)

Here is a description of the current state widgets: Screen Analysis Report (Generated from Screen Analyzer Agent)

Possible Actions: Instruction for Generating an Action

Note: Every action should be an array.

1. key_back: Press the system back button. Choose this action when test goal contains back press or back navigation.
example: ["key_back"]

(-]

9. wait_until_element_invisible: Use this oracle to validate that a particular element is not visible on the screen. The
selector type could be "xpath", "content-desc”, "id" (resource-id) and "text". you should just include an array inside the

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

Automated Test Transfer across Android Apps using Large Language Models ISSTA098:9

action field of the event, alongside with the event_type. First item inside the array is the action type, second one is the
wait time, third is the selector type and the last one is the selector value. Example: ["wait_until_element_invisible", 10,
"text”, "a sample text"]: Check if "a sample text" is not visible on the screen for 10 seconds.

The LLM Agent consults the LLM using Prompt 3 to create the initial optimal event, which is
expected to be in the JSON format, including the event triple (action, event_type, widget) defined
in Section 2. Examples for LLM responses that contain an event are shown in Figure 4. In order
to mitigate the challenge imposed by the non-determinism of LLMs, we took two specific actions
for all the action selection prompts. Firstly, we set the temperature parameter of the LLM to zero
to reduce its exploration abilities and make its responses more predictable. Second, to reduce the
impact of LLM hallucination, we used a majority algorithm to determine the final generated event.
This involves querying the LLM n times repeatedly for each task as a zero-shot prompt, leading to
the receipt of n responses in the form of JSON objects. In a JSON object, a key is a unique identifier
for a piece of data, and its corresponding value is the data itself. To generate the final event, the LLM
Agent includes only the keys that appear more than m times among the n received responses and
sets the value of these keys to the most frequently occurring value for each included key. Note that
m and n are configurable parameters that are set to 2 and 3, respectively, in our current evaluation.

Upon determining the initial event, the LLM Agent sends the generated event to the Explorer
component in step 4. The Explorer then records it as an executed event to keep track of it and sends
it to the UI Automator component (step 5), so that it can be executed on the target app, enabling it
to proceed to the next state (step 6).

It is important to note that not all the events generated by the LLM Agent are necessarily
executable or valid events. Consequently, executing the generated event on the target app may
result in one of four different scenarios: 1) The Ul event is successfully executed on the target app,
causing the target device to proceed to a new state, or the condition for the generated oracle event
is met on the target app. 2) The execution of a UI event or system event leads to an exception,
indicating it is not a valid event. This can have reasons such as invalid widget locators created by
LLM. 3) The condition for the generated oracle is not met in the app, which results in an exception.
4) The execution of a UI event will not raise any exceptions, however it will not result in any
changes in the target app, indicating it was not a useful step to be included in the target test. Next,
we discuss in detail the subsequent steps required to address each of these four scenarios.

Scenario 1 indicates a successful iteration of the migration loop. The migration loop continues to
iterate until all the source oracles are transferred to the target app or until a configurable threshold
of the number of target events is reached. This threshold is set to three times the number of source
test events in our current implementation. Note that, this end condition has the assumption that
tests typically conclude with an oracle event, which is often the case in practice. If the end condition
is not met, another iteration of the migration loop is initiated. In this scenario, the key difference
between the initial and the subsequent iteration is in the event selection prompt. For the subsequent
steps, the event selection prompt introduces an additional input feature to be integrated into each
query alongside the abstract source test, XML layout hierarchy, and screen analysis report, which
is the previously executed steps recorded by the Explorer component to guide the LLM Agent in
identifying the next optimal event.

One of the limitations of the existing test transfer techniques is their failure to handle input
value differences between the source and target applications. In real-world scenarios, The required
parameters might differ between the source and target apps. For example, some of the required
parameters for the source app may not be used in the target app, while some required parameters
in the target app may be missing in the source test. For instance, a source test exercising the
registration functionality in a shopping app might include a "ZIP code" field not needed in the target

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

ISSTA098:10 Beyzaei et al.

app, or the target app might require additional fields like "name" and "family name". Our approach
addresses these differences in input requirements by guiding the LLM to generate appropriate
values for input fields in case they are not available in the source test while skipping the unnecessary
existing input values. The LLM’s ability to create appropriate inputs that are not present in the
source test based on its understanding of the application’s context makes it highly useful for test
transfer in contrast to the existing similarity-based techniques, which rely solely on the existing
input values in the source test and face shortcomings when additional input values are required.

Additionally, during the event selection process, we incorporate a set of general guidelines,
referred to as hints, into the prompts. These hints are designed to help the LLM agent interact
more effectively with the application by using a set of specific rules. For instance, one of these
hints instructs the agent to ensure that all required fields in a form are filled in before submission.
Another hint instructs against selecting repeated actions. Furthermore, the "possible actions" section
of Prompt 4, provides additional instructions regarding action types, such as the possibility to
interchange swipe_right and long_click, across Android applications. We have ensured that all
the provided hints are general and contain no app-specific or scenario-specific details.

Prompt 4 demonstrates the prompt template for the next steps event selection task. Note that the
sections that do not contain detailed descriptions are identical to the sections explained in Prompt 3.

Prompt 4: Next Event Selection Prompt

Abstract Source Test

Performed Events: You have successfully performed these events in the target application so far (performed events

array): Performed Events (Captured by Explorer module)

Application State

Task Definition: This section outlines that during test migration, it is important to prioritize transferring oracle
events to verify the correct application state. While exact steps from the abstract source test don’t need to be followed,
actions should be adapted to the current state of the target app.

You are not required to transfer the exact steps in the test goal, just transfer the suitable ones based on the current state.

[-]
Event Definition

Values: In the target app, you may need to use specific values such as name, email, password, etc. Fill out all required
fields, but leave optional fields empty. Use the same values in confirmation fields (e.g., password and confirm password)
when required. If no specific values are provided in the test goal, generate random valid data based on the field names in
the target app. Always prioritize using values from the test goal if they match the field in the target app.

If there are no values to use inside the abstract source test generate random correct values based on the field name in
the target app but always prefer using values from the abstract source test for related fields.

Hints: This part provides general tips for handling events during test migration. Key guidelines include: Base your
actions on the "current_state". Only add oracle events when indicated in the "current_state". Avoid unnecessary actions
like sending keys to already-filled fields. Use attributes like text and class if resource-id is unavailable

Some steps and rules that you should follow:
- If you have already interacted with an element and have not reached the correct oracle, try another action on that
element or generate a completely new event. Do not repeat the same events in the already performed events array. [...]

Possible Actions

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

Automated Test Transfer across Android Apps using Large Language Models ISSTA098:11

Scenarios 2 and 3 occur when an invalid event is created by LLM, which are easily identifiable
by the UI Automator component. This is because executing these events on the target app results in
raising an exception. In these cases, again, another iteration of the migration loop begins. However,
since the previous iteration was unsuccessful, additional measures need to be taken by Explorer,
our primary coordinator, to address the failure. These measures are fourfold. First, the Explorer
component removes the previously generated event that resulted in an exception from the list of
executed events, as it should not be included in the final transferred test. Second, the Explorer
records this event as a dead-end event to ensure that it will not be mistakenly considered a valid
event in future iterations. It is important to note that dead-end events are saved based on the current
transfer step, as an event might be a dead-end in one step but not in another one. During step 5 of
the migration loop, the Explorer always checks to ensure that a suggested event by the LLM Agent
has not been previously identified as a dead-end event. Third, the Explorer backtracks one step
in the execution to undo the consequences of the last invalid generated event. The backtrack is
achieved by restarting the app, clearing the cache, and re-executing all recorded events except the
last invalid one. Finally, the Explorer needs to inform the LLM Agent that the generated event in
the previous iteration was invalid. This results in the LLM Agent utilizing a specific prompt, asking
the off-the-shelf LLM to repair its previous attempt.

Prompt 5 shows the sections of the repair event selection prompt that are different from Prompt 4.
This prompt specifically includes a feedback section that consists of the previously generated incor-
rect event and the exception that was raised as a result of executing that event. The rationale behind
including this feedback is based on prior research in program repair and analysis, which has shown
that LLMs have a strong ability to understand bugs and exceptions when they are provided with de-
tailed feedback [29]. Therefore, to enhance the handling of cases in which an exception is raised, we
use a Chain-of-Thoughts (CoT) approach by including the exception description and prior responses
within the prompt. This method has been shown to improve the reasoning capabilities of LLMs [90].

Prompt 5: Repair Event Prompt

Abstract Source Test + Performed Events + Application State

Feedback: You have been asked for generating an event, this is the last generated event and it has already been attempted

and failed, throwing an exception. This event should not be recommended again in your response: Last Wrong Event

This event is not correct because of this exception: Last Exception

Task Definition + Event Definition + Values

Hints: - If you have already interacted with an element and have not reached the correct oracle, try another action on
that element or generate a completely new event. Do not repeat the same events from the already performed events array.
- When your last wrong event is a send key action but the exception indicates that you cannot set the element and you
are interacting with the wrong element, you should try clicking on that element first before sending keys. Fix the last
wrong event by changing the action to click. [...]

Possible Actions

Scenario 4, where the execution of the generated event does not result in any changes in the
target app’s state, is not identifiable by the UI Automator as it does not raise an exception. To detect
this scenario, at the beginning of each migration loop iteration, the Explorer component compares
the target app state received from the Ul Automator with its previous state. If the two states are
identical, indicating that the generated event was not useful, the Explorer takes the same steps

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

ISSTA098:12 Beyzaei et al.

required for scenarios 2 and 3 mentioned above, including backtracking and utilizing the repair
event selection prompt (Prompt 5) in the iteration. To prevent the migration process from becoming
stuck on a specific screen and continuously generating invalid events, a threshold is established for
the number of incorrect events generated in each step of the transfer process. Upon reaching the
threshold of unsuccessful attempts, which is set to three attempts in the current implementation,
the Explorer initiates a backtrack. The last performed event is also removed from the executed
events in Explorer’s record, and it is marked as a dead-end event.

As previously mentioned, the migration loop continues until all the source oracles are transferred
to the target app. At this point, the Explorer creates the final output from the recorded executed
events, resulting in the generated target test. Note that the generated target test is presented as an
augmented test, which is in the form of a triple (action, event_type, widget), as discussed in Section 2.
In this representation, the widget attribute may contain different selectors, such as resource_id or
text, any of which can be used for widget interaction. As previously mentioned, the UI Automator
component is responsible for executing the events of the transferred test on the device which
includes prioritizing the widget selectors to be utilized for the event execution.

4 Evaluation

In this section, we detail the evaluation of LLMIGRATE, focusing on how effective it is in transferring
Ul tests across mobile apps. Our evaluation aims to answer the following four research questions:

RQ1. How effective is LLMIGRATE in accurately transferring UI tests across real-world mobile
apps?

RQ2. How useful are the tests transferred using LLMIGRATE?

RQ3. What are the time and cost implications of using LLMIGRATE for transferring tests?

RQ4. How practical is LLMIGRATE for transferring tests on today’s popular apps?

RQ5. How well does LLMIGRATE perform in transferring tests across apps that are not previously
seen by LLMs?

4.1 Experimental Setup

LLMIGRATE is designed to be platform-agnostic and, therefore, capable of transferring tests across
various devices and platforms. Our current implementation focuses on transferring tests across An-
droid apps. For our evaluation, we utilized the publicly available dataset introduced by the authors of
CrAFTDROID [58]. As shown in Table 1, this dataset contains tests from five different app categories:
Browser, To Do List, Shopping, Mail Client, and Tip Calculator. The advantages of utilizing this
dataset are two-fold. First, it enables the evaluation of our developed approach within the context
of real-world apps. Second, since this dataset has also been utilized as the benchmark for evaluating
the other existing test transfer techniques, such as CRAFTDROID [58], TEMDROID [97], TRASM [65],
and TREADROID [66], it enables us to effectively compare our technique against the state-of-the-art
approaches across various dimensions such as accuracy, usefulness, and performance.

It is important to note that we were unable to utilize the CRAFTDROID dataset in its original form
because, for some of the apps, the versions that were used in this dataset are no longer functional.
In these cases, we used an updated version of the apps, provided the following two constraints
hold: 1) a functional and supported version of the app is available, and 2) the update does not
alter the test flow from the original version utilized in the CRAFTDROID dataset, such as requiring
additional steps like CAPTCHA. In the cases where these conditions were not met, we removed
the non-functional app from the dataset. This resulted in reusing 19 out of the 25 apps from the
original CRAFTDROID dataset. Table 1 demonstrates the final set of the subject apps as well as the
versions used in our evaluation.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

Automated Test Transfer across Android Apps using Large Language Models ISSTA098:13

Table 1. Subject apps.

Category c1-Browser c2-To Do List c3-Shopping c4-Mail Client c5-Tip Calculator
Lightning (5.1) Minimal (1.2) Geek (2.3.7) K-9 Mail (6.603) Tip Calculator (1.1)
Apps Browser for Android (6.0) Clear List (1.5.6) Yelp (10.21.1) Mail.Ru (14.117.0) Tip Calc (1.11)
(Versions) Privacy Browser (2.1) To-Do List (2.1) myMail (14.97.0) Simple Tip Calculator (1.2)
FOSS Browser (5.8) Shopping List (0.10.1) Tip Calculator Plus (2.0)
Firefox Focus (6.0) Free Tip Calculator (1.0.0.9)

Table 2. Test cases for the proposed functionalities.

Functionality #Test Average# Average#
Cases Total Events Oracle Events
c1/t1-Access website by URL 5 3.6 1.0
c1/t2-Website navigation involving back button 5 6.6 3.0
c2/t1-Add task 4 4.25 1.0
c2/t2-Add then remove task 4 6.75 2.0
c3/t1-Registration 2 14.5 5.0
c3/t2-Login with valid credentials 2 7.0 3.0
c4/t1-Search email by keywords 3 5.0 3.0
c4/t2-Send email with valid data 3 9.3 3.0
c5/t1-Calculate total bill with tip 5 3.8 1.0
c5/t2-Split bill 5 4.8 1.0
Total 38 5.9 2.0

In the resulting dataset, there are tests for validating at least two of the main functionalities
provided by apps in each category, as shown in Table 2. In the presented table, categories are
represented by ¢, and functionalities under tests are represented by t. For example, c1/t1 represents
the first tested functionality for the first app category, Browser, which is Access website by URL. We
conducted evaluations on a total of 120 transfers and manually evaluated the transfer results.

Our experiments were conducted using a Nexus 5X emulator running Android 6.0 (API 23),
aligning with CRAFTDROID’s evaluation for apps where the original versions were functional. For
the updated apps that are incompatible with this older version, we employed Nexus 6a emulators
running Android 10.0 (API 29). For our evaluation, we used GPT-4o0 as an off-the-shelf LLM provided
by OpenAl, which can perform reasoning across both visual and textual inputs. We selected this
model due to its reasonable cost and superior performance on reasoning and coding benchmarks
[78]. All tests were conducted through OpenAI’s AP, and to accurately measure the transfer time,
we tested across various internet connections and VPNs. The transfers were executed on a Mac
machine with an 8-core CPU, 10-core GPU, and 16GB of unified memory.

As discussed in Section 3, our approach has three adjustable parameters: 1) maximum wrong
tries at the Same Step, 2) total number of runs for majority voting (n), and 3) threshold for majority
voting to include a field (m). We empirically observed the best-performing values for all these
parameters and set them to 3, 3, and 2, respectively, in our evaluation.

4.2 RAQ1. Efficacy of LLMIGRATE

For evaluating the efficacy of LLMIGRATE, we utilize the precision and recall metrics introduced
and utilized by the existing research targeting test transfer [58, 66, 97]. Similar to the definition
utilized by the existing research, true positives (TP) are events in the transferred test that exist
in the ground truth. False positives (FP) are events in the transferred test that do not exist in the
ground truth. Finally, false negatives (FN) are events that exist in the ground truth but are not
present in the transferred test.

Table 3 presents a comparative analysis of the precision and recall metrics obtained by LLMIGRATE,
CrarTDROID [58] and TREADROID [66]. Consistent with prior research, we categorized all events

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

ISSTA098:14 Beyzaei et al.

into two main types: GUI events and oracle events, with system events classified under GUI events.
To ensure a fair and accurate comparison, we aimed to capture results achieved by the other
techniques that were derived solely from the 19 subject apps that are currently functional from the
CraFTDROID dataset, as shown in Table 1. This required the detailed analysis of each transferred test
for other techniques, similar to the process we used to analyze tests transferred by LLMI1GRATE. This
was possible for CRAFTDRoID and TREADROID, as the artifacts containing the transferred tests are
publicly available for CRAFTDROID, and we obtained the corresponding artifacts for TREADROID
upon communicating with the authors. This was not possible for TEMDRoID as the final transferred
tests are not publicly available, and we were unable to obtain the research artifacts that would
allow us to process it for a fair comparison, even after contacting the authors. Furthermore, we
were unable to successfully run TEMDROID as the implementation of certain components was not
publicly available. Consequently, for TEMDROID, we used the average metrics reported in their
paper. In this case, although the datasets are not identical, the comparison remains informative
since our dataset shares 82.6% (19 out of 23) of the apps. We have not included the metrics obtained
by TRASM [65] and ATM [27], as TREADROID previously benchmarked its obtained results against
these techniques and demonstrated superior performance across all metrics [66].

Note that there may be more than one correct ground truth in transferring a test from a source to a
target app. To this end, we manually inspected the transferred tests generated by all the transfer tech-
niques rather than automating the process to ensure a fair comparison between different techniques.

As demonstrated in Table 3, LLMIGRATE was able to achieve a total average precision of 98%
for GUI and 94% for oracle events. Similarly, LLMIGRATE achieved an average recall of 99% for
GUI events and 94% for oracle events. These results indicate that LLMIGRATE outperforms all the
existing techniques in both average precision and recall metrics for both GUI and oracle events in
total. Note that, due to the varying lengths of different scenarios, all reported average metrics are
calculated based on the total number of events within each category or across all transfers rather
than based on the achieved metric for each individual migration. Furthermore, a detailed analysis
of the results for each individual migration is presented in our publicly available repository [17].

Table 3. Comparative analysis of precision and recall score metrics achieved by LLMIGRATE, CRAFTDROID, and
TREADROID across different app categories and TEMDRoID’s average.

App Category Approach Precision Recall
GUI Event Oracle Event GUI Event Oracle Event
LLMIGRATE 100 () 100 () 100 () 100 ()
Browser CRrRAFTDROID 90.54 100 98.52 97.50
TREADROID 100 100 100 100
LLMIGRATE 93.26 (17.9%) 97.22 (14.9%) 98.98 () 97.22 (15.8%)
To Do List CRAFTDROID 83.48 92.30 78.44 80
TREADROID 85.39 91.42 98.70 91.42
LLMIGRATE 100 (155.2%) 5625 (127.7%) 96.87 (132.1%) 56.25 (123.4%)
Shopping CRAFTDROID 44 28.57 64.70 35.29
TREADROID 44.73 27.78 51.52 32.81
LLMIGRATE 100 (16.8%) 91.67 (18.3%) 100 (— %) 91.67 (18.3%)
Mail Client CRAFTDROID 64.70 83.33 68.75 83.33
TREADROID 93.18 100 95.34 100
LLMIGRATE 100 (15.0%) 100 () 100 (14.0%) 100 ()
Tip Calculator ~CRAFTDROID 71.78 75 88.15 73.17
TREADROID 94.94 100 95.91 89.74
LLMIGRATE 9839 (19.6%) 94.71 (13.1%) 99.53 (16.0%) 94.71 (15.7%)
CRAFTDROID 78.54 83.59 85.65 82.29
Total Average
TREADROID 88.77 91.58 93.52 87.44
TEMDROID 71 90 93 89

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

Automated Test Transfer across Android Apps using Large Language Models ISSTA098:15

For the app categories containing less complicated apps and test flows, such as the browser
category, the baseline method demonstrated successful transfer of all events and oracles, and LLMi-
GRATE was able to achieve similar performance. However, in more complex scenarios, we observe a
notable improvement over the baseline. This improvement is largely due to the LLMIGRATE’s more
advanced comprehension of screen elements, enabling it to surpass the limitations of one-to-one
event transfer.

Unlike GUI events for which we observed improvement in both precision and recall across all
app categories, we saw degradation in one category in these metrics for oracle events. Upon further
analysis of these cases, we realized that in these cases, many oracles are specifically designed to
confirm page accuracy prior to executing an action. When LLM can detect a widget on a page
and interact with it directly, sometimes it omits the necessary oracle transfers for verification
purposes. This may account for a decrease in oracle-related metrics in categories such as mail
applications. Earlier methods, which transfer events sequentially, transfer oracles at particular
steps, thus benefiting from consistent application flows and yielding marginally higher precision
and recall in oracle events. But this is not always the case, and LLMIGRATE design principles allow
it to achieve better performance on apps which have different flows.

4.3 RQ2. Usefulness of the Tests Transferred by LLMIGRATE

The usefulness of a test is defined by how helpful it is in reducing the manual effort for a human
tester. To measure usefulness, we utilized the reduction metric, defined by previous research in
this area [102]. This metric compares the manual effort required to write the ground truth test
from scratch to the effort required to manually transform the transferred test to be identical to
the ground truth test. The manual effort is defined as the Levenshtein distance [56] between the
sequence of events of the transferred and ground truth tests. The reduction metric is calculated
using the following equation: (# Ground Truth Events - Manual Effort) / (# Ground Truth Events).

Figure 6 presents the average reduction metric achieved by LLMIGRATE, CRAFTDROID, and
TREADROID across different app categories and in total. Similar to the analysis performed for
answering RQ1, we used the subset of the subject apps common across all approaches to ensure
a fair comparison and evaluated all the transferred tests manually. Again, we were unable to
include the reduction metric achieved by TEMDROID due to the unavailability of their artifacts and
not reporting the reduction metric on CRAFTDROID dataset in the corresponding publication. On
average, LLMIGRATE achieved 91% reduction, demonstrating that LLMIGRATE was able to eliminate
more than 91% of the manual effort required for writing tests, outperforming all the prior techniques
by almost 40% in total average.

In categories such as shopping, which involve more complex test cases to transfer, previous
research [58, 66] has shown a negative reduction metric, indicating that it can be more efficient
to write tests from scratch rather than rely on transfer methods followed by extensive manual
edits to the generated tests. This insight underscores the significance of metrics like reduction,
which directly reflect the decrease in manual effort, as opposed to focusing solely on precision and
recall of the transferred events. Since tools in this domain are fundamentally intended to transfer
complete tests to minimize manual work for test engineers, reduction serves as a more relevant
measure of a tool’s practical effectiveness.

In our evaluation of LLMIGRATE’s usefulness, we utilized another metric called the successful
transfer rate. This is a binary metric, assigned a value of 1 (100%) if the objective of the source test
is met in the transferred test and 0 (0%) if it is not. Detecting if the objective of the test is met is
done through manual inspection.

Figure 7 presents the successful transfer rate achieved by various techniques across different
app categories and in total. On average, LLMIGRATE was able to achieve a total of 97.5% successful

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

ISSTA098:16 Beyzaei et al.

100% 100%) oo
" 89.00% 86.00% 2343% 68.32% 84.50% ~-22% 96.00%, 190% 9119%

s 68.50% 50.00% 43.00% 52.90%

40 37.70%

: i i sl sl
0

20

-40

-60

-80 -62.00%

120 -102.00%
Browser Todo List Shopping Mail Client Tip Calculator Total

I CraftDroid M TREADroid LLMigrate

Fig. 6. The reduction achieved by LLMiGRATE, CRAFTDROID, and TREADROID across various app categories.

transfer rate across all the 120 transfers. This means that, although the transferred test may have
additional extra steps not present in the ground truth or reach the objective via a path that was not
identical to our specific manually defined ground truth, 97.5% of the transferred tests successfully
met their objectives, including executing the required functionality and asserting the appropriate
conditions using the transferred oracles. This shows that LLMIGRATE was able to outperform the
existing technique with the highest successful transfer rate, TREADROID, by almost 10%. Again, for
TEMDRoOID, we were unable to obtain the exact value for this metric, but the total average success
rate reported in a subsequent work by the same authors [98] indicates a far inferior successful
transfer rate of 53%, which is 44% lower than LLMIGRATE.

4.4 RQ3.LLMIGRATE’s Performance and Cost Effectiveness

With respect to the required time to transfer a test from the source to the target app, LLMIGRATE
has significantly better performance than previous methods and transfers each test in 247 seconds
on average, which is 290 seconds and 5,120 seconds better than TEMDRoOID and CRAFTDROID,
respectively. While TREADROID does not report an exact average transfer time, an analysis of the
results reported in the paper suggests that it performs faster than CRAFTDROID but slower than
TEMbroID. Therefore, LLMI1GRATE outperforms TREADROID on the performance metric as well.

The main cost of LLMIGRATE is due to the usage of LLMs such as GPT-40. To calculate the
cost for each transfer, we tracked the tokens in each query during the transfer and computed the
accumulated cost of all of the queries as the total cost of one transfer. On average, each of the
transfers requires 118,600 input tokens and 5,180 output tokens, costing USD $0.70, which depends
on the length of the transferred test. On average, each of the transferred tests has 5.5 steps, and
each step costs USD $0.12.

100 97.50%100% 100% 96.00% 100% 100% 97.50%
Y 91.66% 91.66% saaa il
75.00% 8333k .
75 72.50% 76.6%%
54.17%
50.00% 53.00%
50
25.00%
25
o.oo%l
0

Browser Todo List Shopping Mail Client Tip Calculator Total
W CraftDroid B TREADroid LLMigrate [TEMDroid Average

Fig. 7. The successful transfer rate achieved by LLMIGRATE, CRAFTDROID, TEMDROID, and TREADROID across
various app categories.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

Automated Test Transfer across Android Apps using Large Language Models ISSTA098:17

4.5 RAQA4. Practical Usage of LLMIGRATE on Today’s Popular Apps

As presented in Section 4, LLMIGRATE achieved strong results on the CRAFTDRoOID dataset, which
is the primary benchmark used by existing test transfer techniques. However, since many apps
in this dataset are outdated or no longer supported, and given the rapid evolution of mobile
app development and workflows, we conducted a follow-up study to evaluate LLMIGRATE on
more recent, widely used real-world apps. This study aimed to broaden the evaluation scope and
address the dataset’s limitations, particularly in categories with fewer functional apps. We selected
additional up-to-date apps in the Browser, To Do List, Mail Client and Shopping categories. In each
case, we transferred existing CRAFTDROID tests to the new apps and measured precision, recall,
success rate, and reduction, as shown in Table 4. LLMIGRATE demonstrated strong performance
on this new set, achieving an average success rate of 98%, an average reduction score of 97%, and
an average transfer time of 238 seconds. These findings validate LLMIGRATE’s effectiveness in
adapting to modern app workflows and highlight the value of transferring tests from older apps to
reduce manual testing effort in current app development.

Table 4. Analysis of precision, recall, success, and reduction metrics achieved by LLMIGRATE, on new apps.

Precision Recall

App Download Test GUI Event Oracle Event GUI Event Oracle Event Success Reduction

. Mozilla Firefox [3] 100Ms cl-t1 100 100 100 100 100 100

cl-t2 100 100 100 100 100 100

ToDo [4] 10M+ c2-t1 100 100 100 100 100 100
c2-t2 91.66 88.88 91.66 88.88 100 90.63

DODuze [1] M+ c3-t1 100 30 100 37.5 100 50
c3-t2 100 66.67 100 66.67 100 77.78
Zalando [5] SOMs+ c3-t1 94.73 40 100 57.14 50 62.99
c3-t2 81.81 66.67 100 66.67 100 64.58

Fmail [2] 10M+ c4-t1 100 100 100 100 100 100
c4-t2 100 77.78 100 77.78 100 84.26

4.6 RQ5. Evaluating LLMIGRATE on Data Unseen by LLMs

Since LLMIGRATE leverages existing off-the-shelf LLMs like GPT-4o to transfer tests, it is important
to evaluate its effectiveness on apps and test cases that the LLM has not previously encountered.
This helps ensure that the promising results discussed earlier are not simply due to the LLM’s prior
familiarity with the subjects, and it also validates LLMIGRATE ’s applicability to future, unseen apps.
To do this, we took two key steps: selecting apps that were released after GPT-40’s knowledge cutoff
date of October 2023 [78], and manually writing new test cases for these apps rather than relying
on publicly available ones. We introduced five new app categories and, within each, selected three
recently released apps. For each category, we manually designed a representative usage scenario
and created corresponding tests, resulting in 30 total test transfers across these new apps.

Table 5 outlines the app categories, selected apps, and usage scenarios. Table 6 presents the
precision, recall, success rate, reduction, and transfer time metrics for these unseen test transfers.
On average, LLMIGRATE achieved 97% and 89% precision and 97% and 92% recall for GUI and
oracle events, respectively. Additionally, it reached a 93% average successful transfer rate and 88%
reduction score, consistent with the findings in earlier research questions. These outcomes confirm
that LLMIGRATE performs reliably on data that was not part of the LLM’s training set, supporting
the robustness of the approach.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

ISSTA098:18 Beyzaei et al.

Table 5. Evaluation subjects used to verify LLMIGRATE’s applicability on data previously unseen to GPT-4o.

. Release . . # Total # Oracle
App Category Subject Apps Date Functionality Events Events
al-EMI Calculator & Financial [14] 9 Aug 2024
c6-EMI Calculator a2-Cash Loan EMI Calculator [8] 20 Jan 2025 t1-Add 3 entries and calculate the EMI 5.4 1
a3-EMI Calculator : Loan Planner [15] 1 Feb 2025
al-Google Gemini [16] 4Jun 2024 t1-Start a conversation asking a Yes/No question
c7-Al Chatbots a2-Deep Search - Al Chatbot [13] 30 Jan 2025 and verify the answer 3 2
a3-Chatbot - Al Smart Assistant [9] 16 Feb 2024
al-Ava Assistant - Movies & Shows [7] 29 Jan 2025
c8-Movies a2-200TV - Live TV Movies App [6] 16 Jan 2025 t1-Search for a movie and share the details 4.5 1
a3-ClipFix: Movie Shazam [10] 29 Aug 2024
al-Daily Notes - Easy Notebook [12] 1 Feb 2025
c9-Note a2-Notes - QuickNotes [20] 14 Jan 2024 t1-Add a note and search for it by its title 6.5 2
a3-Personal notes and tasks [21] 5 Jan 2025
al-Messages for SMS - DUAL SIM [18] 26 Dec 2024 t1-Search for a phone number and send a message
c10-Messenger a2-Messages: Text SMS [19] 29 Jan 2025 to the found recipient 5 2

a3-Color SMS: Message & Messenger [11] 26 Oct 2023

Table 6. Analysis of precision, recall, success, reduction, and transfer time metrics achieved by LLMIGRATE,
on unseen apps.

Category Test Precision Recall Successful ~ Reduction Transfer Time
GUI Event Oracle Event GUIEvent Oracle Event Transfer Rate

c6-t1 100 100 100 100 100 100 294.5
c7-t1 100 66.7 100 72.7 100 60 265.44
c8-t1 100 30 100 100 100 100 273.69
c9-t1 91.7 91.7 91.7 91.7 66.7 83.3 333.77
c10-t1 100 100 100 100 100 100 424.63

Average 97.8 89.6 97.8 92.8 93.3 88.6 318.41

5 Discussion

Our evaluation demonstrates that LLMIGRATE achieves high accuracy in transferring tests across
Android apps, outperforming existing solutions. However, we observed certain failure cases that
highlight limitations of the current approach. These include incorrect action selection by the LLM,
incomplete flow transfer where critical steps are omitted, and the insufficient oracles generation,
particularly for transitions. While these issues do not always prevent test execution, they can
compromise the correctness or completeness of the transferred tests. Readers can find specific
examples of these cases on the project repository [17].

Additionally, LLMIGRATE shares some common limitations with prior test transfer techniques.
Its performance is influenced by the accessibility and quality of Ul metadata in the target app,
particularly when meaningful attributes like resource-id or content-desc are missing. The tool
also struggles with transient UI elements such as toast messages, which may disappear before
they can be processed. Furthermore, certain events, like user registration, can be irreversible,
making it difficult to recover from partial failures. These challenges suggest directions for future
enhancements, such as incorporating visual analysis [30] or improving app state management.

6 Threats to Validity

An important threat to the validity of our work stems from our reliance on off-the-shelf LLMs such
as GPT-4o. These models produce responses that are not fully deterministic. Consequently, our
approach may also produce varying results for the same test, impacting the findings’ reproducibility.
We tried to address this threat by querying the LLM multiple times, as discussed in Section 3.2.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

Automated Test Transfer across Android Apps using Large Language Models ISSTA098:19

Another threat to the validity of our evaluation comes from our inability to run the previous
test transfer tools. This is due to reasons such as the unavailability of parts of the source code [97]
and technical problems that are mainly due to changes and the lack of maintenance of existing
dependencies [58, 66]. As detailed in Section 4, to navigate this issue and offer a comparative
analysis, we utilized the publicly available CRAFTDROID dataset [58] previously used by existing
tools. A related threat arises from a small number of apps from the CRAFTDROID dataset [58] that
are deprecated. To mitigate this threat and ensure a fair comparison, for CRAFTDROID [58] and
TREADROID [66], which provided detailed evaluation results for individual transfers, we restricted
our comparison to the subset of apps from the dataset that are still functional. As discussed
in Section 4, for TEMDROID [97], we could not obtain detailed experimental results even after
contacting the authors. Due to the lack of available data, with respect to TEMDROID, we compared
the average numbers for each category, which can be a threat to validity.

Our tool leverages Appium and the Appium UiAutomator2 Driver [85] to interact with UI
elements. This driver follows the WebDriver standard [32], enabling a wide range of interac-
tions with the app UL However, since our tool builds on earlier approaches, we adopt a similarly
limited yet well-curated set of interactions. While we support all actions covered by previous
approaches—enhancing selector accuracy in the process—we do not provide full support for every
possible action.

7 Related Works

The most relevant group of works targets transferring tests from one Android app to another,
similar to LLMIGRATE. Behrang et al. [26, 27] and Lin et al. [58] proposed ATM and CRAFTDROID,
which rely on app analysis and NLP techniques to transfer tests across different Android apps
within the same domain. ApPFLOW [44] is a machine learning-based approach that utilizes screen
and widget classification to generate Ul tests for an app using a library of existing tests. Liu et
al. [65, 66] proposed adaptive semantic matching strategies for test transfer. Yu et al. [97] have
recently proposed TEMDRoOID, a semantic matching-based approach for test transfer that leverages
dynamic analysis and Siamese networks. Zhao et al. [102] proposed FRUITER, a framework for
automatically evaluating the previous test transfer approaches. Mariani et al. [74] presented a study
on techniques for semantic matching of GUI events used by existing test reuse approaches. Khalili
et al. proposed SEMFINDER [52], an approach that assesses different configurations for mapping
UI events across apps based on their textual information but does not focus on the test transfer
problem as a whole. Mishra et al. [76] extended SEMFINDER by incorporating visual information
into the event mapping technique.

Most of the techniques mentioned above that directly target test transfer rely on similarity-based
matching between the events of source and target apps. These approaches can be highly effective
in cases where the source and target apps have similar workflows for the functionality under test.
However, as research work showed [102], in practice, due to the inherent differences between apps
even within the same domain, relying solely on event-by-event similarity-based matching may not
result in useful transferred tests. In contrast with these techniques, LLMIGRATE addresses the test
transfer holistically and does not depend on event-by-event similarity-based matching.

Another group of recent works targets a slightly different problem, focusing on many-to-one Ul
test transfers. MIGRATEPRO [99] is a technique that aims to improve UI test transfer by generating
a new test from multiple tests that have already been migrated to the target app from various
source apps. MIGRATEPRO is not a transfer technique itself, and it improves tests transferred by an
existing transfer technique. Future research can explore using tests transferred by LLMIGRATE as
input for MIGRATEPRO to assess potential improvements. Another recent work, MACDROID [98],
uses LLMs to create tests for a new target app using an abstract test logic created from multiple

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

ISSTA098:20 Beyzaei et al.

source tests targeting the same functionality on different apps. Note that compared to one-to-one
transfer, many-to-one transfer is a less challenging problem due to the availability of more data,
such as multiple different flows in various apps that can be more similar to the intended flow in
the target app. However, in practice, there often are not multiple compatible tests for the same
functionality available that can be used for transfer, which limits the practicality of these techniques.
Furthermore, unlike LLMIGRATE, which employs multimodal LLMs and utilizes both visual and
textual information for UI understanding tasks, MACDRoOID relies solely on textual data, which
can lead to certain limitations, as discussed in Section 3. A more detailed comparison of the two
approaches is not possible due to the unavailability of the implementation and artifacts relevant to
this technique at the time of publication.

There exists another group of relevant research work that targets transferring UI tests across
different platforms. TESTMIG [79] and MAPIT [84] have targeted test transfer across Android
and iOS apps. Ji et al. [47] conducted a comprehensive study on vision-based widget mapping for
cross-platform GUI test migration. In the context of web apps, Rau et al. [80] proposed an approach
for efficiently generating UI tests by learning from the existing tests of other apps. Mariani et
al. [73] proposed an approach that automatically exploits the common functionalities of Java apps
to generate Ul tests. TRANSDROID [60] has transferred tests from a web app to its Android version
by making use of a navigation graph and the textual data of the events and widgets involved in
them. MUT [38] is a technique for transferring GUI tests of one web app to another using NLP
methods.

Another group of related research focuses on bug reproduction in Android apps [87, 100, 101].
Note that although these works and test migration efforts both aim to execute a sequence of events
in an Android app, the problems differ in two important aspects: (1) One of the biggest challenges of
test migration comes from the differences in the flow of executed steps for a scenario between the
source and target app. However, this issue does not exist in bug reproduction since the bug report
belongs to the same app. (2) Test transfer also involves the challenge of accurately transferring and
creating oracle events, which is a complexity that is not a part of the bug reproduction task.

Finally, several recent publications [37, 45, 48, 50, 51, 67-69, 91, 93, 94] have explored the applica-
tion of LLMs to advance mobile testing. However, none of these techniques address the automated
transfer of existing usage-based tests across apps with similar functionality.

8 Conclusion and Future Work

This paper has presented LLMIGRATE, a technique that relies on multimodal LLMs for transferring
usage-based Ul tests across Android apps. In our extensive evaluation covering five app categories,
LLMIGRATE was able to successfully transfer 97% of tests and reduce more than 90% of the total
manual work required for writing UI tests.

Potential future areas of work can target expanding our technique, particularly for development
across various platforms such as Web and i0S, which promises to yield significant time savings in
end-to-end test development and maintenance. Another possible research direction is the study of
how integrating the approaches [30] that enhance app accessibility can improve the applicability
of techniques such as LLMIGRATE on non-accessible apps.

9 Data Availability

LLMIGRATE’s implementation and all of our research artifacts are available publicly [17].

Acknowledgments

This work has been supported, in part, by award numbers 2106871, 2106306, and 2211790 from the
U.S. National Science Foundation.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

Automated Test Transfer across Android Apps using Large Language Models ISSTA098:21

References

(1]

[27]

(28]

[29]

2024. DODuae - Women’s Online Store. https://tinyurl.com/mu5zkenz.

2024. Email - Fast & Secure Mail. https://tinyurl.com/53ensprk.

2024. Firefox Fast & Private Browser. https://tinyurl.com/yc5t5tkh.

2024. To Do List. https://tinyurl.com/c8chz4fb.

2024. Zalando — Online Fashion Store. https://tinyurl.com/mpee366u.

2025. 200TV - Live TV Movies App. https://tinyurl.com/3xf6wb8v.

2025. Ava Assistant - Movies & Shows. https://tinyurl.com/4e2pzxry.

2025. Cash Loan EMI Calcualtor. https://tinyurl.com/2tb59nr7.

2025. Chatbot - Al Smart Assistant. https://tinyurl.com/vk4t739r.

2025. ClipFix: Movie Shazam. https://tinyurl.com/avjp9bzv.

2025. Color SMS: Message & Messenger. https://tinyurl.com/428xy74b.

2025. Daily Notes - Easy Notebook. https://tinyurl.com/rrr9j5ee.

2025. Deep Search - AI Chatbot. https://tinyurl.com/5c68xzdt.

2025. EMI Calculator & Financial. https://tinyurl.com/2kbtpd25.

2025. EMI Calculator : Loan Planner. https://tinyurl.com/2vsb3h3y.

2025. Google Gemini. https://tinyurl.com/nhe8hpty.

2025. LLMigrate open-source repository. https://github.com/seal-hub/llmigrate.

2025. Messages for SMS - DUAL SIM. https://tinyurl.com/mrd2rdus.

2025. Messages: Text SMS. https://tinyurl.com/bdfhk5xk.

2025. Notes - QuickNotes. https://tinyurl.com/mue2jyau.

2025. Personal notes and tasks. https://tinyurl.com/393fn3ww.

Toufique Ahmed and Premkumar Devanbu. 2022. Few-shot training LLMs for project-specific code-summarization.
In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. 1-5. https:
//doi.org/10.1145/3551349.3559555

Domenico Amalfitano et al. 2012. Using GUI ripping for automated testing of Android applications. In 2012 Proceedings
of the 27th IEEE/ACM International Conference on Automated Software Engineering. IEEE, 258-261.

D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon. 2015. MobiGUITAR: Automated Model-Based
Testing of Mobile Apps. IEEE Software 32, 5 (Sept 2015), 53-59. https://doi.org/10.1109/MS.2014.55

Saswat Anand et al. 2012. Automated Concolic Testing of Smartphone Apps. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering (Cary, North Carolina) (FSE '12). ACM, New York,
NY, USA, Article 59, 11 pages. https://doi.org/10.1145/2393596.2393666

Farnaz Behrang and Alessandro Orso. 2018. Test migration for efficient large-scale assessment of mobile app coding
assignments. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis.
https://doi.org/10.1145/3213846.3213854

Farnaz Behrang and Alessandro Orso. 2019. Test Migration Between Mobile Apps with Similar Functionality. In 34th
International Conference on Automated Software Engineering (ASE 2019).

Farnaz Behrang and Alessandro Orso. 2019. To appear.. Test Migration Between Mobile Apps with Similar Functionality.
In Proceedings of the The 34th IEEE/ACM International Conference on Automated Software Engineering (San Diego,
USA) (ASE ’19). https://doi.org/10.1109/ASE.2019.00016

Islem Bouzenia et al. 2024. Repairagent: An autonomous, llm-based agent for program repair. arXiv preprint
arXiv:2403.17134 (2024).

[30] Jieshan Chen et al. 2020. Unblind your apps: Predicting natural-language labels for mobile gui components by deep

(31]

learning. In Proceedings of the ACM/IEEE 42nd international conference on software engineering. 322-334. https:
//doi.org/10.1145/3377811.3380327

Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI Testing of Android Apps with Minimal Restart
and Approximate Learning. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). ACM, New York, NY,
USA, 623-640. https://doi.org/10.1145/2509136.2509552

World Wide Web Consortium. 2025. https://www.w3.org/TR/webdriver/.

Appium Contributors. [n.d.]. Appium. https://github.com/appium/appium.

Xiang Deng et al. 2024. Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems 36 (2024). https://doi.org/10.48550/arXiv.2306.06070

Zhen Dong et al. 2020. Time-travel testing of Android apps. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). IEEE, 481-492. https://doi.org/10.1145/3377811.3380402

Markus Ermuth and Michael Pradel. 2016. Monkey See, Monkey Do: Effective Generation of GUI Tests with Inferred
Macro Events. In Proceedings of the 25th International Symposium on Software Testing and Analysis (ISSTA 2016). ACM,

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

https://tinyurl.com/mu5zkenz
https://tinyurl.com/53ensprk
https://tinyurl.com/yc5t5tkh
https://tinyurl.com/c8chz4fb
https://tinyurl.com/mpee366u
https://tinyurl.com/3xf6wb8v
https://tinyurl.com/4e2pzxry
https://tinyurl.com/2tb59nr7
https://tinyurl.com/vk4t739r
https://tinyurl.com/avjp9bzv
https://tinyurl.com/428xy74b
https://tinyurl.com/rrr9j5ee
https://tinyurl.com/5c68xzdt
https://tinyurl.com/2kbtpd25
https://tinyurl.com/2vsb3h3y
https://tinyurl.com/nhe8hpty
https://github.com/seal-hub/llmigrate
https://tinyurl.com/mrd2rdus
https://tinyurl.com/bdfhk5xk
https://tinyurl.com/mue2jyau
https://tinyurl.com/393fn3ww
https://doi.org/10.1145/3551349.3559555
https://doi.org/10.1145/3551349.3559555
https://doi.org/10.1109/MS.2014.55
https://doi.org/10.1145/2393596.2393666
https://doi.org/10.1145/3213846.3213854
https://doi.org/10.1109/ASE.2019.00016
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/2509136.2509552
https://www.w3.org/TR/webdriver/
https://github.com/appium/appium
https://doi.org/10.48550/arXiv.2306.06070
https://doi.org/10.1145/3377811.3380402

ISSTA098:22 Beyzaei et al.

New York, NY, USA, 82-93. https://doi.org/10.1145/2931037.2931053

Sidong Feng and Chunyang Chen. 2024. Prompting is all you need: Automated android bug replay with large

language models. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering. 1-13. https:

//doi.org/10.1145/3597503.3608137

Yi Gao et al. 2024. MUT: Human-in-the-Loop Unit Test Migration. In Proceedings of the IEEE/ACM 46th International

Conference on Software Engineering. 1-12. https://doi.org/10.1145/3597503.3639124

Tianxiao Gu et al. 2019. Practical GUI testing of Android applications via model abstraction and refinement. In 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 269-280. https://doi.org/10.1109/icse.

2019.00042

Izzeddin Gur et al. 2022. Understanding html with large language models. arXiv preprint arXiv:2210.03945 (2022).

https://doi.org/10.18653/v1/2023.findings-emnlp.185

Izzeddin Gur et al. 2023. A real-world webagent with planning, long context understanding, and program synthesis.

arXiv preprint arXiv:2307.12856 (2023).

[42] Roman Haas et al. 2021. How can manual testing processes be optimized? developer survey, optimization guidelines,
and case studies. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1281-1291. https://doi.org/10.1145/3468264.3473922

[43] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh Govindan. 2014. PUMA: Programmable UI-
automation for Large-scale Dynamic Analysis of Mobile Apps. In Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services (Bretton Woods, New Hampshire, USA) (MobiSys ’14). ACM,
New York, NY, USA, 204-217. https://doi.org/10.1145/2594368.2594390

[44] Gang Hu et al. 2018. AppFlow: using machine learning to synthesize robust, reusable UI tests. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ACM, 269-282. https://doi.org/10.1145/3236024.3236055

[45] Yuchao Huang et al. 2024. Crashtranslator: Automatically reproducing mobile application crashes directly from
stack trace. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering. 1-13. https:
//doi.org/10.1145/3597503.3623298

[46] Casper S. Jensen, Mukul R. Prasad, and Anders Mgller. 2013. Automated Testing with Targeted Event Sequence
Generation. In Proceedings of the 2013 International Symposium on Software Testing and Analysis (Lugano, Switzerland)
(ISSTA 2013). ACM, New York, NY, USA, 67-77. https://doi.org/10.1145/2483760.2483777

[47] Ruihua Ji et al. 2023. Vision-Based Widget Mapping for Test Migration Across Mobile Platforms: Are We There
Yet?. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 1416—-1428.
https://doi.org/10.1109/ASE56229.2023.00068

[48] Bangyan Ju et al. 2024. A Study of Using Multimodal LLMs for Non-Crash Functional Bug Detection in Android
Apps. arXiv preprint arXiv:2407.19053 (2024).

[49] Jouko Kaasila et al. 2012. Testdroid: automated remote UI testing on Android. In Proceedings of the 11th International
Conference on Mobile and Ubiquitous Multimedia. 1-4. https://doi.org/10.1145/2406367.2406402

[50] Sungmin Kang et al. 2023. Evaluating Diverse Large Language Models for Automatic and General Bug Reproduction.
arXiv preprint arXiv:2311.04532 (2023).

[51] Sungmin Kang et al. 2023. Large language models are few-shot testers: Exploring llm-based general bug reproduction.

In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2312-2323. https://doi.org/

ICSE48619.2023.00194

Farideh Khalili et al. 2024. Semantic matching in GUI test reuse. Empirical Software Engineering 29, 3 (2024), 1-58.

https://doi.org/10.1007/s10664-023-10406-8

[53] Pavneet Singh Kochhar et al. 2015. Understanding the Test Automation Culture of App Developers. In 2015 IEEE 8th
International Conference on Software Testing, Verification and Validation (ICST). 1-10. https://doi.org/10.1109/ICST.
2015.7102609

[54] Yavuz Koroglu et al. 2018. QBE: QLearning-based exploration of android applications. In Software Testing, Verification

and Validation (ICST), 2018 IEEE 11th International Conference on. IEEE, 105-115. https://doi.org/10.1109/ICST.2018.

00020

Firebase Test Lab. 2024. Robo test (Android). https://firebase.google.com/docs/test-lab/android/robo-ux-test.

Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics

doklady, Vol. 10. 707-710.

[57] Kanglin Li and Mengqi Wu. 2006. Effective GUI testing automation: Developing an automated GUI testing tool. John
Wiley & Sons.

[58] Jun-Wei Lin et al. 2019. Test Transfer Across Mobile Apps Through Semantic Mapping. In 34th International Conference
on Automated Software Engineering (ASE 2019). https://doi.org/10.1109/ASE.2019.00015

(37

—

(38

=

(39

—

(40

=

(41

—

(52

—

(55
(56

]

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

https://doi.org/10.1145/2931037.2931053
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3597503.3639124
https://doi.org/10.1109/icse.2019.00042
https://doi.org/10.1109/icse.2019.00042
https://doi.org/10.18653/v1/2023.findings-emnlp.185
https://doi.org/10.1145/3468264.3473922
https://doi.org/10.1145/2594368.2594390
https://doi.org/10.1145/3236024.3236055
https://doi.org/10.1145/3597503.3623298
https://doi.org/10.1145/3597503.3623298
https://doi.org/10.1145/2483760.2483777
https://doi.org/10.1109/ASE56229.2023.00068
https://doi.org/10.1145/2406367.2406402
https://doi.org/ICSE48619.2023.00194
https://doi.org/ICSE48619.2023.00194
https://doi.org/10.1007/s10664-023-10406-8
https://doi.org/10.1109/ICST.2015.7102609
https://doi.org/10.1109/ICST.2015.7102609
https://doi.org/10.1109/ICST.2018.00020
https://doi.org/10.1109/ICST.2018.00020
https://firebase.google.com/docs/test-lab/android/robo-ux-test
https://doi.org/10.1109/ASE.2019.00015

Automated Test Transfer across Android Apps using Large Language Models ISSTA098:23

[59] Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. 2019. Test Transfer Across Mobile Apps Through Semantic
Mapping. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). 42-53. https:
//doi.org/10.1109/ASE.2019.00015

[60] Jun-Wei Lin and Sam Malek. 2022. Gui test transfer from web to android. In 2022 IEEE Conference on Software Testing,
Verification and Validation (ICST). IEEE, 1-11. https://doi.org/10.1109/ICST53961.2022.00011

[61] Mario Linares-Vasquez et al. 2015. Mining Android App Usages for Generating Actionable GUI-based Execution
Scenarios. In Proceedings of the 12th Working Conference on Mining Software Repositories (Florence, Italy) (MSR ’15).
IEEE Press, Piscataway, NJ, USA, 111-122. http://dl.acm.org/citation.cfm?id=2820518.2820534

[62] Mario Linares-Vasquez et al. 2017. How do developers test android applications?. In 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME). https://doi.org/10.48550/arXiv.1801.06268

[63] JiaweiLiu et al. 2024. Is your code generated by chatgpt really correct? rigorous evaluation of large language models for
code generation. Advances in Neural Information Processing Systems 36 (2024). https://doi.org/10.5555/3666122.3667065

[64] Peng Liu et al. 2017. Automatic Text Input Generation for Mobile Testing. In Proceedings of the 39th International
Conference on Software Engineering (Buenos Aires, Argentina) (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 643-653.
https://doi.org/10.1109/ICSE.2017.65

[65] Shugqi Liu et al. 2022. Test reuse based on adaptive semantic matching across android mobile applications. In
2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS). IEEE, 703-709. https:
//doi.org/10.1109/QRS57517.2022.00076

[66] Shugi Liu et al. 2024. Enhancing test reuse with GUI events deduplication and adaptive semantic matching. Science of

Computer Programming 232 (2024), 103052. https://doi.org/10.1016/j.scico.2023.103052

Zhe Liu et al. 2023. Fill in the blank: Context-aware automated text input generation for mobile gui testing. In

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 135551367 (2023). https:

//doi.org/10.1109/ICSE48619.2023.00119

[68] Zhe Liu et al. 2024. Make llm a testing expert: Bringing human-like interaction to mobile gui testing via functionality-

aware decisions. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. 1-13. https:

//doi.org/10.1145/3597503.3639180

Zhe Liu et al. 2024. Vision-driven Automated Mobile GUI Testing via Multimodal Large Language Model. arXiv

preprint arXiv:2407.03037 (2024).

Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An Input Generation System for Android

Apps. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering (Saint Petersburg, Russia)

(ESEC/FSE 2013). ACM, New York, NY, USA, 224-234. https://doi.org/10.1145/2491411.2491450

Riyadh Mahmood et al. 2014. EvoDroid: Segmented Evolutionary Testing of Android Apps. In Proceedings of the 22Nd

ACM SIGSOFT International Symposium on Foundations of Software Engineering (Hong Kong, China) (FSE 2014). ACM,

New York, NY, USA, 599-609. https://doi.org/10.1145/2635868.2635896

[72] Ke Mao et al. 2016. Sapienz: Multi-objective automated testing for android applications. In Proceedings of the 25th
International Symposium on Software Testing and Analysis. 94-105. https://doi.org/10.1145/2931037.2931054

[73] Leonardo Mariani et al. 2018. Augusto: Exploiting popular functionalities for the generation of semantic gui

tests with oracles. In Proceedings of the 40th International Conference on Software Engineering. 280-290. https:

//doi.org/10.1145/3180155.3180162

Leonardo Mariani et al. 2021. An Evolutionary Approach to Adapt Tests Across Mobile Apps. In The 2nd ACM/IEEE

International Conference on Automation of Software Test (AST 2021). https://doi.org/10.1109/AST52587.2021.00016

[75] N. Mirzaei et al. 2015. SIG-Droid: Automated system input generation for Android applications. In 2015 IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE). 461-471. https://doi.org/10.1109/ISSRE.2015.
7381839

[76] Yash Mishra et al. 2023. Image Understanding of GUI Widgets for Test Reuse. In 2023 3rd International Conference on
Pervasive Computing and Social Networking (ICPCSN). IEEE, 572-579. https://doi.org/10.1109/icpcsn58827.2023.00100

[77] Kevin Moran et al. 2016. Automatically Discovering, Reporting and Reproducing Android Application Crashes. In

2016 IEEE International Conference on Software Testing, Verification and Validation (ICST). 33—-44. https://doi.org/10.

1109/ICST.2016.34

OpenAL [n.d.]. GPT-4o. https://platform.openai.com/docs/models/gpt-4o/.

Xue Qin, Hao Zhong, and Xiaoyin Wang. 2019. TestMig: Migrating GUI Test Cases from iOS to Android. In Proceedings

of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis (Beijing, China) (ISSTA 2019).

ACM, New York, NY, USA, 284-295. https://doi.org/10.1145/3293882.3330575

Andreas Rau et al. 2018. Transferring Tests Across Web Applications. In Web Engineering, Tommi Mikkonen, Ralf

Klamma, and Juan Hernandez (Eds.). Springer International Publishing, Cham, 50-64. https://doi.org/10.1007/978-3-

319-91662-0_4

(67

—

(69

—

[70

[t

(71

—

(74

flan)

(78
[79

=

(80

-

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

https://doi.org/10.1109/ASE.2019.00015
https://doi.org/10.1109/ASE.2019.00015
https://doi.org/10.1109/ICST53961.2022.00011
http://dl.acm.org/citation.cfm?id=2820518.2820534
https://doi.org/10.48550/arXiv.1801.06268
https://doi.org/10.5555/3666122.3667065
https://doi.org/10.1109/ICSE.2017.65
https://doi.org/10.1109/QRS57517.2022.00076
https://doi.org/10.1109/QRS57517.2022.00076
https://doi.org/10.1016/j.scico.2023.103052
https://doi.org/10.1109/ICSE48619.2023.00119
https://doi.org/10.1109/ICSE48619.2023.00119
https://doi.org/10.1145/3597503.3639180
https://doi.org/10.1145/3597503.3639180
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2635868.2635896
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/3180155.3180162
https://doi.org/10.1145/3180155.3180162
https://doi.org/10.1109/AST52587.2021.00016
https://doi.org/10.1109/ISSRE.2015.7381839
https://doi.org/10.1109/ISSRE.2015.7381839
https://doi.org/10.1109/icpcsn58827.2023.00100
https://doi.org/10.1109/ICST.2016.34
https://doi.org/10.1109/ICST.2016.34
https://platform.openai.com/docs/models/gpt-4o/
https://doi.org/10.1145/3293882.3330575
https://doi.org/10.1007/978-3-319-91662-0_4
https://doi.org/10.1007/978-3-319-91662-0_4

ISSTA098:24 Beyzaei et al.

(81]

(82]

(83]

(84]

— ——
o o0 0
~N N o
—

(88]

(89]
[90]

[91]
[92]

(93]

[94]

[95]

[96]

[97]

(98]
[99]

[100]

[101]

[102]

[103]

Ting Su et al. 2017. Guided, stochastic model-based GUI testing of Android apps. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. 245-256. https://doi.org/10.1145/3106237.3106298

Ting Su et al. 2017. Guided, Stochastic Model-based GUI Testing of Android Apps. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017). ACM, New York, NY,
USA, 245-256. https://doi.org/10.1145/3106237.3106298

Haotian Sun et al. 2024. Adaplanner: Adaptive planning from feedback with language models. Advances in Neural
Information Processing Systems 36 (2024).

Saghar Talebipour et al. 2022. UI test migration across mobile platforms. In Proceedings of the 36th IEEE/ACM
International Conference on Automated Software Engineering (Melbourne, Australia) (ASE °21). IEEE Press, 756-767.
https://doi.org/10.1109/ASE51524.2021.9678643

Appium Team. 2024. Appium UiAutomator2 Driver. https://github.com/appium/appium-uiautomator2-driver.
Android Studio Team. 2023. Ul/Application Exerciser Monkey. https://developer.android.com/studio/test/monkey.
Dingbang Wang et al. 2024. Feedback-driven automated whole bug report reproduction for android apps. In
Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis. 1048-1060. https:
//doi.org/10.1145/3650212.3680341

Jue Wang et al. 2020. ComboDroid: generating high-quality test inputs for Android apps via use case combinations.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 469-480. https://doi.org/10.
1145/3377811.3380382

Junjie Wang et al. 2024. Software testing with large language models: Survey, landscape, and vision. IEEE Transactions
on Software Engineering (2024). https://doi.org/10.1109/TSE.2024.3368208

Jason Wei et al. 2022. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural
information processing systems 35 (2022), 24824-24837. https://doi.org/10.5555/3600270.3602070

Hao Wen et al. 2023. Droidbot-gpt: Gpt-powered ui automation for android. arXiv preprint arXiv:2304.07061 (2023).
Wei Yang et al. 2013. A Grey-Box Approach for Automated GUI-Model Generation of Mobile Applications. In
Fundamental Approaches to Software Engineering. Springer Berlin Heidelberg, 250-265.

Juyeon Yoon et al. 2023. Autonomous Large Language Model Agents Enabling Intent-Driven Mobile GUI Testing.
arXiv preprint arXiv:2311.08649 (2023).

Shengcheng Yu et al. 2023. LIm for test script generation and migration: Challenges, capabilities, and opportunities.
In 2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS). IEEE, 206-217. https:
//doi.org/10.1109/QRS60937.2023.00029

Razieh Nokhbeh Zaeem et al. 2014. Automated Generation of Oracles for Testing User-Interaction Features of Mobile
Apps. In Proceedings of the 2014 IEEE International Conference on Software Testing, Verification, and Validation (ICST
’14). IEEE Computer Society, Washington, DC, USA, 183-192. https://doi.org/10.1109/ICST.2014.31

Hailong Zhang and Atanas Rountev. 2017. Analysis and Testing of Notifications in Android Wear Applications. In
Proceedings of the 39th International Conference on Software Engineering (Buenos Aires, Argentina) (ICSE ’17). IEEE
Press, Piscataway, NJ, USA, 347-357. https://doi.org/10.1109/ICSE.2017.39

Yakun Zhang et al. 2024. Learning-based Widget Matching for Migrating GUI Test Cases. In Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering (Lisbon, Portugal) (ICSE "24). Association for Com-
puting Machinery, New York, NY, USA, Article 69, 13 pages. https://doi.org/10.1145/3597503.3623322

Yakun Zhang et al. 2024. LLM-based Abstraction and Concretization for GUI Test Migration. arXiv:2409.05028 [cs.SE]
https://arxiv.org/abs/2409.05028

Yakun Zhang et al. 2024. Synthesis-Based Enhancement for GUI Test Case Migration. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis. 869-881. https://doi.org/10.1145/3650212.3680327
Yu Zhao et al. 2019. Automatically extracting bug reproducing steps from android bug reports. In Reuse in the Big
Data Era: 18th International Conference on Software and Systems Reuse, ICSR 2019, Cincinnati, OH, USA, June 26-28,
2019, Proceedings 18. Springer, 100-111. https://doi.org/10.1007/978-3-030-22888-0_8

Yu Zhao et al. 2019. Recdroid: automatically reproducing android application crashes from bug reports. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 128-139. https://doi.org/10.1109/ICSE.
2019.00030

Yixue Zhao et al. 2020. FrUITeR: a framework for evaluating UI test reuse. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE °20). ACM. https://doi.org/10.1145/3368089.3409708

Boyuan Zheng et al. 2024. Gpt-4v (ision) is a generalist web agent, if grounded. arXiv preprint arXiv:2401.01614
(2024).

Received 2024-10-31; accepted 2025-03-31

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA098. Publication date: July 2025.

https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1109/ASE51524.2021.9678643
https://github.com/appium/appium-uiautomator2-driver
https://developer.android.com/studio/test/monkey
https://doi.org/10.1145/3650212.3680341
https://doi.org/10.1145/3650212.3680341
https://doi.org/10.1145/3377811.3380382
https://doi.org/10.1145/3377811.3380382
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.5555/3600270.3602070
https://doi.org/10.1109/QRS60937.2023.00029
https://doi.org/10.1109/QRS60937.2023.00029
https://doi.org/10.1109/ICST.2014.31
https://doi.org/10.1109/ICSE.2017.39
https://doi.org/10.1145/3597503.3623322
https://arxiv.org/abs/2409.05028
https://arxiv.org/abs/2409.05028
https://doi.org/10.1145/3650212.3680327
https://doi.org/10.1007/978-3-030-22888-0_8
https://doi.org/10.1109/ICSE.2019.00030
https://doi.org/10.1109/ICSE.2019.00030
https://doi.org/10.1145/3368089.3409708

	Abstract
	1 Introduction
	2 Background and Terminology
	3 Approach
	3.1 Source Abstraction
	3.2 Test Migration

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1. Efficacy of LLMigrate
	4.3 RQ2. Usefulness of the Tests Transferred by LLMigrate
	4.4 RQ3. LLMigrate's Performance and Cost Effectiveness
	4.5 RQ4. Practical Usage of LLMigrate on Today’s Popular Apps
	4.6 RQ5. Evaluating LLMigrate on Data Unseen by LLMs

	5 Discussion
	6 Threats to Validity
	7 Related Works
	8 Conclusion and Future Work
	9 Data Availability
	Acknowledgments
	References

