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Abstract—An estimated 43.3 million people worldwide live
with blindness and rely on screen readers (SRs) to access the
web. To support accessible development, software teams often
rely on automated tools like WAVE and Lighthouse to detect
accessibility issues. However, these tools primarily rely on static
rule-based analysis and are largely limited to detecting labeling
errors relevant to screen reader users. They fail to capture
dynamic accessibility issues—specifically, whether user interface
(UI) elements can be located and activated using a screen reader,
which is essential for accessing core webpage functionality. To
address this gap, we present A11YNAVIGATOR, an automated
accessibility testing tool that simulates screen reader navigation
to detect UI elements that cannot be either (1) located or
(2) activated via the screen reader. A11YNAVIGATOR leverages
NVDA, one of the most widely used screen readers, and supports
three common navigation strategies: Tab, Arrow, and Quick
Navigation keys. We evaluate A11YNAVIGATOR across 26 real-
world websites and demonstrate its effectiveness in uncovering
issues missed by existing tools. Our results highlight its high
precision and recall in detecting barriers that go beyond static
analysis.

Index Terms—Web, Software Accessibility, Software Testing,
Assistive Technologies, Blind Users

I. INTRODUCTION

The web has become a critical platform for accessing
education, healthcare, government services, and other essential
resources [1], [2]. Yet, it remains persistently inaccessible
to over 16% of the global population with disabilities [3],
including 43.3 million blind users relying on screen readers
to access digital content [4]. One study [5] estimates that
nearly 20% of web traffic may originate from users with
disabilities, a number that is even higher for websites in
domains like healthcare and senior services. Despite this, the
state of web accessibility remains poor. A WebAIM evaluation
conducted in February 2024 found that 95.9% of homepages
among the world’s top 1 million websites had accessibility
errors, with an average of 56.8 issues per page when analyzed
using the WAVE tool [6]. Alarmingly, this represents only a
1.9% improvement over previous years, highlighting the slow
progress and persistent nature of these barriers. These findings
underscore the urgent need for stronger policy interventions
to address the persistent accessibility barriers that continue to
impact users with disabilities.

To address these ongoing challenges, governments and
organizations across various countries have introduced formal
accessibility standards and guidelines to promote digital inclu-

sion [7]–[11]. However, policy alone has not driven this shift.
In recent years, a wave of high-profile lawsuits [12] against
inaccessible digital products has pushed accessibility into the
spotlight and emphasized the need for legal compliance. As a
result, developers now face increasing pressure to ensure their
applications are accessible to all users, including people with
disabilities. This shift has placed greater focus on integrating
accessibility evaluation into the software development process.

Currently, there are three main ways to evaluate web ac-
cessibility. The most comprehensive method is user testing
[13] [14], where individuals with disabilities assess web inter-
faces using their preferred assistive technologies (ATs). This
approach surfaces nuanced barriers rooted in real-world usage,
device diversity, and individual variations in disability. How-
ever, despite its depth, user testing is costly, time-intensive, and
difficult to scale within fast-paced development environments
[15].

A more feasible alternative is manual testing, typically
conducted by developers or accessibility specialists who ex-
plore applications using screen readers or other ATs. While
this method enables expert-driven evaluation and targeted
inspection, it remains labor-intensive and is often limited by
the tester’s familiarity with the wide spectrum of disability
experiences [16]–[22].

To improve scalability, automated testing tools have become
widely adopted. These tools apply rule-based checks to static
DOM structures, verifying compliance with guidelines such as
the Web Content Accessibility Guidelines (WCAG) [8]. Tools
like WAVE [23], Lighthouse [24], and Axe [25] can identify
issues such as missing alt text, low color contrast, or buttons
that do not meet minimum size requirements. Unfortunately,
these tools often focus on static, rule-based evaluations, which
fail to address dynamic accessibility issues that arise during
real-world user interactions.

Studies show that such tools may miss nearly 50% of the ac-
cessibility barriers experienced by real users [26]. For instance,
individuals with visual impairments rely on screen readers,
such as NVDA or JAWS on Windows [6], to sequentially
navigate UI elements and activate them using keys like Enter
or Space. If pressing these keys does not trigger a visible
state change, such as opening a menu or submitting a form,
the element is considered non-actionable, making the interface
effectively inaccessible to screen reader users.

In this work, we address that gap by introducing
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A11YNAVIGATOR —an automated accessibility navigator that
simulates real-time interactions using NVDA, a widely used
open-source screen reader [6], to detect accessibility barriers
that only appear during real-time use. To ensure the simula-
tion reflects how screen reader users navigate the web, we
conducted a preliminary study and identified three common
strategies: tab-based, down arrow, and quick-key navigation
(e.g., ’b’ for buttons, ’k’ for links). A11YNAVIGATOR sup-
ports all three to mirror real-world scenarios.

The tool opens web pages in a browser and simulates key-
board navigation as performed by screen reader users. It then
performs user actions like pressing Enter or Space and captures
NVDA’s output in real time. This process helps detect two
key types of accessibility issues: locatability issues—elements
that are not reachable through standard navigation paths—and
actionability issues—elements that fail to respond when ac-
tivated. By simulating real user behavior, A11YNAVIGATOR
reveals dynamic, context-specific issues that static tools miss.

Our empirical evaluation across 26 real websites shows that
A11YNAVIGATOR can detect around 200 accessibility issues
that remain undetected by existing accessibility testing tools
with a precision of 93.24% and recall of 98.97%.

This paper makes the following contributions:
• A novel, high-fidelity, and fully automated approach to

accessibility evaluation that simulates real-time screen
reader interactions to detect dynamic accessibility issues
that are often missed by static tools.

• A publicly available implementation of this approach for
Windows environments, called A11YNAVIGATOR [27],
which integrates directly with the NVDA screen reader.

• An empirical evaluation on a diverse set of real-world
websites, demonstrating that A11YNAVIGATOR detects
around 200 accessibility issues that remain undetected
by widely used automated tools.

• An analysis of the locatability and actionability failures
uncovered by A11YNAVIGATOR, offering insights that
can inform future research on dynamic accessibility test-
ing and repair.

The remainder of this paper is organized as follows. Sec-
tion II provides background on accessibility evaluation and
screen reader fundamentals as well as motivating examples.
Section III details the design of A11YNAVIGATOR. Section
IV presents the evaluation results on real-world websites. The
paper concludes with a discussion of threats to validity, related
work, and future directions.

II. BACKGROUND AND MOTIVATION

In this section, we describe the necessary background on
web interfaces and screen reader navigation, and present
motivating examples from our preliminary user studies.

A. Structure of Web Interfaces

Web user interfaces are rendered as a Document Object
Model (DOM) [28], [29]—a tree-like structure where each
node corresponds to an element on the page. These elements
include interactive widgets like links, buttons, and form fields,

as well as structural containers such as div and section. While
some elements are informational and interactive, others may
be purely decorative or used for layout.

Each DOM node can include various HTML at-
tributes—such as role, tabindex, and aria-label [29]—that
enhance accessibility by conveying semantic and interactive
information to assistive technologies. For instance, a visually
styled element might resemble a dropdown menu, but unless
it includes appropriate roles (e.g., role=“combobox”), states
(e.g., aria-expanded), and keyboard handlers, it may not be
operable or even perceivable to screen reader users.

To analyze and track elements across pages and interactions,
we extract their location in the DOM using XPath [30]. XPath
provides a unique structural path by referencing an element’s
tags, attributes, and position within the DOM hierarchy.

B. Screen Reader Navigation of Interactive Elements

Screen readers help blind users access web content by
reading it aloud using synthesized speech. To do this, they
rely on standardized accessibility APIs such as Microsoft
Active Accessibility (MSAA) [31], IAccessible2 (IA2) [32],
and UI Automation (UIA) [33]. These APIs expose details
about on-screen elements, such as their roles (e.g., button,
link), states (e.g., checked, expanded), and available actions.
Screen readers use this information to create a structured
representation of these elements, which it presents to users
through speech as they navigate using the keyboard. This
allows blind users to explore content, find interactive elements,
and perform actions.

Screen readers offer several ways to navigate web content,
as highlighted by a WebAIM survey [6], where the most
common strategies to locate information include navigating
through headers or using the find function. Since our paper
focuses explicitly on interactive elements, we conducted a
preliminary study to better understand how screen reader users
locate and operate such elements in real-world scenarios.

To recruit blind participants, we posted an open invitation in
Program-L [34], a discussion forum for visually impaired soft-
ware users and programmers. Five respondents were selected
based on matching availability and technology experience. The
participants consisted of four males and one female, ages
ranging from 25 to 64 years old. All of them reported to have
10 or more years of screen reader experience.

We conducted 30 minute user test sessions with the par-
ticipants over Zoom. During these sessions, participants were
asked to complete a series of realistic web browsing tasks
while sharing their screens and following the Think Aloud
protocol [35]. For the study, we selected the website Agoda
[36]—an online booking platform that provides hotel reser-
vations, flights, and vacation rentals globally. None of the
participants had used the website before. Participants were
given the following instruction: “As you navigate the webpage,
please think aloud. Describe what you are doing and experi-
encing, including which keys you are using for navigation.
Feel free to share anything that feels difficult or frustrating”.
They were then asked to complete the following three tasks,
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each task building upon the previous one with additional web
components to navigate:

1) Search for hotels in Sydney for your stay from today to
March 1, for 2 adults.

2) Go back and now search for hotels in Tokyo for a stay
from March 1 to March 7, for 1 adult.

3) Go back and search for flights from Sydney to Tokyo
on March 1.

During each task, we observed their keypresses, navigation
strategies, and how their approach changed when performing
similar actions again. We documented the challenges they
faced, any concerns they expressed, and their default navi-
gation styles. For users unfamiliar with a website, we noted
how they approached it for the first time, including strategies
for locating interactive elements. We also examined their
change in behavior during a second task on the same site,
revealing how familiarity shapes navigation. After participants
completed the task, we conducted a five-minute reflection
session, asking them to describe the challenges they faced and
the navigation modes they relied on. From these reflections
and our observations, we identified three main keyboard-based
navigation strategies used by screen reader users.

• Arrow key navigation lets users read through content
line by line, including both interactive and non-interactive
elements. In our study, participants commonly used this
strategy when visiting a website for the first time, relying
on the Down Arrow to get a sense of the page layout
before taking action.

• Quick Navigation keys are single-key shortcuts (e.g.,
‘E’ for edit fields, ‘B’ for buttons) that jump directly to
specific types of elements. Participants familiar with the
page layout or assigned task often used these keys to
quickly access relevant controls (e.g., jumping directly
to the input field to type in the departure location when
searching for flights).

• Tab navigation moves focus sequentially across interac-
tive elements such as links, buttons, and input fields. We
observed that some users used the Tab key to system-
atically explore all focusable elements, especially when
they were unsure of the element’s type or location.

After navigating to the target interactive elements, users
would either use Space or Enter to activate that element, e.g.,
clicking a button, expanding a dropdown menu, toggling a
checkbox and more. A successful use of a feature includes
both locating an element and activating it for its intended use.

C. Accessibility Issues of Interactive Elements - Motivating
Examples

Our work focuses on the accessibility issues of interactive
elements, when screen reader users cannot locate or activate
such elements, rendering the intended features inaccessible.
We present motivating examples to illustrate how these issues
manifest and how they go undetected by conventional tools.

Figure 1(a) shows the homepage of Stack Overflow [37],
a popular platform for software developers to ask questions,

Fig. 1: (a) Stack Overflow: Log in and Sign up buttons are
unreachable, (b) MakeMyTrip homepage: Header elements are
skipped, (c) IRCTC homepage: Quota and Class dropdowns
fail to respond to keyboard activation.

share knowledge, and find solutions to programming problems.
The site plays a central role in the global developer commu-
nity, with over 100 million monthly visits, among whom, 1.7%
visitors are reportedly blind or have low vision [38].

The homepage header includes key actions like “Log in”
and “Sign up,” highlighted in red, which are critical for
initiating and participating in discussions. However, when
using NVDA’s quick key navigation strategy introduced in
Section II-B, it skips the “Log in” and “Sign up” buttons.
These essential entry points are inaccessible through standard
screen reader shortcuts, posing a critical barrier for blind users.

Another issue appears in Figure 1(b), which displays the
homepage of MakeMyTrip [39], a popular travel platform used
globally to book flights and manage trips. The header includes
essential options like “Login” and “My Trips,” marked in red,
which are key for accessing user accounts and bookings. How-
ever, when navigating with the Tab key, NVDA completely
skips the header, leaving these critical controls inaccessible.

These examples illustrate a locatability issue—where crit-
ical interface elements are visually present and exist in the
DOM, yet remain unreachable through standard screen reader
navigation methods like quick keys or tabbing.

When evaluated using WAVE [23], a popular accessibility
checker for web, both websites pass without flagging the
above-mentioned navigation issues. This is because WAVE
considers the structural validity of the DOM elements, check-
ing whether they follow proper HTML and ARIA markup.
This makes WAVE an effective tool for detecting static issues
like missing alt text, low color contrast or small font size. But
it cannot detect dynamic issues, where screen reader users are
unable to locate elements.

Figure 1(c) shows the booking interface on the IRCTC
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website [40], a travel booking website with over 10 million
monthly visits and a consistent top ranking in the “Airlines”
category. The platform allows users to search for trains, check
availability, and book tickets, offering a range of travel-related
services through its interface. Two key dropdown menus,
“Quota” and “Class”, allow users to select the appropriate
seat category, such as Senior Citizen or Person with Disability,
and choose their preferred level of travel comfort. A sighted
user can easily interact with these by clicking and choosing
from the available options. A blind user using NVDA, how-
ever, must rely entirely on keyboard-based interactions. While
both dropdowns are detectable and focusable using NVDA’s
navigation keys, they fail to respond when the user presses
“Enter”—the expected action to expand and interact with the
dropdown. No visual or auditory feedback is provided, and
the menus remain closed. Though present in the DOM and
visually styled as interactive, these elements are functionally
inaccessible through the screen reader, blocking the user from
proceeding with booking a flight.

This represents an actionability issue: the user can reach the
element, but cannot perform the intended interaction. Similar
to the previous issue, when the page is evaluated using WAVE,
no issues are flagged. The dropdowns are structurally valid,
containing proper HTML syntax, which leads to static tools
overlooking its inaccessible behavior.

These examples highlight the limitations of static checks
in detecting interaction failures. Interaction issues often go
unnoticed unless interfaces are evaluated the way users with
disabilities experience them—through assistive technologies.
This underscores the need for accessibility evaluation methods
that reflect real-world usage, not just structural correctness.

III. APPROACH

Despite the diversity of modern web interfaces, the ability
to locate and interact with elements remains fundamental
to accessibility. A11YNAVIGATOR addresses this challenge
by evaluating two key dimensions: locatability—whether an
element can be reached—and actionability—whether it can
be interacted with. The goal of A11YNAVIGATOR is to
automatically identify websites that violate these principles
during realistic, screen reader-based navigation.

A11YNAVIGATOR consists of three primary components:
the ClickElement Extractor, the User Simulator, and the Is-
sue Detector—which together support two distinct detection
strategies: locatability and actionability. While these strategies
operate independently, they share a common infrastructure.
The ClickElement Extractor analyzes the webpage’s DOM
to extract all clickable elements, forming a baseline for eval-
uation. The User Simulator then emulates real-world screen
reader behavior using three navigation strategies—Tab, Down
Arrow, and Quick Key—to traverse the website, while also
simulating user actions such as pressing Enter or Space.
Finally, the Issue Detector analyzes the collected data to
identify locatability and actionability issues. We describe each
strategy approach in the following subsections.

A. Locatability Detection Approach
To detect locatability issues, A11YNAVIGATOR first extracts

all clickable elements using the ClickElement Extractor, form-
ing a ground truth. It then simulates screen reader navigation
strategies through the User Simulator to identify which ele-
ments are reachable. Comparing the two sets reveals elements
that are present in the DOM but inaccessible by screen readers.
Figure 2 illustrates an overview of detecting locatability issues.

Fig. 2: Workflow of Locatability Detection.

1) ClickElement Extractor: To establish a ground truth of
clickable elements, A11YNAVIGATOR first selects standard
interactive elements, such as <a>, <button>, and those with
ARIA roles like role="button", role="link"). It then
considers custom elements—like <div> or <span>—that
are not inherently interactive but have JavaScript event listen-
ers attached [41], indicating they are intended to be clickable.
In both cases, elements that are visually or semantically hidden
are filtered out.

For each valid element, A11YNAVIGATOR extracts its
XPath, accessible name [42] (from text, aria-label,
alt, or placeholder), and relevant attributes such as id
and href. This process captures both standard and custom
interactive elements, ensuring that even non-semantic widgets
[7] designed to behave like buttons or links are included.
The result is a list of elements that should be reachable
and actionable by users, forming the baseline for comparison
during simulated navigation.

2) User Simulation with Navigation Proxies: To evaluate
accessibility in real-world contexts, A11YNAVIGATOR simu-
lates the three main navigation modes used by screen reader
users with NVDA. For each mode, it records the XPath of
every element visited, which the Issue Detector later analyzes
to identify accessibility problems.

Tab Key Navigation Proxy. This proxy simulates naviga-
tion by Tab key which sequentially moves through focusable
elements. It operates in two main phases:

• Navigation and Data Collection: As the proxy simulates
Tab key presses, NVDA focuses on each element and
logs its accessibility attributes such as role, accessible
name, state (e.g., checked, expanded), and IA2UniqueId
[32] into a structured file.

• XPath Extraction: For each focused element, the proxy
simultaneously executes a JavaScript snippet to extract its
XPath for later analysis.
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To handle composite widgets like tab panels and radio
groups, the proxy also simulates additional keys (e.g., arrow
keys) as defined by standard keyboard interaction patterns
[43], ensuring all reachable sub-elements are captured.

Quick Key Navigation Proxy. The Quick Key Navigation
Proxy simulates NVDA’s shortcut keys [44] that allow users to
jump directly to specific element types like links, buttons, and
form fields. This efficient strategy avoids sequential navigation
and, like the Tab Key Proxy, operates in two main stages:

• Navigation and Data Collection: The proxy simulates
only those NVDA single-key shortcuts that correspond
to focusable elements (e.g., k for links, b for buttons, x
for checkboxes, f for form fields). Each key press prompts
NVDA to move focus to the next element of the specified
type, capturing its accessibility properties.

• XPath Extraction: For each focused element, the proxy
extracts its XPath using JavaScript at the moment NVDA
shifts focus.

To ensure complete coverage, it supports both forward (us-
ing quick keys) and backward (using Shift + key) navigation.
This is important because, unlike Tab or Down Arrow, Quick
Navigation involves multiple keys (e.g., ’k’ for links, ’b’ for
buttons). If a user reaches the end of the page with one key
and switches to another (e.g., from ’k’ to ’b’), they may miss
earlier elements unless backward traversal is also performed.

Down Arrow Navigation Proxy. The Down Arrow Nav-
igation Proxy mimics how screen reader users read content
line by line using the Down Arrow key, representing the most
comprehensive but time-intensive navigation pattern [45]. To
handle the unique challenges of sequential reading, this proxy
employs a specialized processing pipeline.

• Navigation and Data Collection: The proxy sends re-
peated Down Arrow key presses to simulate how users
explore content sequentially. As NVDA reads each line, it
announces the corresponding element (for example, ’link
Submit’, ’heading level 2’). These announcements are
written to a file by our NVDA extension.

• Preprocessing NVDA Announcements: Since NVDA’s
speech output includes auxiliary descriptors (e.g. ’head-
ing’, ’clickable’) or splits long labels into multiple an-
nouncements, we apply a pre-processing step to improve
name precision and reduce noise. This includes: (a) fil-
tering non-essential terminology (e.g., ”heading,” ”link,”
”clickable”), and (b) merging fragmented announcements
(e.g., when a long link text is announced in multiple
parts). This step optimizes the announcement data, mak-
ing it more accurate for matching elements in the DOM.

• XPath Extraction: We then use the preprocessed an-
nouncement names as input to identify matching elements
in the HTML. These names are compared against acces-
sible properties such as text content, ARIA labels, titles,
placeholders, and alt text. For each matched element, we
extract its XPath, which serves as a unique identifier for
further analysis.

Unlike tab-based navigation, where arrow keys within com-

posite widgets can shift focus between interactive elements
(e.g., between tabs), down-arrow traversal does not move
DOM focus. It simply advances NVDA’s virtual cursor line
by line, without triggering browser-level focus events [44].

All three navigation proxies run independently but produce a
standardized output containing element XPaths and associated
accessibility properties. This is forwarded to the Issue Detector
component, which performs a comparative analysis to identify
locatability issues specific to each navigation method.

For each navigation technique, A11YNAVIGATOR also
records efficiency metrics, including:

• Number of keystrokes needed to reach each element
• Success rate, defined as the proportion of clickable ele-

ments successfully reached during navigation
• Time taken to traverse the website

These metrics help compare the efficiency of different naviga-
tion methods and reveal usability issues that may exist even
when elements are technically accessible. We will discuss this
in more detail in Section 5.

3) Comparison and Issue Detection: In the final stage,
A11YNAVIGATOR detects locatability issues by comparing the
elements visited during simulated navigation with the complete
set of clickable elements extracted in the first phase. For each
navigation strategy (Tab, Quick Key, and Down Arrow), it
records the XPath of every traversed element and flags any
expected clickable elements that were not reached.

Tab and Quick Key Navigation. For both Tab and Quick
Key navigation, A11YNAVIGATOR uses a direct XPath com-
parison. It compares the ground truth list of clickable element
XPaths with those reached during simulation. Any elements
in the ground truth list that were not visited are marked as
locatability failures.

Down Arrow Navigation. Down Arrow navigation presents
unique challenges for comparison, as it relies on screen reader
announcements rather than direct focus events to extract the
XPath of elements. Since XPath cannot be captured through
focus in this mode [44], we infer it by matching the acces-
sibility properties exposed by NVDA—such as the accessible
name, id, and href—with elements in the DOM. To identify
reachable elements, we compare both the inferred XPath and
key accessibility properties of each announced element with
the ground truth. An element announced during Down Arrow
navigation is considered successfully reached if its XPath
and accessibility properties match those in the ground truth.
Otherwise, the element remains in the ground truth list and is
flagged as a locatability issue.

The above approaches enable A11YNAVIGATOR to detect
elements that are present in the DOM but remain inaccessible
through real-world screen reader navigation strategies.

B. Actionability Detection Approach

While locatability checks whether screen reader users can
find the clickable elements, actionability ensures those ele-
ments work as expected when activated. An element might
be easy to navigate to but still fail to perform its intended
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action—posing a serious accessibility issue. This section out-
lines A11YNAVIGATOR’s approach to detecting actionability
failures. An overview is shown in Figure 3.

Fig. 3: Workflow of Actionability Detection.

1) User Simulation: A11YNAVIGATOR validates each
clickable element by simulating real user interactions and
observing screen reader feedback. Using the list of elements
identified by the ClickElement Extractor (Section III-A1), it
performs the following steps for each element: (a) brings
the element into focus using its XPath, (b) simulates an
appropriate interaction (e.g., pressing Enter or Spacebar) based
on the element type, and (c) records NVDA’s accessibility state
before and after the interaction. This process closely mimics
how actual screen reader users interact with web elements,
allowing for realistic validation.

2) Comparison and Issue Detection: After the simula-
tion, A11YNAVIGATOR analyzes the before-and-after states
captured by NVDA to detect actionability issues. It looks
for changes in accessibility-related states, such as expan-
sion (e.g., COLLAPSED → EXPANDED) or selection (e.g.,
UNCHECKED → CHECKED). If no state change is de-
tected after the interaction, the element is flagged to have
an actionability issue. For example, if a dropdown remains
COLLAPSED after activation, it indicates a failed interac-
tion—even though the element appears clickable. This pro-
cess allows A11YNAVIGATOR to identify elements that are
clickable but fail to respond to screen reader actions.

IV. EVALUATION

To comprehensively evaluate our approach, we designed a
study around the following four research questions:

• RQ1: How effectively does A11YNAVIGATOR identify
accessibility barriers?

• RQ2: How does A11YNAVIGATOR compare with exist-
ing static tools such as WAVE?

• RQ3: What are the characteristics of the accessibility
issues identified by the tool, and how do they impact
user interaction and task completion?

• RQ4: What is the performance of A11YNAVIGATOR?

A. Implementation Details

A11YNAVIGATOR is a modular Python-based framework
that simulates real-user keyboard navigation and captures
screen reader feedback to detect accessibility barriers on web-
sites. It follows a two-part architecture: a browser automation
engine that interacts with web content, and a screen reader
interface that logs speech output and accessibility states. All
modules run locally on a Windows 10 Pro machine with an

Intel Core i7-7660U CPU @ 2.50GHz and 16 GB RAM, using
NVDA version 2024.1 as the external assistive technology.

The automation backend leverages Selenium WebDriver
[46] to load websites, extract DOM metadata, and focus
elements via JavaScript. To simulate user input, it uses the key-
board library [47] to send native keypresses like Tab, enabling
realistic interactions that trigger screen reader responses.

To capture real-time accessibility feedback, we extend
NVDA’s open-source screen reader by modifying its core
components—specifically the speech and inputCore modules.
The speech module is instrumented to log synthesized speech
output, while inputCore is used to intercept user input and
extract metadata associated with the currently focused UI
element. This includes properties such as accessible name,
role, IA2UniqueID [32], and state. All data is logged in
structured JSON files for post-analysis of element behavior
and accessibility coverage.

To ensure accurate evaluation, we refine the ground truth
set of clickable elements by filtering out those that are dis-
abled, hidden via aria-hidden, not displayed (e.g., display:
none), or visually hidden through zero dimensions. For Down
Arrow navigation, we also excluded elements missing ac-
cessible names or fallback properties (e.g., aria-label, alt, or
value), as such issues are already detected by static tools.
A11YNAVIGATOR focuses primarily on interactive HTML
elements—such as links, buttons, form controls, and wid-
gets—in alignment with WCAG 2.2 Keyboard Accessibility
(2.1.1) [48], which prioritizes keyboard operability. However,
the framework is designed to be extensible and can be adapted
to analyze non-interactive content like static text and headings
for broader accessibility coverage.

B. Experiment Setup

To build a representative dataset of subject websites, we
followed the website selection strategy proposed by Tafre-
shipour et al. [26]. Specifically, we referred to Semrush’s list
of most visited websites [49] across various categories such
as e-commerce, finance, government services, and education.

From this list, we selected websites with monthly traffic
exceeding 10 million visits, ensuring that our evaluation covers
widely-used platforms that impact large user populations. All
selected websites were publicly accessible and primarily in
English. In total, our dataset includes 26 websites spanning
19 categories, each containing a variety of interactive HTML
elements (e.g., links, buttons, forms).

Table I provides an overview of the selected websites along
with their corresponding categories, as shown in the “Website”
and “Category” columns.

C. RQ1. Effectiveness of A11YNAVIGATOR

To evaluate the effectiveness of A11YNAVIGATOR in de-
tecting accessibility barriers, we tested it across two screen
configurations: desktop mode and compact mode. Desktop
mode used the default full-width layout, while compact mode
followed WCAG 2.2 Reflow guidance (Success Criterion
1.4.10) [48] by applying 400% zoom, simulating a viewport

6



Fig. 4: (a) is an example of a false positive, (b-h) are examples of locatability and actionability issues in A11YNAVIGATOR,
and (i) is an example of a false negative

width of 320 CSS pixels. This dual-mode evaluation ensures
that websites remain accessible across varying screen sizes and
zoom levels. We focused on four key issue categories:

• Unlocatable (Tab): Focusable elements skipped during
Tab navigation.

• Unlocatable (Quick-Key): Elements missed when using
single-key shortcuts (e.g., ‘B’ for buttons, ‘K’ for links).

• Unlocatable (Down Arrow): Elements not encountered
during sequential traversal with the Down Arrow key.

• Unactionable: Elements that are reached and announced
by NVDA but do not respond to expected keyboard
interactions like Enter or Space.

To validate the output of A11YNAVIGATOR, we conducted
a manual review involving three authors and one external
evaluator. Two authors have over four years of accessibility
research experience, while the third and the external evaluator
have 3.5 years of web industry experience. The evaluators
opened each webpage in Chrome Incognito Mode on a Win-
dows machine and highlighted both the clickable elements and
the elements flagged by A11YNAVIGATOR. They then simu-
lated each navigation strategy—Tab, Down Arrow, and Quick
Key—using NVDA to confirm whether the flagged elements
were unreachable. To assess actionability, they attempted to
activate each element using Enter and Space keypresses.

Table I summarizes the total number of issues detected
by A11YNAVIGATOR and those manually verified as true
positives, from which we computed precision to assess its

accuracy. We also report recall separately to measure how
thoroughly A11YNAVIGATOR captures accessibility barriers.
Together, these metrics provide a quantitative evaluation of
how effectively A11YNAVIGATOR detects real-world locata-
bility and actionability issues across diverse websites.

1) Precision: We assessed precision by verifying each
reported issue in both desktop and compact views. As shown in
Table I, the tool achieved an overall precision of 93.24% across
both locatability and actionability issues. This indicates that
the vast majority of reported issues reflected genuine problems
experienced by screen reader users.

However, our analysis also revealed false positives, often
caused by the dynamic behavior of modern websites. One
recurring source of error was carousels, which periodically
cycles through a list of cards. During ground truth extraction,
A11YNAVIGATOR would capture the XPath of one card. But
by the time the navigation proxy would reach that region,
the card would change, the XPath now pointing to a different
element. As a result, the original element appeared unreach-
able. Another example was observed on Google’s homepage
4(a), where the “I’m Feeling Lucky” button changes its label
to “I’m Feeling Hungry” in red when it receives keyboard
focus. This dynamic label update shifts the focus to a different
DOM element with a new XPath, causing a mismatch with the
ground truth and leading A11YNAVIGATOR to incorrectly flag
the original element as unreachable.

One notable observation in Table I is that Down Arrow
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navigation detected far fewer accessibility issues than other
strategies. This is likely caused by its linear traversal. Unlike
Tab or Quick Keys, which jump between semantic elements,
the Down Arrow moves through every element in sequence,
interactive or otherwise, reducing the chance of missing ele-
ments due to incorrect roles or structure.

At first glance, this may suggest that almost all clickable
elements are reachable through at least one mode of naviga-
tion, causing users no major barriers when traversing websites.
While comprehensive, it is time-consuming to navigate relying
only on the Down Arrow.

We analyzed the interaction effort required by each nav-
igation mode, computing the average number of keypresses
per website and reporting the median across all 26 websites.
The results showed clear differences: Quick Navigation was
the most efficient, with a median of 28.5 keypresses, followed
by Tab with 41.5. In contrast, Down Arrow was the most
exhaustive, requiring a median of 100.5 keypresses, over three
times the effort of Quick Keys. This suggests that while
Down Arrow provides comprehensive coverage, it is highly
inefficient for routine navigation [45].

Our preliminary study also confirmed that users tend to
prefer quicker and more targeted strategies like Quick Keys or
Tab over the exhaustive Down Arrow approach. These findings
underscore the need for developers to support all navigation
methods, as users choose strategies based on their needs and
the specific browsing context.

2) Recall: To assess the recall of A11YNAVIGATOR in
detecting real accessibility issues, we categorized the 26
subject websites into large, medium, and small based on the
number of elements contained and conducted a detailed man-
ual evaluation on a representative subset of six websites—two
from each category. Full-scale recall verification across all 26
websites was impractical due to the intensive manual effort
involved: each website required an average of 200 key presses
across all navigation modes. Moreover, the evaluation had to
be performed in both desktop and compact views with all
results independently verified by three authors and reviewed
by an external evaluator.

Within this subset, A11YNAVIGATOR successfully detected
all but two issues, resulting in an overall recall of 98.97%.
Both false negatives occurred on the ScienceDirect website
(Figure 4(i)) during Down Arrow navigation—one in desktop
view and one in compact view. These misses were caused
by the page’s repetitive DOM structure combined with over-
lapping accessibility attributes. In particular, nested containers
reused identical classes and ARIA roles, which made multiple
elements expose nearly indistinguishable accessible properties.
Because of this ambiguity, A11YNAVIGATOR extracted the
XPath for the wrong element, causing the actual issue to go
undetected.

D. RQ2. Comparison with WAVE

To evaluate the usefulness of A11YNAVIGATOR, we com-
pared it with WAVE [23], the most widely adopted acces-
sibility testing tool [50], [51], which analyzes HTML and

CSS against WCAG rules to identify issues such as low
contrast, missing or overly long alternative texts, and small
font sizes. However, WAVE performs static analysis without
simulating user interaction. In contrast, A11YNAVIGATOR
leverages assistive technologies (AT)—specifically the NVDA
screen reader—to perform a dynamic evaluation that mirrors
real user navigation. This allows A11YNAVIGATOR to detect
interaction-level barriers, such as elements that are unreach-
able or unresponsive during screen reader traversal, which
static tools like WAVE often miss. These dynamic issues
directly impact blind users’ ability to access functionality and
align with WCAG Success Criterion 2.1.1, which requires all
content to be operable via keyboard. By running both tools on
the same set of web pages, we illustrate how static and dy-
namic methods detect complementary sets of issues rather than
overlapping ones. WAVE excels at uncovering visual and struc-
tural violations, while A11YNAVIGATOR reveals interaction-
level failures that static tools inherently miss. This comparison
matters because, in practice, developers should ideally use both
approaches together to achieve a comprehensive accessibility
evaluation. To the best of our knowledge, no other fully
automated dynamic testing tools currently exist for a one-
to-one comparison (as discussed in Section VI). While pre-
vious research explored aspects of dynamic evaluation—such
as long navigation paths, invalid ARIA labels, or keyboard
traps—these efforts do not provide an automated, end-to-end
solution for detecting unreachability and inoperability during
screen reader navigation, as A11YNAVIGATOR does.

E. RQ3. Characteristics and Impact of Issues

To better understand the root causes of accessibility barriers
detected by A11YNAVIGATOR, we analyzed the types of
implementation patterns that commonly led to locatability
and actionability issues. These patterns often stemmed from
incorrect use of roles, missing attributes, or non-standard UI
components.

a) Unlocatable elements: One of the most prevalent
issues we identified was the use of non-focusable elements as
interactive controls. Developers frequently implemented click-
able regions using non-sematic elements such as <div> or
<li> tags with attached JavaScript listeners, without setting
the tabindex attribute. For example, Figures 4(e) and 4(f)
illustrate this issue on USPS and Doordash, respectively. On
Doordash, elements like “Top Cities,” “Top Cuisines,” and
“Top Chains” appear visually interactive but are skipped by
screen readers during tab and quick-key navigation due to
their lack of focusability and semantic roles. We observed
similar problems on several high-traffic websites, including
Discord, Genius, NIH, Zerodha, MakeMyTrip, IRCTC, and
ScienceDirect.

Another frequent issue involves anchor tags missing href
attributes. Developers often use <a> tags as buttons by at-
taching JavaScript event listeners, but omit the href. Without
it, these elements lose their built-in focusability and keyboard
accessibility. As a result, they may appear visually as links
or buttons but remain invisible to screen reader users during
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TABLE I: Evaluation of websites with the details of detected accessibility issues by A11YNAVIGATOR

Id Website Category View
Mode

#Traffic
Unlocatable

(Tab)

Unlocatable

(Quick-key)

Unlocatable

(Down Arrow)
Unactionable All Issues WAVE

Total TP Total TP Total TP Total TP Total TP

1 ADP Human Resources
Desktop >50M 0 0 3 3 2 2 0 0 5 5 10

Compact >50M 0 0 0 0 2 2 0 0 2 2 11

2 Agoda Hospitality
Desktop >10M 1 0 1 1 0 0 0 0 2 1 10

Compact >10M 1 0 0 0 0 0 0 0 1 0 10

3 Capitalone Banking
Desktop >50M 0 0 0 0 0 0 0 0 0 0 28

Compact >100M 0 0 3 3 3 3 0 0 6 6 28

4 Chase Banking
Desktop >100M 0 0 8 8 0 0 0 0 8 8 4

Compact >10M 0 0 0 0 0 0 0 0 0 0 4

5 Craigslist Real Estate Desktop >50M 6 5 1 0 0 0 0 0 7 5 7

6 Discord Computer Software &
Development

Desktop >500M 0 0 0 0 0 0 0 0 0 0 10

Compact >100M 1 1 1 1 0 0 0 0 2 2 10

7 Doordash Restaurants
Desktop >10M 5 5 3 3 0 0 0 0 8 8 7

Compact >10M 6 5 3 3 0 0 0 0 9 8 6

8 Doubleclick Online service
Desktop >10M 0 0 0 0 0 0 0 0 0 0 8

Compact >100M 0 0 0 0 0 0 0 0 0 0 4

9 DuckDuckGo Food & Beverages
Desktop >100M 1 1 1 0 0 0 0 0 2 1 3

Compact >1B 1 1 1 0 0 0 0 0 2 1 2

10 Formula1 Automative
Desktop >10M 0 0 0 0 1 0 0 0 1 0 34

Compact >10M 0 0 0 0 1 0 0 0 1 0 34

11 Fragrantica Beauty and Cosmet-
ics

Desktop >10M 0 0 7 7 0 0 1 1 8 8 381

Compact >10M 0 0 0 0 0 0 1 1 1 1 381

12 Genius Music
Desktop >50M 5 5 6 6 0 0 0 0 11 11 63

Compact >100M 5 5 6 6 0 0 0 0 11 11 62

13 Google Online services Desktop >100B 1 0 0 0 0 0 0 0 1 0 1

14 IRCTC Airlines
Desktop >10M 4 4 3 3 0 0 11 11 18 18 34

Compact >50M 3 3 3 3 0 0 2 2 8 8 31

15 Makemytrip Airlines Desktop >10M 25 25 7 6 0 0 0 0 32 31 8

16 Microsoft Information Technol-
ogy

Desktop >1B 0 0 0 0 0 0 0 0 0 0 21

Compact >500M 0 0 0 0 0 0 0 0 0 0 21

17 NIH Healthcare
Desktop >100M 10 10 10 10 0 0 0 0 20 20 0

Compact >100M 5 5 5 5 0 0 0 0 10 10 1

18 OpenAI Computer Software &
Development

Desktop >100M 0 0 1 0 0 0 0 0 1 0 2

Compact >500M 0 0 1 0 0 0 0 0 1 0 85

19 Progressive Insurance
Desktop >10M 0 0 0 0 0 0 0 0 0 0 0

Compact >10M 0 0 0 0 0 0 0 0 0 0 0

20 Samsung Telecom
Desktop >10M 0 0 1 0 0 0 0 0 1 0 274

Compact >100M 0 0 0 0 0 0 0 0 0 0 67

21 Sciencedirect Science
Desktop >50M 0 0 1 1 0 0 0 0 1 1 0

Compact >10M 0 0 1 1 0 0 0 0 1 1 0

22 Stackoverflow Distance Learning
Desktop >100M 0 0 2 2 0 0 0 0 2 2 65

Compact >10M 0 0 4 4 0 0 0 0 4 4 64

23 USPS Transportation and
Logistics

Desktop >50M 4 4 4 4 0 0 0 0 8 8 39

Compact >100M 4 4 4 4 0 0 0 0 8 8 11

24 Wikipedia Newspapers Desktop >1M 0 0 0 0 0 0 0 0 0 0 7

25 Youtube Newspapers Desktop >10B 0 0 0 0 0 0 0 0 0 0 31

26 Zerodha Investment
Desktop >10M 1 1 1 1 0 0 0 0 2 2 49

Compact >10M 1 1 1 1 0 0 0 0 2 2 49

Total Issues: 90 85 93 86 9 7 15 15 207 193
1767

Precision 94.44% 92.47% 77.78% 100.00% 93.24%

tab navigation or quick key access. For example, in Figure
4(c), the control for setting DuckDuckGo as the default
search option is inaccessible to screen reader users because

the href attribute is missing. We observed this problem on
websites such as NIH, Agoda, and MakeMyTrip, where critical
interactive actions were silently rendered inaccessible.
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We also observed misuse of ARIA roles—specifically, the
inappropriate use of role="dialog" on elements that
are not meant to behave like dialog boxes. This role is
intended for modal or pop-up dialogs that require user in-
teraction and typically trap keyboard focus. On the Capi-
talOne website (Figure 4 (b)), however, the <header> ele-
ment was incorrectly assigned role="dialog" along with
aria-modal="false". Although focus trapping was not
intended, NVDA treated it as a modal and created a separate
virtual buffer, making the header content unreachable via the
Down Arrow or Quick Navigation Keys. A similar issue was
found on ADP, showing how even well-meaning use of ARIA
roles can disrupt navigation. This can be fixed by removing
the role="dialog" attribute.

Lastly, we identified role conflicts in composite widgets,
where conflicting role assignments broke expected semantics.
For example, in Figure 4(h), the website Fragrantica assigned
conflicting roles that caused navigation menu items such as
News, Perfumes, and Notes to be invisible to screen reader
users, leaving these functions inaccessible. We also observed
cases on Chase, Fragrantica, and StackOverflow where <a>
elements with role=”menuitem” were nested inside <li>
elements with role=”none”. This mismatch disrupted both
list structure and link semantics, causing NVDA to skip the
elements during list and link traversal. Such subtle misconfig-
urations rendered critical content completely inaccessible to
screen reader users.

b) Unactionable elements: A11YNAVIGATOR also re-
vealed cases where actionability broke down—elements that
failed to respond to expected inputs like Enter or Space. One
such case was found on Fragrantica in Figure 4(d), where a
visible button labeled “Privacy Manager” was defined using
a semantic <button> element. Although this button was
correctly marked up and reachable through tab and quick
key navigation, it lacked any associated JavaScript handler or
functionality. As a result, pressing Enter or Space produced
no observable behavior. For screen reader users, this creates
a misleading experience—NVDA announces the element as
a button, signaling expected interactivity, but the control is
ultimately inert.

Another pattern occurred on the IRCTC website,
where dropdown menus were implemented with
correct ARIA markup, including attributes such as
aria-haspopup="listbox", role="listbox",
and aria-expanded="false". While these attributes
suggest full accessibility support, the component failed to
register the necessary JavaScript event listeners to toggle
the dropdown in response to keyboard actions like Enter or
Space. As a result, keyboard-only users relying on screen
readers could reach the dropdowns but could not open or
use them as shown in Figure 4(g). Though locatable, the
elements could not be activated via screen reader, creating a
false sense of support and hindering interaction.

c) Broader Impact of Issues: The issues flagged by
A11YNAVIGATOR not only make navigation difficult for
screen reader users—leading to frustration and exclusion—but

also reduce overall usability and negatively impact SEO,
since search engines rely on semantic structures in much
the same way as assistive technologies. Ensuring that ac-
cessibility features are locatable and reachable therefore has
direct implications for searchability. As highlighted by Moreno
and Martı́nez [52] and Lieke [53], there is a strong overlap
between accessibility and search engine optimization (SEO),
particularly in how both depend on the underlying struc-
ture and semantics of a website. Screen readers and search
engine crawlers both navigate and interpret content non-
visually through code, links, headings, and metadata, meaning
that elements inaccessible to assistive technologies—such as
those missing alt-text or labels—are often equally invisible to
crawlers. Thus, improving accessibility by making elements
navigable, properly labeled, and semantically structured ben-
efits users with disabilities while enhancing search engine
visibility; conversely, neglecting these practices limits both
user access and indexing.

F. RQ4: Performance

To evaluate the practicality of integrating A11YNAVIGATOR
into a typical development workflow, we measured and ana-
lyzed its execution time across all 26 websites in our dataset,
focusing separately on locatability and actionability issues. For
locatability issues, A11YNAVIGATOR required an average of
43 minutes (2,580 seconds) using TAB key navigation, 39
minutes (2,340 seconds) using quick key navigation, and 92
minutes (5,520 seconds) using down arrow key navigation. For
identifying actionability issues, the average execution time per
website was approximately 60 minutes (3,600 seconds). Thus,
on average, A11YNAVIGATOR can comprehensively analyze
a single website, covering all three navigation modes along
with actionability analysis, within approximately 234 minutes.
Each detection strategy runs independently, which means they
can be executed in parallel. While the current version of
A11YNAVIGATOR runs them sequentially, multi-threading and
multi-processing can be implemented to significantly reduce
the running time. We expect its performance to improve even
further if it is deployed on a server with many processors. In
addition, since A11YNAVIGATOR runs automatically without
requiring developer intervention, it can be integrated into
a standard development pipeline, such as nightly builds or
continuous integration workflows.

V. THREATS TO VALIDITY

We acknowledge several potential threats to the validity of
our evaluation and describe the steps taken to mitigate them:

External Validity: To reduce selection bias, we chose web-
sites used in prior accessibility study [26], covering popular
sites across diverse domains. We included both desktop and
responsive views to capture a wide range of layout structures
and improve the generalizability of our findings.

In addition, unlike precision, which can be verified di-
rectly against tool-reported results, recall requires establishing
the complete set of accessibility issues on a page through
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exhaustive manual verification. This process is highly time-
consuming—for instance, validating a single site across three
navigation modes and two issue types can take more than three
hours and requires extensive cross-checking. Prior work has
also noted these challenges [54]. To address this, we focused
our recall evaluation on six representative websites, selecting
two from each size category (large, medium, small).

Internal Validity: We manually reviewed the detected
issues to assess precision and recall, which may introduce
subjectivity. To mitigate this, three authors and an external
reviewer independently verified and discussed the results to
strengthen the reliability of our evaluation.

A11YNAVIGATOR relies on tools like Selenium WebDriver,
JavaScript-based extractors, and NVDA’s logging interface.
These may introduce errors during interaction or DOM ex-
traction, such as timing issues or incorrect XPath resolution.
Our prototype may also contain bugs. To reduce these risks,
we used the latest stable library versions and added retry logic
for unstable cases to ensure reliability.

VI. RELATED WORK

The Web Content Accessibility Guidelines (WCAG) [8]
have served as the foundation for the development of most
existing accessibility checkers [23]–[25], [55]–[61]. However,
due to their rule-based nature and reliance on static analysis,
these tools mainly flag straightforward issues such as missing
alt text or insufficient color contrast. They often struggle to
detect more complex accessibility problems that arise from
dynamic content or user interactions.

To address these limitations, several studies have investi-
gated the detection of accessibility violations through dynamic
analysis [54], [62], [63]. These efforts include identifying
issues such as excessive reaching time to access a web ele-
ment or overly long navigation paths. Other examples involve
detecting invalid or empty ARIA labels assigned to visible
elements [64], [65], keyboard navigation problems such as
traps or dialog-based navigation failures, and reflow issues on
web pages [66]–[69].

Researchers have found that certain accessibility violations
can only be detected through the use of assistive technologies,
which might otherwise be overlooked [70]. As a result, several
studies have incorporated assistive technologies such as screen
readers during evaluations to uncover these issues [70]–[75].
However, most of these approaches still rely on manual effort,
such as interacting with the application under test or the
provision of GUI test cases.

While Latte [70] leverages the TalkBack screen reader to
detect accessibility issues in Android apps through existing
scripted GUI tests, our work differs in several important
ways. We focus on the web domain, where GUI test suites
are rarely available. A recent study found that over 95%
of web applications on GitHub lack GUI test suites [76],
and prior research shows that even when present they are
often slow, fragile, and resource-intensive, leading to frequent
abandonment, continued reliance on manual testing, and high
breakage rates in production [77], [78]. To address these

limitations, our approach dynamically explores websites in real
time and evaluates accessibility using NVDA screen reader
interactions, eliminating the dependency on pre-existing GUI
tests. Additionally, the interaction model in our work differs
significantly from Latte: we rely on keyboard-based navigation
strategies for the web, whereas Latte uses swipe-based gestures
for mobile applications, resulting in a different implementation
and detection of different issue types.

An exception is Groundhog [72], an automated system
that uses the TalkBack screen reader to crawl and interact
with Android app interfaces, identifying issues related to
element locatability and actionability. However, to the best
of our knowledge, all existing work that incorporates assis-
tive technologies has been limited to mobile platforms. Our
work differs from Groundhog in several key ways, as the
web environment presents unique challenges. First, websites
are inherently more complex than native mobile apps, often
containing a larger number and greater variety of interface
elements. Additionally, interacting with websites using a
screen reader introduces more barriers compared to native
mobile apps [79]. Second, screen readers used on the web
offer more diverse navigation modes than those available on
mobile devices. While mobile navigation is typically linear and
gesture-based, web environments support multiple strategies,
including tabbing, arrow-key traversal, and semantic shortcuts
for quick navigation.

Our work, A11YNAVIGATOR, differs from prior studies
by integrating assistive technology directly into the detection
process and focusing on a distinct environment—the web.
A11YNAVIGATOR simulates diverse navigation strategies us-
ing the NVDA screen reader, enabling the discovery of a wider
and more nuanced set of locatability and actionability issues.

VII. CONCLUSION

In this paper, we presented A11YNAVIGATOR, a fully
automated accessibility testing tool designed to detect issues
that arise during screen reader navigation of web pages. Unlike
static tools like WAVE, which focus on rule-based compliance,
A11YNAVIGATOR uncovers elements on a web page that
are either unreachable (locatability issues) or unresponsive to
interaction (actionability issues). Evaluated across 26 popular
websites, A11YNAVIGATOR achieved a precision of 93.24%
and recall of 98.97%.

Interesting avenues of future work include (i) automatically
categorizing the detected issues and generate suggestions for
fixes, (ii) extending the A11YNavigator approach to build a
large-scale benchmark dataset of recurring accessibility issues,
and (iii) conducting qualitative studies with web developers
to explore why non-semantic patterns persist, and how better
guidance or tooling might help.

The artifacts for this research are publicly available [27].
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