UNIVERSITY OF CALIFORNIA,
IRVINE

Diffusion Distance: Efficient Computation and Applications

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Cory Braker Scott

Dissertation Committee:
Prof. Eric Mjolsness, Chair
Prof. Alexander Ihler

Prof. Diane Adele Oyen?
Prof. Padhraic Smyth

2021

Los Alamos National Laboratory

Chapters 1, 2, 3, 4 and 5 (©) 2021 Public Library of Science
Chapter 6 (C) 2019 Society for Industrial and Applied Mathematics
Chapter 7 () 2020 IOP:Machine Learning, Science and Technology

All other materials (€) 2021 Cory Braker Scott

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF ALGORITHMS
ACKNOWLEDGMENTS
CURRICULUM VITAE

ABSTRACT OF THE DISSERTATION

1 Introduction
1.1 Imtroduction
1.2 Prior Work

1.2.1 Quadratic Matching of Points and Graphs (structural, explicit, cont-opt)

1.2.2 Cut-Distance of Graphs (structural, implicit, disc-opt)
1.2.3 Wasserstein Earth Mover Distance (spectral, implicit, disc-opt)
1.2.4 Graph-Edit Distance
1.2.5 Diffusion Distance due to Hammond et al. [48]
1.2.6 Novel Diffusion-Derived Measures
1.3 Outline. e
1.4 Mathematical Background oo o
1.4.1 Desirable Characteristics for Distance Metrics
1.4.2 Definitions

2 Diffusion Distance
2.1 Diffusion Distance Definition
2.2 Directedness of Distance and Constraints
2.3 Variants of Distance Measure
2.4 Spectral Lower Bound 0o
2.5 Summary of Distance Metric Versions

3 Theoretical Properties of GDD
3.1 Optimization over P is equivalent to an eigenvalue matching problem
3.2 Triangle Inequality forao=1.
3.3 Time-Scaled Graph Diffusion Distance
3.4 Sparse-Diffusion Distance

i

Page

vii
viil

ix

"

o

—
—H O ©W OO0 O Utk DN+~ =

—_

3.5 Upper Bounds for Graph Products (Linear Version)
3.6 Upper Bounds for Graph Products (Exponential Version)
3.7 Existence of Zero-Error P for Cycle Graphs
3.8 Spectral Version of Decoupling for the Diffusion Term of Graph Product Pro-

longations

3.8.1 Distortion-penalized Distance
3.9 Theory Summary

Efficiently Calculating GDD

4.1 Algorithm Development oL
4.2 Optimization of D%
4.3 Optimization of D?
4.4 Algorithm Correctness Proof
4.5 Implementation Details 0oL

Numerical Properties of GDD
5.1 Graph Lineages
5.2 Numerical Optimization Methods
5.2.1 Black-Box Optimization Over ao.
5.3 Triangle Inequality violation of D (Exponential Distance) and D (Linear Dis-
BANCE)
5.4 Intra- and Inter-Lineage Distances
5.5 Graph Limits
5.6 Limit of Path Graph Distances

Application: Multiscale Neural Network Training
6.1 Prior Work o
6.1.1 Outline
6.2 Optimal Prolongation Maps Between Graphs
6.3 Comparison of Numerical Methods
6.3.1 Imitialization
6.3.2 Precomputing P matrices L.
6.4 Multiscale Artificial Neural Network Algorithm
6.4.1 Weight Prolongation and Restriction Operators
6.4.2 Multiscale Artificial Neural Network Training
6.5 Machine Learning Experiments 0oL
6.5.1 Simple Machine Vision Task
6.5.2 MNIST
6.5.3 Experiments of Choiceof P
6.5.4 Summary
6.6 Conclusion and Future Worko

il

7 Application - Graph Prolongation Convolutional Networks
7.1 Convolution and Graph Convolution

7.2 Microtubules

7.2.1 Simulation of MTs and Prior Work
7.3 Model Architecture and Mathematical Details

7.3.1 Model Description
7.3.2 Mathematical Background .

7.3.3 Graph Convolutional Layer Definition
7.3.4 Graph Prolongation Convolutional Networks
7.4 Dataset Generation and Reduced Model Construction

74.1 Dataset

7.4.2 Efficient Calculation of Graph Diffusion Distance

7.4.3 Graph Coarsening
7.5 Machine Learning Experiments . .
7.5.1 Experimental Procedure . .

7.5.2 Evaluation of GPCN Variants
7.5.3 Evaluation of Training Schedules

7.5.4 Comparison with DiffPool .

7.5.5 Comparison to Other GCN Ensemble Models

7.5.6 Machine Learning Summary
7.6 Future Work

7.6.1 Differentiable Models of Molecular Dynamics

7.6.2 Tensor Factorization
7.6.3 Graph Limits
7.7 Conclusion

8 Other Applications

8.1 Shape Analysis for Discretized Meshes
8.2 Morphological Analysis of Cell Networks

8.2.1 Biological Background . . .

8.2.2 GDD is a differentiable function of ¢ and edge weights

8.2.3 Weighted Diffusion Distance

8.2.4 Learning Edge Weighting Functions

8.3 Conclusion and Future Work
9 Conclusion

Bibliography

v

115
115
116
118
119
119
120
121
122
123
123
127
131
134
134
135
137
140
141
145
146
146
149
149
150

152
152
154
155
156
158
159
161

162

164

1.1
1.2
1.3

2.1
4.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4

7.5
7.6
7.7
7.8

7.9

LIST OF FIGURES

Page
The lineage of path graphs. 0. 15
Multiple coarsened graphs drawn from the Utah Teapot. 15
Graph box and cross productso 17
Plot of GDD as t is varied, demonstrating unimodality. 19
Linear vs. exponential versions of GDD; multimoldality as a function of a. . 57
Example graph lineages. Lo 70
Example distance calculations between graph lineages. 71
Speedup of Algorithm 2 in comparison to golden section search. 74
Frequency of triangle inequality violation by various forms of GDD. 76
GDD limit for path graphs, demonstrating convergence. 84
Difference between calculated distance and theoretical upper bound. 85
Limiting behavior of GDD as graph size grows very large. 85
Example P matrices found via two optimization methods. 92
Locality vs. diffusion Paretoplot. 94
Example P matrices for path and cycle graphs of various sizes. 97
Visualization of multigrid training procedure. 104
Accuracy vs. training cost for a MSANN model, on a machine vision task. . 108
MsANN performance vs. training time on MNIST. 110
Comparison of P Matrices for MNIST MsANN. 113
Schematic of GPCN model. 124
Microtubule model under bending load. 127
Microtubule model structure.o 128
Changes in stiffness of microtubule model under constant load, as parameters
controlling interaction strength are varied. 128
Plot of Linear Graph Diffusion Distance between two small random graphs. . 132

Directed Graph Diffusion Distance (GDD) between offset tube graphs and G.133
Three graphs used to create structure matrices for our GPCN model. 134
Comparison of mean squared error (MSE) on held-out validation data (nor-
malized by averaging over the validation set) as a function of FLOPs expended,
for variants of the GPCN model. 136
Effect of varying training schedule for training a GPCN model. 139

7.10 Comparison of 3-level GPCN and A-GPCN models to a 3-level DiffPool GPCN.140

7.11 Comparison of Normalized MSE on held-out validation data as a function
of FLOPs expended for a variety of ensemble Graph Convolutional Network
Models. e

7.12 Limiting behavior of two classes of distances between graphs, as a function of
graph size. L

8.1 Variety of 3D meshes, compared by GDD.
8.2 Multidimensional scaling plot of GDD on meshes.

8.3 Extraction of cell morphology graphs from mutant and wild-type Arabidopsis.

8.4 Example graphs extracted from SAM images.
8.5 Neural-net learned edge weights on morphological graphs.
8.6 Distance matrices and embeddings produced by GDD for cell morphology

vi

2.1
5.1

6.1
6.2
6.3

7.1

7.2
7.3

7.4

8.1

LIST OF TABLES

Page
Summary of various forms of distance metric. 28
Mean GDD between graph lineages. 7
Best MSANN performance and hyperparameters (one-object task). 107
Best MsANN performance and hyperparameters (two-object task) 107
Best MSANN performance and hyperparameters (MNIST) 111
Description of energetic interactions in microtubule simulation, according to
the labels in Figure 7.3. 129
Filter specifications for ensemble models in comparison experiment. 142
Mean error and uncertainty of several GCN ensemble models across ten ran-
dom trials. L 143
Mean wall-clock time to perform feed-forward and backpropagation for various
GOCN ensemble models.o 143
Validation accuracy of a GDD classifier for cell graphs. 161

vil

1
2

3

LIST OF ALGORITHMS

Pseudocode for Linear GDD calculation.
Pseudocode for Exponential GDD Calculation

One cycle of the MsANN training procedure

viii

ACKNOWLEDGMENTS

Writing this dissertation was a monumental effort, and one which would not have been
possible without the support of many of my friends, collaborators, and loved ones. Since
this acknowledgements page is finite, I can only thank a few of them:

Thanks to my advisor, Eric Mjolsness, for taking a chance on a grad student with no papers
to his name; and thanks to Diane Oyen, Steven Janke, Matthew Whitehead, Padhraic Smyth,
and Alexander Ihler for all of their advice and academic encouragement.

Thanks to my parents, Thomas Scott and Elizabeth Braker, who have always encouraged
me to forge my own path and to approach the world with an inquisitive and compassionate
mindset. Thanks as well to my brother, Ben Scott, who I am super proud to call a fellow
scientist. Your support means the world to me.

Thanks to my partner, Julia Boese, who has been a bedrock of support at times when my
work was trying and difficult.

Finally, thanks to my other friends, partners, and family, who have all encouraged me to
grow in ways I couldn’t have anticipated over the last few years. This success couldn’t have
happened without you all.

X

CURRICULUM VITAE

Cory Braker Scott

EDUCATION

Doctor of Philosophy in Computer Science

University of California, Irvine

Master of Science in Computer Science

University of California, Irvine

Bachelor of Arts in Computer Science

Colorado College

Bachelor of Arts in Mathematics

Colorado College

RESEARCH EXPERIENCE

Graduate Research Assistant
University of California, Irvine

Graduate Research Assistant
Los Alamos National Labs

Machine Learning Intern
TAE Technologies, Inc

Software Engineering Intern
Charles River Analytics, Inc

REU Participant
Boise State University

TEACHING EXPERIENCE

Teaching Assistant
University of California, Irvine

2021
Irvine, CA

2017
Irvine, CA

2013
Colorado Springs, CO

2013
Colorado Springs, CO

2015-2021
Irvine, California

2018—-2021
Los Alamos, NM

2017, 2020-2021
Rancho Santa Margarita, CA

2016
Cambridge, MA

2012
Boise, ID

2015-2021
Irvine, CA

Courses: Introduction to Programming, Introduction to Optimization

Paraprofessional
Colorado College

Teaching Assistant
Colorado College

2013-2014
Colorado Springs, CO

2011-2013
Colorado Springs, CO

REFEREED JOURNAL PUBLICATIONS

Graph Diffusion Distance: Properties and Efficient 2021
Computation

PLOS ONE

StressNet - Deep learning to predict stress with fracture 2021

propagation in brittle materials
Nature: Materials Degradation

Graph prolongation convolutional networks: explicitly 2020
multiscale machine learning on graphs with applications

to modeling of cytoskeleton

IOP Machine Learning: Science and Technology

Detection and prediction of a beam-driven mode in 2020
Field-Reversed Configuration plasma with Recurrent

Neural Networks

Nuclear Fusion

Multilevel Artificial Neural Network Training for Spa- 2019
tially Correlated Learning
STAM Journal on Scientific Computing

Algebraic properties of generalized Rijndael-like ci- 2014
phers.
Groups Complexity Cryptology

REFEREED CONFERENCE PUBLICATIONS

Physics-Informed Spatiotemporal Deep Learning for March 2020
Emulating Coupled Dynamical Systems
AAAT Spring Symposium

SOFTWARE

DiffusionDistance https://github.com/scottcb/DiffusionDistance
Collection of codes to calculate diffusion distance between graph Laplacians.

MsANN https://github.com/scottcb/MsANN
A machine learning model which learns at multiple spatial scales.

x1

https://github.com/scottcb/DiffusionDistance
https://github.com/scottcb/MsANN

ABSTRACT OF THE DISSERTATION

Diffusion Distance: Efficient Computation and Applications
By
Cory Braker Scott
Doctor of Philosophy in Computer Science
University of California, Irvine, 2021

Prof. Eric Mjolsness, Chair

How is the shape of a graph captured by the way heat diffuses between its nodes? The
Laplacian Exponential Kernel of a graph is a matrix whose eigenvalues and eigenvectors
describe this heat (or more generally, probability) diffusion process as a function of time.
Previous work has shown that the Laplacian can be gainfully used for comparing graphs,
but these methods are limited to graphs of the same size. This work focuses on generalizing
one such measure, Graph Diffusion Distance (GDD), making it capable of comparing graphs
of varying size. Calculating these distances involves solving a complicated multivariate op-
timization problem, and we will detail a novel optimization algorithm for doing so. This
procedure outperforms naive univariate optimization by a speedup of as much as 1000x.
One key feature of this procedure is that it produces a coarsening operator which attempts
to align the two heat kernels to agree with each other as much as possible. These operators
can be used as the coarsening step in a convolutional neural network, resulting in a 10x
increase in training efficiency. We will show how these “Graph Prolongation Convolutional
Networks” can be used to accelerate molecular dynamics simulations of proteins. Finally,
we will also discuss some applications of the GDD, including 2D and 3D shape analysis and

characterization of plant cell growth.

xil

Chapter 1

Introduction

1.1 Introduction

Structure comparison, as well as structure summarization, is a ubiquitous problem, appearing
across multiple scientific disciplines. In particular, many scientific problems (e.g. inference
of molecular properties from structure, pattern matching in data point clouds and scientific
images) may be reduced to the problem of inexact graph matching: given two graphs, com-
pute a measure of similarity that gainfully captures structural correspondence between the
two. Similarly, many algorithms for addressing multiple scales of dynamical behavior rely on
methods for automatically coarsening the computational graph associated with some model

architecture.

In this work we present a distance metric for undirected graphs, based on the Laplacian
exponential kernel. This measure generalizes the work of Hammond et al. [48] on graph dif-
fusion distance for graphs of equal size; crucially, our distance measure allows for graphs of
inequal size. We formulate the distance measure as the solution to an optimization problem

dependent on a comparison of the two graph Laplacians. This problem is a nested opti-

1

mization problem, with the innermost layer consisting of multivariate optimization subject
to matrix constraints (e.g. orthogonality). To compute this dissimilarity score efficiently, we
also develop and demonstrate the lower computational cost of an algorithm which calculates
upper bounds on the distance. This algorithm finds a prolongation /restriction operator, P,
which produces an optimally coarsened version of the Laplacian matrix of a graph. Prolon-
gation /restriction operators produced via the method in this paper can be used to accelerate
the training of neural networks (both flat ANNs, as we will see in Chapter 6, and graph

neural networks, as we will see in Chapter 7).

1.2 Prior Work

Quantitative measures of similarity or dissimilarity between graphs have been studied for
decades owing to their relevance for problems in pattern recognition including structure-
based recognition of extended and compound objects in computer vision, prediction of
chemical similarity based on shared molecular structure, and many other domains. Related
problems arise in quantitative modeling, for example in meshed discretizations of partial
differential equations and more recently in trainable statistical models of data that feature
graph-like models of connectivity such as Bayes Networks, Markov Random Fields, and ar-
tificial neural networks. A core problem is to define and compute how “similar” two graphs
are in a way that is invariant to a permutation of the vertices of either graph, so that the
answer doesn’t depend on an arbitrary numbering of the vertices. On the other hand unlike
an arbitrary numbering, problem-derived semantic labels on graph vertices may express real
aspects of a problem domain and may be fair game for detecting graph similarity (we ex-
plore the use of edge information in Section 8.2. The most difficult case occurs when such
labels are absent, for example in an unstructured mesh, as we shall assume. Here we detail

several measures of graph dissimilarity, chosen by historical significance and similarity to our

measure.

We mention just a few prior works to give an overview of the development of graph distance
measures over time, paying special attention to those which share theoretical or algorithmic
characteristics with the measure we introduce. Our mathematical distinctions concern the

following properties:

e Does the distance measure require an inner optimization loop? If so is it mainly a

discrete or continuous optimization formulation?

e Does the distance measure calculation naturally yield some kind of explicit map from
real-valued functions on vertices of one graph to functions on vertices of the other?
(A map from vertices to vertices would be a special case.) If we use the term “graph
signal” to mean a function f : V(G;1) — S which identifies each vertex of a graph G
with some state s € S, then a map-explicit graph distance is one which as part of its
output provides a new function f’ : V(G3) — S which approximates the behavior of
f. ‘Approximates’ and ‘behavior’ are here left undefined as these would need to be

problem-specific.

e [s the distance metric definable on the spectrum of the graph alone, without regard
to other data from the same graph? The “spectrum” of a graph is a graph invariant
calculated as the eigenvalues of a matrix related to the adjacency matrix of the graph.
Depending on context, the spectrum can refer to eigenvalues of the adjacency matrix,
graph Laplacian, or normalized graph Laplacian of a graph. We will usually take
the underlying matrix to be the graph Laplacian, defined in detail in Section 1.4.2.
Alternatively, does it take into account more detailed “structural” aspects of the graph?

This categorization (structural vs. spectral) is similar to that introduced in [28].

For each of the graph distance variants discussed here, we label them according to the

above taxonomy. For example, the two prior works by Eschera et. al. and Hammond et al
(discussed in Sections 1.2.4 and 1.2.5) would be labelled as (structural, explicit, disc-opt)
and (spectral, implicit, non-opt), respectively. Our distance measure' defined in detail in

Chapter 2 would be labelled (spectral, explicit, cont-opt).

1.2.1 Quadratic Matching of Points and Graphs (structural, ex-

plicit, cont-opt)

As a first example, some graph comparison methods focus on the construction of a point-
to-point correspondence between the vertices of two graphs. Gold et. al. [41] define the
dissimilarity between two unlabelled weighted graphs (with adjacency matrices A®) and A
and ny and ny vertices, respectively) as the solution to the following optimization problem

(for real-valued M = [my;]:

ng ni n2 ni 2
minimize Z Z (Aﬁ)mlk - Z mij;?) =|[ADM — MA@ ﬁT
I=1 p=1

j=1 k=1 \i=
n2
subject to Zmijzl, j=1...m
=1
m (1.1)
Zmijzl, 2:1n2
j=1
j =1... nq
where ||-||% is the squared Frobenius norm. This problem is similar in structure to the

optimization considered in Section 2.4 and Chapter 4: a key difference being that Gold et

al. consider optimization over real-valued matchings between graph vertices, whereas we

lwith the exception of the sparsity-seeking variants, which are not spectral.

consider 0-1 valued matchings between the eigenvalues of the graph Laplacians. In [42] and
[83] the authors present computational methods for computing the optimum of 1.1, and
demonstrate applications of this distance measure to various machine learning tasks such as
2D and 3D point matching, as well as graph clustering. Gold et al. also introduce softassign,
a method for performing combinatorial optimization with both row and column constraints,

similar to those we consider.

1.2.2 Cut-Distance of Graphs (structural, implicit, disc-opt)

Lovész [68] defines the cut-distance of a pair of graphs as follows: Let the C-norm of a matrix

B be given by:

1
|Bl|g = 3 oA

(1.2)

> By

1€5,jeT

Given two labelled graphs G, G5, on the same set of vertices, and their adjacency matrices

A; and Ay, the cut-distance dey(G1, Go) is then given by

Dcut(Gla G2) - ||A1 - AQHD (13)

(for more details, see [68]). Computing this distance requires combinatorial optimization
(over all vertex subsets of Gy, Gs) but this optimization does not result in an explicit map
between (G; and G5. This distance metric is grounded in the theory of graphons, mathemat-
ical objects which are a natural infinite-sized generalization of dense graphs. However, all
sparse graphs are similar in cut-distance to the zero graphon (see [68]), making cut-distance

less useful for real-world problems.

1.2.3 Wasserstein Earth Mover Distance (spectral, implicit, disc-

opt)

One common metric between graph spectra is the Wasserstein Earth Mover Distance. Most
generally, this distance measures the cost of transforming one probability density function
into another by moving mass under the curve. If we consider the eigenvalues of a (possibly
weighted) graph as point masses, then the EMD measures the distance between the two
spectra as the solution to a transport problem (transporting one set of points to the other,
subject to constraints e.g. a limit on total distance travelled or a limit on the number of
‘agents’ moving points). The EMD has been used in the past in various graph clustering and
pattern recognition contexts; see [44]. In the above categorization, this is an optimization-
based spectral distance measure, but is implicit, since it does not produce a map from
vertices of G to those of Gy (informally, this is because the EMD is not translating one set
of eigenvalues into the other, but instead transforming their respective histograms). Recent
work applying the EMD to graph classification includes [27] and [71]. Some similar recent
works [69, 21] have used optimal transport theory to compare graphs. In this framework,
signals on each graph are smoothed, and considered as draws from probability distribution(s)
over the set of all graph signals. An optimal transport algorithm is used to find the optimal
mapping between the two probability distributions, thereby comparing the two underlying

graphs.

1.2.4 Graph-Edit Distance

The graph edit distance measures the total cost of converting one graph into another with
a sequence of local edit moves, with each type of move (for example, vertex deletion or
addition, edge deletion or addition, edge division or contraction) incurring a specified cost.

Costs are chosen to suit the graph analysis problem at hand; determining a cost assignment

6

which makes the edit distance most instructive for a certain set of graphs is both problem-
dependent and an active area of research. The distance measure is then the sum of these costs
over an optimal sequence of edits, which must be found using some optimization algorithm
i.e. a shortest-path algorithm (the best choice of algorithm may vary, depending on how the
costs are chosen). The sequence of edits may or may not (depending on the exact set of
allowable edit moves) be adaptable into an explicit map between vertex-sets. Classic pattern

recognition literature includes: [31] [32] [37] [88] .

1.2.5 Diffusion Distance due to Hammond et al. [48]

We discuss this recent distance metric more thoroughly below. This distance measures the
difference between two graphs as the maximum discrepancy between probability distributions
which represent single-particle diffusion beginning from each of the nodes of G; and G,. This
distance is computed by comparing the eigenvalues of the heat kernels of the two graphs.
The optimization involved in calculating this distance is a simple unimodal optimization
over a single scalar, ¢, representing the passage of time for the diffusion process on the two

graphs; hence we do not count this among the “optimization based” methods we consider.

1.2.6 Novel Diffusion-Derived Measures

In this work, we introduce a family of related graph distance measures. These measures
compare two graphs in terms of similarity of a set of probability distributions describing
single-particle diffusion on each graph. For two graphs G; and G5 with respective Lapla-
cians L(G;) and L(Gs), the matrices e/2(¢1) and e'*(@2) are called the Laplacian Exponential
Kernels of Gy and G5 (t is a scalar representing the passage of time). The column vectors

of these matrices describe the probability distribution of a single-particle diffusion process

starting from each vertex, after ¢ time has passed. The norm of the difference of these two
kernels thus describes how different these two graphs are, from the perspective of single-
particle diffusion, at time ¢. Since these distributions are identical at very-early and very
late times ¢ (we formalize this notion in Section 2.1), a natural way to define a graph distance
is to take the supremum over all t2. When the two graphs are the same size, so are the two
kernels, which may therefore be directly compared with a matrix norm. This case is the case
considered by Hammond et al. [48]. However, to compare two graphs of different sizes, we

need a mapping between the column vectors of e“(¢1) and et(G2),

One such mapping is optimization over a suitably constrained prolongation/restriction opera-
tor between the graph Laplacians of the two graphs. This operator is a permutation-invariant
way to compare the behavior of a diffusion process on each. The prolongation map P thus
calculated may then be used to map signals (by which we mean values associated with ver-
tices or edges of a graph) on GG to the space of signals on G (and vice versa). In Chapters
6 and 7 we implicitly consider the weights of an artificial neural network model to be graph

signals, and use these operators to train a hierarchy of linked neural network models.

We also, in sections 3.3 and 3.4 consider a time conversion factor between diffusion on graphs
of unequal size, and consider the effect of limiting this optimization to sparse maps between
the two graphs (again, our case reduces to Hammond when the graphs in question are the

same size, dense P and R matrices are allowed, and our time-scaling parameter is set to 1).

In this work, we present an algorithm for computing the type of nested optimization given
in our definition of distance (Equations 2.2 and 2.3). The innermost loop of our distance
measure optimization consists of a Linear Assignment Problem (LAP, defined below) where
the entries of the cost matrix have a nonlinear dependence on some external variable. Our

algorithm greatly reduces both the count and size of calls to the external LAP solver. We

2We will assume that the two graphs are undirected and each consist of only one component, as otherwise
this supremum is not guaranteed to be finite and therefore informative.

use this algorithm to compute an upper bound on our distance measure, but it could also be
useful in other similar nested optimization contexts: specifically, nested optimization where
the inner loop consists of a linear assignment problem whose costs depend quadratically on

the parameter in the outermost loop.

1.3 Outline

The goal of this manuscript is to develop the theory and practice of comparing graphs us-
ing Graph Diffusion Distance (GDD). The remainder of this chapter (Chapter 1) defines
basic mathematical terminology and framework necessary for the remainder of the work.
Chapter 2 defines Graph Diffusion Distance and the variants thereof considered. Efficiently
computing these distance metrics requires a novel algorithm, which we motivate and explain
in Chapter 4. Chapters 3 and 5 explore theoretical and numeric properties of GDD, re-
spectively. Chapters 6, 7, and 8 showcase several applications of GDD to various scientific
tasks. Chapters 6 and 7 in particular are structured as self-contained investigations and
may be read without material from Chapters 2-5, although material from Section 1.4 may

be necessary for understanding notation.

1.4 Mathematical Background

In this section we briefly define terminology and notation which will be useful in the expo-

sition and proofs to follow.

1.4.1 Desirable Characteristics for Distance Metrics

The ideal for a quantitative measure of similarity or distance on some set S is usually taken

to be a distance metric d : S x S — R satisfying for all x,y,z € S:

Non-negativity: d(z,y) > 0

Identity: d(xz,y) =0 <= z =1y

Symmetry: d(z,y) = d(y,)

Triangle inequality: d(z, z) < d(z,y) + d(y, z)

Then (S,d) is a metric space. Euclidean distance on R? and geodesic distance on manifolds
satisfy these axioms. They can be used to define algorithms that generalize from R? to
other spaces. A variety of weakenings of these axioms are required in many applications,
by dropping some axioms and/or weakening others. For example if S is a set of nonempty
sets of a metric space Sy, one can define the “Hausdorff distance” on S which is an extended
pseudometric that obeys the triangle inequality but not the Identity axiom and that can
take values including +o00. As another example, any measure measure of distance on graphs
which is purely spectral (in the taxonomy of Section 1.2) cannot distinguish between graphs

which have identical spectra. We discuss this in more detail in Section 2.3.

Additional properties of distance metrics that generalize Euclidean distance may pertain
to metric spaces related by Cartesian product, for example, by summing the squares of
the distance metrics on the factor spaces. We will consider an analog of this property in

Section 3.6.

10

1.4.2 Definitions

Graph Laplacian: For an undirected graph GG with adjacency matrix A and vertex degrees

dy,ds . ..d,, we define the Laplacian of the graph as

L(G) = A — diag({dy,ds .. .d,}) (1.4)
=A— diag(1- A)
= A(G) — D(G).

The eigenvalues of this matrix are referred to as the spectrum of G. See [9, 26] for more
details on graph Laplacians and spectral graph theory. L(G) is sometimes instead defined
as D(G) — A(G); we take this sign convention for L(G) because it agrees with the standard

n §2f

continuum Laplacian operator, A, of a multivariate function f: Af =3 ", &5

Frobenius Norm: The squared Frobenius norm, ||A||% of a matrix A is given by the sum

of squares of matrix entries. This can equivalently be written as Tr[AT A].

Linear Assignment Problem (LAP): We take the usual definition of the Linear Assign-
ment Problem (see [18], [19]): we have two lists of items S and R (sometimes referred to as
“workers” and “jobs”), and a cost function ¢ : S x R — R which maps pairs of elements from

S and R to an associated cost value. This can be written as a linear program for real-valued

11

x;; as follows:

m n
minimize g g c(si,15)ij

i=1 j=1
subject to injgl, j=1...n

> ay <1 i=1...m

j=1

x>0 1=1...m,7=1...n

Generally, “Linear Assignment Problem” refers to the square version of the problem where
|S| = |R| = n, and the objective is to allocate the n jobs to n workers such that each worker
has exactly one job and vice versa. The case where there are more workers than jobs, or vice
versa, is referred to as a Rectangular LAP or RLAP. In practice, the conceptually simplest
method for solving an RLAP is to convert it to a LAP by augmenting the cost matrix with
several columns (rows) of zeros. In this case, solving the RLAP is equivalent to solving a
LAP with size max(n, m). Other computational shortcuts exist; see [12] for details. Since
the code we use to solve RLAPs takes the augmented cost matrix approach, we do not

consider other methods in this paper.

Matching: we refer to a 0-1 matrix M which is the solution of a particular LAP as a
“matching”. We may refer to the “pairs” or “points” of a matching, by which we mean

the pairs of indices (7, j) with M;; = 1. We may also say in this case that M “assigns” i

to j. Given two matrices A; and A,, and lists of their eigenvalues {Aﬁ”,)\gl), cee /\,(111)} and
{A§2), ,\§2>, .)\,(122)}, with ng > ny, we define the minimal eigenvalue matching m*(A;, As)

12

as the matrix which is the solution of the following constrained optimization problem:

ny ni

m*(Ay, Az) = arginf > Y My (A = AP (1.6)

i=1 j=1

ng ni
subject to (M € {0,1}"2X™) A (Z M, = 1) A (Z M,;; < 1)
i=1 j=1

In the case of eigenvalues with multiplicity > 1, there may not be one unique such matrix,
in which case we distinguish matrices with identical cost by the lexicographical ordering
of their occupied indices and take m*(A;, As) as the first of those with minimal cost. This
matching problem is well-studied and efficient algorithms for solving it exist; we use a Python
language implementation [22] of a 1957 algorithm due to Munkres [74]. Additionally, given a
way to enumerate the minimal-cost matchings found as solutions to this eigenvalue matching
problem, we can perform combinatorial optimization with respect to some other objective
function g, in order to find optima of g(P) subject to the constraint that P is a minimal

matching.

Hierarchical Graph Sequences: A Hierarchical Graph Sequence (HGS) is a sequence of

graphs, indexed by [€ N=10,1,2,3..., satisfying the following:

e (5 is the graph with one vertex and one self-loop, and;

e Successive members of the lineage grow roughly exponentially - that is, there exists
some base b such that the growth rate (of nodes) as a function of level number [is

O™, for all € > 0.

Graded Graph: A graded graph is a graph along with a vertex labelling, where vertices
are labelled with non-negative integers such that Al, the difference in label over any edge,
is in {—1,0,1}. We will refer to the Al = 0 edges as “within-level” and the | = £1 edges as

“between-level” .

13

Graph Lineages: A graph lineage is a graded graph with two extra conditions:

e The vertices and edges with Al = 0 form a HGS; and

e the vertices and edges with Al = +1 form a HGS of bipartite graphs.

More plainly, a graph lineage is an exponentially growing sequence of graphs along with
ancestry relationships between nodes. We will also use the term graph lineage to refer to
the HGS in the first part of the definition (it will be clear from context which sense we are

using). Some intuitive examples of graph lineages in this latter sense are the following:

e Path graphs or cycle graphs of size 0" for any integer b.

e More generally, grid graphs of any dimension d, of side length b, yielding a lineage

which grows with size %" (with periodic or nonperiodic boundary conditions).

e For any probability distribution p(x,y) whose support is points in the unit square,
we can construct a graph by discretizing the map of p as a function of x and y, and
interpreting the resulting matrix as the adjacency matrix of a graph. For a specific
probability distribution p, the graphs derived this way with discretizations of exponen-

tially increasing bin count form a graph lineage.

e The triangulated mesh is a common object in computer graphics [81, 73, 96|, repre-
senting a discretization of a 2-manifold embedded in R3. Finer and finer subdivisions

of such a mesh constitute a graph lineage.

Several examples of graph lineages are used in the discussion of the numerical properties of
Graph Diffusion Distance in Section 5.1. Additional examples (a path graph and a triangu-

lated mesh) can be found in Figures 1.1 and 1.2.

14

Figure 1.1: The first seven levels of the graph lineage of path graphs, with ancestry relation-
ships. Al = 0 edges are colored in orange, Al = +1 edges are colored in blue. Self-loops are
not illustrated.

Figure 1.2: Top: subsamples of a mesh of the Utah teapot, of increasing density (each node
is connected to its 8 nearest neighbors by the Al = 40 edges, rendered in blue). These
samples form a graph lineage (Al = +1 edges are not illustrated). Bottom: the same set of
nodes, with only Al = +1 edges plotted (in orange) for one node from the coarsest level and
its descendants.

Kronecker Product and Sum of matrices: Given a (k x [) matrix M, and some other

matrix N, the Kronecker product is the block matrix

muN muN
M®N =

mklN ce mklN

See [52], Section 11.4, for more details about the Kronecker Product. If M and N are square,

15

their Kronecker Sum is defined, and is given by

MEN=MQIy+ Iy ® N

where we write 14 to denote an identity matrix of the same size as A.

Box Product (O) of graphs: For G; with vertex set U = {uy,uy ...} and G5 with vertex
set V = {v1,v2...}, Gi0OG, is the graph with vertex set U x V' and an edge between (u;,, v,)
and (u;,,v;,) when either of the following is true:

® i, = iy and v;, and v;, are adjacent in Gy, or

e j1 = jo and u;, and u;, are adjacent in Gj.

This may be rephrased in terms of the Kronecker Sum @ of the two matrices:

A(GHGs) = A(G1) ® A(G2) = A(G1) @ Ligy) + ljey © A(G2) (1.7)

Cross Product (x) of graphs: For G; with vertex set U = {uj,us...} and Gy with
vertex set V = {vy,v2...}, Gi X Gy is the graph with vertex set U x V' and an edge between

(wi,,vj,) and (u;y,v;,) when both of the following are true:

e u; and u;, are adjacent in Gy, and
e v;, and v, are adjacent in Gs.

We include the standard pictorial illustration of the difference between these two graph

products in Figure 1.3.

Grid Graph: a grid graph (called a lattice graph or Hamming Graph in some texts [16]) is

the distance-regular graph given by the box product of path graphs P,,, P,,, ... P, (yielding

16

Figure 1.3: Two types of graph product:
the Cross product (G x Ge, left) and Box
(wivy) (uz,v1) (upv1) wyvy Product (G10Gs, right). For two edges

» v ~up € Gy and vy ~ uy € Gy, we illus-

trate the resultant edges in the set of ver-
. tices {(u1,v1), (u2,v1), (u1,v2), (u2, v2)} in
: the graph product.

(ug,vy) (uz,v2) (ug,vp) (u,vy)

u1 V1 u1 Vi

a grid with aperiodic boundary conditions) or by a similar list of cycle graphs (yielding a

grid with periodic boundary conditions).

Prolongation map: A prolongation map between two graphs G; and G, of sizes n; and
ng, with ny > nq, is an ny X ny matrix of real numbers which is an optimum of the objective

function of equation 6.1 below (possibly subject to some set of constraints C'(P)).

17

Chapter 2

Diffusion Distance

In this Chapter we provide the definition of Graph Diffusion Distance, as well as providing
motivation for why the optimiztion over ¢ is an essential component of the GDD calculation.
We also briefly introduce some variants of GDD which will be covered in more detail in
Chapter 3. The diffusion distance calculations presented throughout this thesis depend on
an upper bound of the innermost optimization over P and «; in Section 2.4 we define a
lower bound on the same optimization. This lower bound will be useful in some of the GDD

property proofs in Chapter 3.

2.1 Diffusion Distance Definition

We generalize the diffusion distance defined by Hammond et al. [48]. This distortion measure

between two undirected graphs GG; and G, of the same size, was defined as:

DHammond<Gla GQ) = Slip HetLl - 6tL2 | ‘i‘ (21)

18

D*(G,G, |t=1,) Distance as a Function of ¢
0.005

0.004
0.003
0.002

0.001

lc

1 2 3 4 o

Figure 2.1: A plot illustrating unimodality of diffusion distance. D? was calculated between
two grid graphs Sq; and Sqg of size 7 x 7 and 8 x 8, respectively. The distance is given by

2
the formula D? (Sq,ﬁ Sq8| t) = infa>0 ian|C(P) HP(}%L(SO”) — etozL(SqS)PH as a function of .
F

The peak, at ¢ ~ .318, yields the distance D? (Sq;, Sqg)-
where L; represents the graph Laplacian of G;.

This may be interpreted as measuring the maximum divergence, as a function of ¢, between
diffusion processes starting from each vertex of each graph, as measured by the squared
Euclidean distance between the column vectors of e'*i. Each column v; of e’ (which is
called the Laplacian Exponential Kernel) describes a probability distribution of visits (by a
random walk of duration ¢, with node transition probabilities given by the columns of) to
the vertices of G;, starting at vertex j. This distance metric is then measuring the difference
between the two graphs by comparing these probability distributions; the motivation between
taking the supremum over all ¢ is that the value of the objective function at the maximum
is the most these two distributions can diverge. See Figure 2.1 for an example of a distance

calculation, with a characteristic peak.

For further intuition about why the peak is the most natural place to take as the distance,

19

rather than some other arbitrary time, note that at very early times and very late times,
the probability distribution of vertex visits is agnostic to graph structure: at early times no
diffusion has had a chance to take place, while at very late times the distribution of vertex-
visits converges to the stationary state! for each connected component of the graph. Hence
we are most interested in a regime of ¢t-values in between these extremes, where differences

in G; and G are apparent in their differing probability distributions.

Our contribution generalizes this measure to allow for graphs of differing size. We add
two variables to this optimization: a prolongation operator, P (represented as a rectangular
matrix), and a time-scaling factor, cv. The dissimilarity between two graphs G; and Go (with

Laplacians L; = L(G;)) is then defined as:

2
2 _ : : %Ll _ atlo
DG, Ga) = supint int || Pest — o2 2:2)

where C(P) represents some set of constraints on the matrix P. For the remainder of this
work we use D(G1, G3) to refer to the distance and D?(Gy, G3) to refer to the squared distance
- this notation is chosen to simplify the exposition of some proofs. It will be convenient for
later calculations to introduce and assume the concept of transitive constraints - by which we
mean that for any constraint C, satisfaction of C by P, and P, implies satisfaction of C by their
product P; P, (when such a product is defined). Some (non-exclusive) examples of transitive

constraints include orthogonality, particular forms of sparsity, and their conjunctions.

The simplest transitive constraint we will consider is that P should be orthogonal. Intuitively,
an orthogonal P represents a norm-preserving map between nodes of G; and nodes of Go,
so we are measuring how well diffusion on G approximates diffusion on G5, as projected
by P. Note that since in general P is a rectangular matrix it is not necessarily true that

PPT = I. We assume that |G1| = n; < ny = |Gy|; if not, the order of the operands is

!Because the graphs are undirected, a stationary state is guaranteed to exist.

20

switched, so that P is always at least as tall as it is wide. We also briefly consider a sparsity
constraint in Section 3.4 below. Since sparsity is more difficult to treat numerically, our
default constraint will be orthogonality alone. Other constraints could include bandedness
and other structural constraints. We also note that because L is finite-dimensional, the
exponential map is continuous and therefore we can swap the order of optimization over ¢
and «. The optimization procedure outlined in this thesis optimizes these variables in the
order presented above (namely: an outermost loop of maximization over ¢, a middle loop of

minimization over a given ¢, and an innermost loop of minimization over P given t and «).

The other additional parameter, «, controls dilation between the passage of time in the
two graphs, to account for different scales. Again, the intuition is that we are interested in
the difference between structural properties of the graph (from the point of view of single-
particle diffusion) independent of the absolute number of nodes in the graph. As an example,
diffusion on an n x n grid is a reasonably accurate approximation of more rapid diffusion on a
2n X 2n grid, especially when 7 is very large. In our discussion of variants of this dissimilarity
score, we will use the notation D?(G1, Ga|x = ¢) to mean restrictions of any of our distortion
measure equations where variable x is held to a constant value ¢; In cases where it is clear

from context which variable is held to a fixed value ¢, we will write D?(Gy, Gac)

At very early times the second and higher-order terms of the Taylor Series expansion of the
matrix exponential function vanish, and so e’ ~ I + tL. This motivates the early-time or

“linear” version of this distance, D:

. 1 2
DQ(Gl, GQ) = inf inf —PL1 - OZLQP (23)
a>0 PIC(P) || & P
1 t 2
N (inf inf HP@EL1 — eatL2PH) (2.4)
t2 \ a>0 pPlc(P) F

(Note that the identity matrices cancel). The outermost optimization (maximization over t)

21

is removed for this version of the distance, as t can be factored out:

2
= 2
F

1 2

t
« «

F

This means that for the linear version, we only optimize o and P. For the exponential
version of the dissimilarity score, we note briefly that the supremum over t of our objective

function must exist, since for any Gy, Ga:

I
D*(G1,Gy) < D* | G1,Gy|la=1,P = (2.6)
0

In other words, the infimum over all P and « is bounded above by any particular choice of

values for these variables. Since

D*|G,Gylt=0,aa=1,P = =0, and (2.7)

lim D? | G1,Gs |t,,a=1,P = =0 (2.8)

te—r00 O

this upper bound must have a supremum (possibly 0) at some t* € [0,00). Then

I
D2 Gl,GQ t*,Oé = 1,P = (29)

0

must be finite and therefore so must the objective function.

22

2.2 Directedness of Distance and Constraints

We note that this distance measure, as defined so far, is directed: the operands G; and
G5 serve differing roles in the objective function. This additionally makes the constraint
predicate C(P) ambiguous: when we state that C represents orthogonality, it is not clear
whether we are referring to PTP = I or PPT = I (only one of which can be true for a
non-square matrix P). To remove this ambiguity, we will, for the computations in the rest
of this manuscript, define the distance metric to be symmetric: the distance between GG and
Go with |G| < |Go| is always D(G1,Gs). P is then always at least as tall as it is wide, so

of the two choices of orthogonality constraint we select PTP = I.

2.3 Variants of Distance Measure

Thus far we have avoided referring to this graph dissimilarity function as a “distance metric”.
As we shall see later, full optimization of Equations 2.2 and 2.3 over o and P is too loose, in
the sense that the distances D(G1, Gy), D(G2, Gs), and D(Gy, G3) do not necessarily satisfy
the triangle inequality. The same is true for D. See Section 5.3 for numerical experiments
suggesting a particular parameter regime where the triangle inequality is satisfied. We thus
define several restricted/augmented versions of both D and D which are guaranteed to
satisfy the triangle inequality. These different versions are summarized in Table 2.1. These
variously satisfy some of the conditions necessary for generalized versions of distance metrics,

including:
e Premetric: a function d(z,y) for which d(z,y) > 0 and d(x,y) = d(y, x) for all z,y.

e Pseudometric: As a premetric, but additionally d(z, z) < d(x,y)+d(y, z) for all x,y, z.

e p-inframetric: As a premetric, but additionally d(z,z) < p(d(z,y)+ d(y,z)) and

23

d(z,y) = 0 if and only if z = y, for all x,y, 2.

Additionally, we note here that a distance measure on graphs using Laplacian spectra can
at best be a pseudometric, since isospectral, non-isomorphic graphs are well-known to exist
[40][107]. Characterizing the conditions under which two graphs are isospectral but not
isomorphic is an open problem in spectral graph theory. However, previous computational
work has led to the conjecture that “almost all” graphs are uniquely defined by their spectra
[15][17][108], in the sense that the probability of two graphs of size n being isospectral but
not isomorphic goes to 0 as n — oo. Furthermore, our numerical experiments seem to
show empirically that the violation of the triangle inequality is bounded, in the sense that
D(G41,G3) < px (D(G1,Gs) + D(Ge,G3)) for p &~ 2.1. This means that even in the least
restricted case our similarity measure may be a 2.1-infra-pseudometric on graphs (and, since
such isospectral, non-isomorphic graphs are relatively rare, it behaves like a 2.1—inframetric).
As we will see in Chapter 3, in some more restricted cases we can prove triangle inequalities,
making our measure a pseudometric. In Section 4.1, we discuss an algorithm for computing
the optima in Equations (2.2) and (2.3). First, we discuss some theoretical properties of this

dissimilarity measure.

2.4 Spectral Lower Bound

In Theorem 4.4.1 of Chapter 4 we will derive and make use of an upper bound on the graph
distance l~)(G1, GG2). This upper bound is calculated by constraining the variable P to be
not only orthogonal, but also P = Uy MU where M is the solution (i.e. “matching”, in the
terminology of that section) to a Linear Assignment problem with costs given by a function
of the eigenvalues of L(G;) and L(G3). In this section we derive a similar lower bound on

the distance.

24

Let G; and G5 be undirected graphs with Laplacians L1 = L(G1) and Ly, = L(Gs), and let

a > 0 be constant. By Equation (4.5), we have

_ ng ni 1 2
2 _ : 2 (1) 2)
D*(G1,Gy) = g;%p%r]lsf:[(Z Zpij <a)\j —a\;)) . (2.10)

i=1 j=1

The following upper bound on D is achieved by constraining P to be not only orthogonal,

but related to a constrained matching problem between the two lists of eigenvalues:

D*(Gh,Gs) < infasginfar ||2MA, —ahoM|[],

subject to i:mij <1, j=1...m
il (2.11)
> my <1, i=1...n
j=1
mi; > 0 1=1...n9,5=1...nq,

where A; and A, are diagonal matrices of the eigenvalues of L and L, respectively. Here we
used the explicit map P = UL PU, as a change of basis; we then converted the constraints on
P into equivalent constraints on P, and imposed additional constraints so that the resulting
optimization (a linear assignment problem) is an upper bound. See the proof of Theorem
4.4.1 for the details of this derivation. We show in this section that a less constrained
assignment problem is a lower bound on D?. We do this by computing the same mapping
P= UJ PU, and then dropping some of the constraints on P (which is equivalent to dropping
constraints on P, yielding a lower bound). The constraint PTP = [is the conjunction of

n? constraints on the column vectors of P: if p; is the ith column of P, then PTP = I is

25

equivalent to:

pi-pi=1 Vi=1...m (2.12)

p;-pi =0 Vi=1..n,j=1...i—1i+1...n, (2.13)

If we discard the constraints in Equation (2.13), we are left with the constraint that every

column of p must have unit norm.

Construct the “spectral lower bound matching” matrix POB) as follows:

2
1 ifi = argminy (é)\(.l) — oz)\(k)>
pLB) _ 7 : (2.14)

z’J
0 otherwise.

For any «, this matrix is the solution to a matching problem (less constrained than the

original optimization over all P) where each)\§.I) is assigned to the closest /\52), allowing

collisions. It clearly satisfies the constraints in Equation (2.12), but may violate those in

Equation (2.13). Thus, we have

B nz ni 1 2
2 _ ; 2 (1) (2)

(2.15)
> DQ (Gb G2 |P(SLB)>

Various algorithms exist to rapidly find the member of a set of points which is closest to
some reference point (for example, KD-Trees [11]). For any «, the spectral lower bound
can be calculated by an outer loop over alpha and an inner loop which applies one of these

methods. We do not consider joint optimization of the lower bound over P and « in this

26

work.

2.5 Summary of Distance Metric Versions

Table 2.1 summarizes the variants of our distance metric.

27

t Q Classification | Treatment in this manuscript
Fixed at | Fixed at =0 | Pseudometric | Defined in Equation 3.5. Optimized
t. <€ a.=1 by one pass of LAP solver. Triangle
inequality proven in Theorem 3.2.2.
Fixed at | Fixed s =0 | Pseudometric | Defined in Equation (3.11). Opti-
t.<e at a, = mized by one pass of LAP solver. Tri-
()" angle inequality proven in Theorem
3.3.1.
Fixed at | Optimized | s =0 | Premetric Defined in Equation 2.3. Optimized
e <e€ by Algorithm 1. Triangle inequality
violations examined experimentally in
Section 5.3.
Optimized | Fixed at | s =0 | Metric When |G;| = |G2|, this is Hammond
a. =1 et. al’s version of graph distance.
Optimized | Optimized | s =0 | Premetric Defined in Equation 2.2. Optimized
by Algorithm 2. Graph Product upper
bound proven in Theorem 3.6.1. Tri-
angle inequality violations examined
experimentally in Section 5.3. Used to
calculate graph distances in Sections
5.4 and 5.5.
Fixed at | Fixed at | s> 0 | Pseudometric | Triangle inequality proven in Theorem
t. <€ a. =1 3.2.2.
Fixed at | Fixed s >0 | Pseudometric | Triangle inequality proven in Theorem
t. <€ at a, = 3.3.1.
()"
Optimized | Optimized | s > 0 Discussed in Section 3.4.

Table 2.1: Summary of this thesis’s investigation of different forms of our graph dissimilarity
measure. In this work, we systematically explore properties of this measure given sparsity
parameter s = 0, and various regimes of ¢ (fixed at some early time, or maximized over all t)
and « (fixed at o = 1, fixed at a constant power r of the ratio of graph sizes, or minimized
over all a. We leave exploration of nonzero values of the sparsity parameter to future work.
Variants not explicitly called out are not considered. In the case where o and ¢ are both
optimized and s > 0, it is unclear which of the metric conditions GDD satisfies, hence the
corresponding classification is left blank.

28

Chapter 3

Theoretical Properties of GDD

Having introduced Graph Diffusion Distance in Chapter 2, we proceed to prove several of
properties of various instances of our graph dissimilarity score, including triangle inequalities
for some specific versions and an upper bound on the distance between two graph products.
We will here rely heavily on various properties of the Kronecker sum and product of matrices

which may be found in [52], Section 11.4.

3.1 Optimization over P is equivalent to an eigenvalue

matching problem

For the purpose of the calculations in this section, we restrict ourselves to the “diffusion”
term of our objective function 6.1 (the term which coerces two diffusion processes to agree),

which we will write as

Dpo (G1, Gs) = H%Ph — JaL,P (3.1)

F

29

Because L; and L, are each real and symmetric, they may both be diagonalized as L; =
UiAiUiT where Uj; is a rotation matrix and A; is a diagonal matrix with the eigenvalues of L;

on the diagonal. Substituting into 3.1, and letting P = UL PU,, we have

Dp, (G1,Gs) = PL, — \/aL,P

F

PUMUT — /aU,\yUS P

F

= ||—= (U7 PUy) Ay — Val, (U PUY)

F

(3.2)

where P is an orthogonal matrix PTP = I if and only if P is as well. Since the Frobe-
nius norm is invariant under multiplication by rotation matrices, 3.2 is a re-formulation of
our original Laplacian matrix objective function in terms of the spectra of the two graphs.
Optimization of this modified form of the objective function subject to orthogonality con-
straints on P is upper-bounded by optimization over matchings of eigenvalues: for any fixed
a the eigenvalue-matching problem has the same objective function, but our optimization is
over all real valued orthogonal P. The orthogonality constraint is a relaxed version of the
constraints on matching problems (Equation 1.6) discussed in subsection 1.4.2, since match-
ing matrices M are also orthogonal (MTM = I). Many algorithms exist for solving the
inner partial and 0-1 constrained minimum-cost assignment problems, such as the Munkres

algorithm [74] (also in subsection 1.4.2).

We note three corollaries of the above argument. Namely, because the Frobenius norm is

invariant under the mapping to and from eigenspace:

1. Optimal or near-optimal P in eigenvalue-space maintain their optimality through the

mapping U, - UL back to graph-space.

30

2. Solutions which are within e of the optimum in P-space are also within ¢ of the optimum

in P-space; and

3. More precisely, if they exist, zero-cost eigenvalue matchings correspond exactly with

zero-cost P.

A natural next question would be why it might be worthwhile to work in the original graph-
space, rather than always optimizing this simpler eigenvalue-matching problem instead. In
many cases (path graphs, cycle graphs) the spectrum of a member G; of a graph lineage
is a subset of that of Gy, guaranteeing that zero-cost eigenvalue matchings (and thus, by
the argument above, prolongations with zero diffusion cost) exist. However, when this is
not the case, the above argument only upper bounds the true distance, since the matching
problem constraints are more strict. Thus, numerical optimization over P, with orthogonality

constraints only, may find a better bound on D (G}, Gi11).

3.2 Triangle Inequality for a =1

In this section, we show that both the linear and exponential versions of diffusion distance

satisfy the triangle inequality when o = 1.
Lemma 3.2.1. For any matrices M and P, with P satisfying PTP =1,
|1PM]|5 < [|M|[7 and [|MP|5 < [[M|[7 -

Proof. Suppose without loss of generality that PT P = I. Then:

1. ||PM]|)% = Te[MTPTPM] = Te[MT M] = || M]|%,

2. If PTP = I, then letting PPT =TI, Il is a projection operator satisfying 117 = IT = II%.
Then,

31

| M|[5 = Te[MTM] = Te[MTM I+ (I —11))]
= Tr[MT M) + Te[MT M (I — 1I)]
= Te[MTMPPT] + Te[MTM(I — 11)?] (3.3)

= [|MP[; + |IM(I — 1)

> ||MP|[7
m
Theorem 3.2.2. D? satisfies the triangle inequality for o = 1.
Proof. Let G1, G5, G be simple graphs, with Laplacians Ly, Lo, L3. Let
Py = inf [|[PL; — LyP|[5. 4
31 al“gpgl(P)H 1 3P|% (3.4)

Ps; is guaranteed to exist for constraints C which form a compact space of matrices; or-
thogonality constraints are an example, since the space of orthogonal matrices is closed and

bounded. Then

D2(G1,G3 ’CY = 1) = HP31L1 — L3P31H§; = mf Hle — LgPH%
PIC(P) (3 5)
< inf : || P32 Por1 Ly — L3P32P21||§:»

P39,P1|C(P32Po1

where we write C(PsoPs1) to signify that the product Psp Py satisfies the original transitive

constraints on P, e.g. orthogonality and/or sparsity. Since the constraint predicate C(P)

32

satisfies Equation (3.12), then so does their product, so we may write
b(Gl,G3|Oé:].) S inf inf ||P32P21L1—L3P32P21||F
P33|C(P32) P21|C(P21)

= inf inf HP32P21L1 — P32L2P21
P33|C(Ps32) P21|C(P21)

+ PsoLoPyy — L3Py Poyl|

S inf inf (HP32P21L1 — P32L2P21HF (36)
P32|C(P32) P21|C(P21)

+ || PsaLoPoy — LyPsoPoy| 1)

= mf lnf (HP32 (P21L1 — L2P21)HF
P33|C(P32) P21|C(P21)

+ |[(Psalo — L3Ps) Porl|p)

By Lemma 3.2.1,
D(Gy,Gsla=1)< inf inf Py Ly — Ly P:
(1 3|04)_P32‘151(P32)P21‘1g(1)21)(|| 2141 2 21||p
+ ||Ps2Ly — L3Pl)

= inf Py — Ly P)
lellél(le)H 2111 2P| g (3.7)

+ inf PsoLy — LsP.
P32|C(P32)|| 3212 3 32HF

= D(G1,Gy|la=1) + D(Gy,Gs | = 1)

We note that in this proof we use Ly, Lq, and Lz (making this the small-¢ or linear version of
the objective function), but the same argument holds when all three are replaced with el

so we also have

Corollary 3.2.3. D satisfies the triangle inequality for o = 1.

33

Proof. By the same calculation as in Theorem 3.2.2, with all L; replaced by e'’i, we have

D (Gl, G3| tc,Oé = 1) S D(Gl,GQ |tc,O[= 1) + D(GQ, G3 |tc,0z =].) (38)

for any constant t.. Then, letting
t13 = argsup D (G, G| t., a0 = 1) (3.9)
te

we have:

D<G17G3|a = 1) = SupD<G17G3‘t67a = 1)
te

= D(Gl,Ggltlg,OJ = 1)

S D(Gl,GQ ‘t13704 =].) + D(GQ, Gg |t13, o = 1)

(3.10)
< S}tlch (G1,Gs|t., a0 =1)
+ S?pD(GQ,Gg|tC,Oé =1)
=D (G1,Gala=1)4+ D (G, G3la=1)
O

Note that in the proofs of Theorem 3.2.2, Theorem 3.3.1, and Corollary 3.2.3, we assume
that the constraint predicate C(P) includes at least orthogonality (so that we may apply
Lemma 3.2.1). However, this constraint predicate could be more strict, e.g. include both
orthogonality and sparsity. Hence these statements also apply to the s > 0 cases in Table
2.1, which we do not otherwise consider in this work: in our numerical experiments we (for
reasons of computational simplicity) only require our optimization over P be orthogonally

constrained.

34

3.3 Time-Scaled Graph Diffusion Distance

For any graphs (G; and (G5, and some real nuber r, we define the Time-Scaled Graph Diffusion

Distance (TSGDD) as a scaled version of the linear distance, with « fixed. Namely, let

o= <Z—;)) (3.11)
() e () e

The intuition for this version of the distance measure is that we are constraining the time

Dz(Gl, GQ) = (nlng)_%DQ (Gl, G2

= inf (niny)™>"
PC(P)

F

dilation, «, between G; and G5 to be a power of the ratio of the two graph sizes. The factor
(n1n2)72r is needed to ensure this version of the distance satisfies the triangle inequality, as

seen in Theorem 3.3.1.

Theorem 3.3.1. The TSGDD, as defined above, satisfies the triangle inequality.

Proof. As above, let G1,G5, Gs be three graphs with n; = |G;] and n; < ny < ng, and
let L; be the Laplacian of G;. Let C(P) represent a transitive constraint predicate, also as

described previously. Then, for a constant r € R, we have:

D,(Gy,Gs) =
inf (Tllng)_r (E) PLl — (E) L3P
Plc(P) ns3 n3
F
< inf (ninz)™" (E> PyoPoy Ly — (E> L3 P35 Py
P32,P>1|C(P32P21) ns ns F

under the assumption, as in Equation (3.12), that C(Ps2) A C(Pa1) = C(Ps2Pa1),

35

D’/‘(Gla Gs) <

: —r
inf (nlng)
P327P21|C(P32)/\C(P21)

n - n r
(—1> Py Py Ly — (—1> L3Py Py
n n

; -r
= inf (nins)
P327P21|C(P32)/\C(P21)

ning\ n \"
+ (123) P3g Lo Py — (n_1> L3 P3y Py

na

< inf (ninz)™"
P32,P21|C(P32)AC(P21)

F

+ (ning)™"

= inf (n1n3)
P327P21|C(P32)/\C(P21)

o T
= inf (n1ng)
P39,Po; |C(P32)/\C(P21)

F

F

F

+ (ngng) -

By Lemma 3.2.1,

36

Dr(Gla GB) <

< in (nin2)™"
P32, P21|C(P32)AC(Pa1)

(@) Puly — (@) Ly Py

T2 P

(@) PiyLy — (@> LsPy
ng ng

F

-+ (ngng) -

F
= inf (nlng)_r (E> P21L1 - (@> L2P21
P21|C(P21) Mo Mo P
+ inf (ngnz)™" <@) Pso Ly — (@> L3 Psy
Ps2|C(Ps2) 3 ng r
= [)r(Gb G2> + DT(G27 GB)
and so
DT<G17 GB) S DT‘<G17 GQ) + [)r(G% GS)
for any fixed r € R. O

3.4 Sparse-Diffusion Distance

Recall that we use the notation C(P) for a constraint predicate that must be satisfied by

prolongation matrix P, which is transitive in the sense that:
C(P32) NC(Po1) = C(PsxPar). (3.12)

The simplest example is C(P) = Cortnog(P) = (PTP = I). Let degree; ;(M) is the total
number of nonzero entries in row ¢ or column 7 of M. Sparsity can be introduced in transitive

form by C(P) = Corthog(P) N Csparsity (P) where

Csparsity(P) = (max degreei,j(P) S (nPcoarse/nPﬁne)_s)
1/7]

37

for some real number s > 0. Here, npgne and npeoarse are the dimensions of P. This predicate

is transitive since

max degree; ; (P32 Po1) < <max degreeivj(P32)> <ma.xdegreei7j(P21)> :

%,J ,J ,J

and since ny cancels out from the numerator and denominator of the product of the fanout
bounds. This transitive sparsity constraint depends on a power-law parameter s > 0. When

s = 0, there is no sparsity constraint.

Another form of sparsity constraints are those which specify a pattern on matrix entries which
are allowed to be nonzero. Two simple examples (which are also transitive) are matrices
which are constrained to be upper triangular, as well as matrices which are constrained to
be of the form A ® B where A and B are themselves both constrained to be sparse. More
complicated are m; X mo matrices which are constrained to be banded for some specified
pattern of bands: more specifically, that there is a reordering of the rows and columns that
the number of diagonal bands (of width 1, slope Z—;) with nonzero entries is less than (Z—;)q
for some 0 < ¢ < 1. For example, linear interpolation matrices between d-dimensional grids,

with non-overlapping source regions, follow this constraint.

As a final note on sparsity, we observe that any of the optimizations detailed in this work
could also be performed including a sparsity term (for example, the | - |;-norm of the matrix
P, calculated as >, > i pi;| is one possibility, as are terms which penalize ¢ or « far from 1),
rather than explicit sparsity constraints. A potential method of performing this optimization
would be to start by optimizing the non-sparse version of the objective function (as detailed

in Section 4.1) and then slowly increasing the strength of the regularization term.

38

3.5 Upper Bounds for Graph Products (Linear Ver-

sion)

We next consider the problem of finding optimal prolongations between two graphs G(D1) =
Ggl)DGgm and Gr(D2) = Ggl)DGg) when optimal prolongations are known between Ggl) and
Ggl), and GgQ) and ng)‘ We show that under some reasonable assumptions, these two
prolongation optimizations decouple - we may thus solve them separately and combine the

solutions to obtain the optimal prolongations between the two product graphs.
From the definition of graph box product, we have
Ly = L(GY'0a6y))

= A(¢Y'06y) - p(6y'0ay")

= (AE) @ 1 + 1 @ AGY)) - (DG @ 1 + 17 @ D(G))

(ae?) e 1) - D) o 1) - (1 @ AGE) ~ 1P @ D(GE))

= (o)) + (e L)

LIGY) & L(GY)

where @ is the Kronecker sum of matrices as previously defined. See [34], Item 3.4 for more

details on Laplacians of graph products. We calculate

39

1 1
—prLY
Ja

(2o ") +

—aL®p

F
0)+ (1o L))
(40 9) (9 9)) A,
- (%P (L@ 1) = va (L & 11?) P)
+ (%P (1" @ L8) - va (1 o Lf) P>

Now we try out the assumption that P = P; ® P, which restricts the search space over P

F

and may increase the objective function:

ot (.68) = || 75 (e 2 (1 0)
~Va (1P e 1) (P e P

1
[mer (s 10)

iest) o],
H(! ®P2> —\/a(L?’Pl@PZ))

1
+ <ﬁ (Pl X PzLél)) —Va <P1 X L§2)P2>)
1

+ (P LPL” vaLy?
(7o (7 z))

F

F

40

Since ||A + Bl|r < ||Allr + || Bl|r,

1
<|[((erat - varr) o n))|

1 1 2
+H(P1® (ﬁpﬂé)—\/aLg)Pz))

LY — VarP'p

F

1
:Hﬁpl FHPZHF
1
+ 1P| EPQLS) — VaL? P,

)

F

Thus assuming P = P, ® P

DP’a <G8),G|(:|2)> < ’ PQ

Do (G167

+‘P1

P Da,Pg (Gg1)7 G§2)>)

which is a weighted sum of objectives of the optimizations for prolongation from Ggl) to
G§2) and Ggl) to G§2). Recall that our original constraint on P was that PTP = I; since
P = P, ® P, this is equivalent (by a property of the Kronecker product; see Corollary 13.8

in [64]) to the coupled constraints on P, and P:

1

(PlTPl - —Il(”) A (pr2 - 77[51)) (3.13)
n

for some n € R. For any P, P, which obey 3.13, we may rescale them by 7 to make them

orthogonal without changing the value of the objective, so we take = 1 in subsequent

calculations. Noting that ||A||r = /Tr(ATA), we see that

| Pl = \/Tr(lp) = \/ngl) and similarly || P||p = \/ng).

Thus, we have proven the following:

41

Theorem 3.5.1. Assuming that P decomposes as P = P, ® P, the diffusion distance
Dp, (GS),G(S)) between G(Dl) and Gg) is bounded above by the strictly monotonically in-

creasing function of the two distances Dp, o and Dp, o:

F(Dpy oy Dpyo) = /08 Dpy o + /128" Dy o,

Namely,

Dp, (G(Dl)>G|(j2)> < F (DPW (Ggl),G§2)> Dp, o (Ggl)’ Gf)))

Thus, the original optimization over the product graphs decouples into separate optimiza-
tions over the two sets of factors, constrained to have the same value of a. Additionally,

since the requirement that P = P; ® P is an additional constraint,

Corollary 3.5.2. If (a1, P1) and (ao, P), subject to orthogonality constraints, are optima
of Dy p (Ggl),G§1)> and D, p (Ggl),G§1)>, and furthermore if oy = «o, then the value of
Dpo(GNOGY, P0G for an optimal P is bounded above by Dp,gp, o, (GVOGYY, P0G,

This upper bound on the original objective function is a monotonically increasing function
of the objectives for the two smaller problems. A consequence of this upper bound is that
it Dp, o (Ggl), G§2)> <€ and Dp,, (Gg), G§2)> < €9, then the composite solution P; ® P
must have Dp, gp,.o <G(Dl), GQ) <e= (\/n_1+ \/n_g) max(€ey, €2). Thus if both of these dis-
tances are arbitrarily small then the composite distance must also be small. Furthermore,
if only one of these is small, so that Dp, , (Ggl),G?)) ~ 0 or Dp, (Ggl), G§2)> ~ 0, then

Dp opya = Dpyo Or Dpgp, o = Dp, o, respectively.

We have experimentally found that many families of graphs do not require scaling between
the two diffusion processes: the optimal («, P) pair has @ = 1. In particular, prolongation

between path (cycle) graphs of size n and size 2n always have qgptimal = 1, since the spectrum

42

of the former graph is a subset of that of the larger - therefore, there is a matching solution
of cost 0 which by the argument above can be mapped to a graph-space P with objective
function value 0 (we prove this in Section 3.7). In this case, the two terms of the upper
bound are totally decoupled and may each be optimized separately (whereas in the form

given above, they both depend on a «).

3.6 Upper Bounds for Graph Products (Exponential
Version)

We now consider the case where we want to compute the distance of two graph box products,

i.e. D(Gq,Gy) where
G, =GOGY and G, =cPOcY (3.14)

and

P(l) = arg inf D (Ggl), Ggl) ‘tc, A, Pc)
P.IC(P.)
(3.15)

P(Q) = arg inf D (G?)? G;Q)‘tc, Qc, Pc)
P.|C(P.)

are known for some ., ..

Theorem 3.6.1. Let Gy and Go be graph box products as described above, and for a graph

G let L(G) be its Laplacian. For fived t = t,, o = o, PY as given above, for any A € [0,1],

43

we have

inf D(G,Gy) <

P.|C(Pe:)

c (2)
A(||es= G| 4 [[eece]]) D (680, 6801P0) (3.16)
(1= ([[et=)|+ [t @]) p (6, 681p)
F

where all distances are evaluated at t = t., o = ., but we have omitted that notation for

simplicity.

Proof. For graph products G;, we have

L(G;) = LG & L(G?)
3.17
_ (1) (2) ()

(this fact can be easily verified from the formula for the adjacency matrix of a graph box

product, given in the definition in Section 1.4.2), and so

exp [cL(G;)] = exp [C(L(Gg”) ® JL(G?))) + (I‘L(ng)‘ ® L(G§2))>] . (3.18)

Because A ® I and Ij4 ® B commute for any A and B,

exp [cL(Gy)] :exp[(L(GWM) G®)) exp{ (@) ®L(Gﬁz’))}
= (exp [cL(G (Wy ‘L @ ‘) ()| ® exp [CL(G())D (3.19)

= exp |:CL<G§1)>:| ® exp [L(GP)]

44

We will make the following abbreviations:

E, = — eacL(G) E(l) = Q%L(Ggw) E£2) _ e;—iL(Gf))

E, — eleoel(G2) E(l pteacL(GEY) Ef) — pteacL(GSY)

Then,

P%lf)D (G1,G2) < D (Gy,G,|PY @ P?)

= |I(P & PP) B —E, (P @ PP)|,

= ||(PVEP & POEP) - (B PD & E§2>P<2>)H2
F

- (PU)E{” ® P@)EP) (P<1 BV @ B pe)

+ (POED @ BPPO) - (B PV @ E§2>P<2>)H

(POE" @ POER) - (POED @ EP PP

IN

+||(PYEY @ B PR — (B PD o BP PO |
F

— |[PYED & (POED - EP PR

F

+ ||(PoED - E§”P<1>> ® B P

F

_Hp(l)E

e <25,

v fpem? - et flmre)
F

By Lemma 3.2.1,

inf D (G, Gs) < HEPH HP@)EP—E;?)P(?)H
F

P|C(P) F

— ||(PV @ P@) (Eg) 2 Eg)) _ (Eg) 2 Eg)) (PD & P(2>)H

F

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

If we instead use (Egl)P(l) ® P(Q)Ef)) as the cross term in Equation (3.21), we have

inf D (G, G) < HES)H HP@)EP - E§2)P<2>H (3.25)
F F
+ HP“EP ~ B pw HEP
F F
A linear combination of these two bounds gives us the desired bound. O]
This has the additional consequence that
inf D (Gl, GQ) S
Pe|C(Pe)
te 1 (G2
min m pe L(G) ‘F +‘ pteaeL(GEY) ‘F> D <G§1),G§1)| p<1>>7 (3.26)
(=0, e, o o)
F F
Additionally, if
EY =E® forie1,2 and PO = p® (3.27)

This reduces further to

D (Gy,Go[PM @ PM) < min (HEP F‘ EW F) HP“)EP - EPO|| (328)
and so
D <G§1)DG§1),G§1)DG§1) tc,ozc) (3.29)

erne?)

< min () eac

{|e==#|) (68,68 1)
F F

An example of such a graph sequence is the sequence of two-dimensional square grids, which

are each the box product of two identical one-dimensional grids i.e., path graphs: Sq, =

46

Pa,[Pa,,.

3.7 Existence of Zero-Error P for Cycle Graphs

Theorem 3.7.1. In this section, we give an example closed-form solution for a prolongation

matriz which achieves zero error when prolonging between cycle graphs. Let GV and G be

@)

;s respectively, with ny = |G(1){ <ng = ’G(z)‘. Suppose that

graphs with spectra)\51) and A
for every)\Z(»l) = r of multiplicity k, r is also an eigenvalue of G® of multiplicity > k. Then

there is a zero-cost eigenvalue matching M between GV and G®.
Proof. Let (i1, j1), (i1,71) - - - (in,, jn,) be a list of pairs of indices such that the following hold:

e All of the i, are unique.

e All of the j, are unique.

e For any pair (i, ji), /\,(Cl) =)\1(62).

Define P as follows:

1 (i,7) appears in the above list.
Py =

0 else.

P is clearly orthogonal, since it has exactly one 1 in each row and each column and zeros
elsewhere (P is a permutation matrix for ny = ny and a subpermutation matrix otherwise).

Furthermore, we must have

ng ni

S50 r (- a7) o

i=1 j=1

47

and therefore
|[PAD — A®P|| =0 (3.30)

[
Corollary 3.7.2. For any n, there exist zero-error matchings between cycle graphs C,, and
Cop,.
Proof. The spectra of C,, are given by the formula (see [52] Section 39.3):

MO = 20052) for (=0,1,...n—1)

n

Thus A(C),) and \(Cy,) clearly satisfy the conditions of Theorem 3.7.1 above. In particular,

the matrix
1 if 1=25
Py =
0 else.
has 0 cost as in Equation 3.30 O]

3.8 Spectral Version of Decoupling for the Diffusion

Term of Graph Product Prolongations

In this section we derive an eigenspace version of the bound derived in Section 3.5.

Theorem 3.8.1. The eigenspace version of the diffusion term of the objective function of a

graph product prolongation also decouples into two smaller prolongation problems.

48

Proof. From Theorem 3.5.1 of the main manuscript, we know that for
Gy =a¢’'oc? and GY =a6l0GY,
and assuming P = P, @ P,,

pre(6,60) = ||PLt) - L'p||

< n(l)DPl « ()) \/ 'DP2 « (Gél))

LV - JarL®p

F

=P LY — aL$' P

F

Trivially, we can rewrite each of these Frobenius norms to be their spectral version, as in

Equation 3.1. Thus,

HPL(D” - LS)PH - HPA“) - A(Q)P‘

’—P AW = aA? Py

+n1

‘—P A = VaAY By

F

which is a weighted sum of objectives of the two spectral prolongation problems for the
two factor lineages. We have thus also decoupled this eigenvalue-matching version of the

objective function into two separate prolongation problems. O

Finally, we show that if P, and P, are solutions to the eigenvalue matching problem m

(Lgl), L§2)) and m * (Lgl), ng)) respectively, then P = P, ® P, is a valid, but not necessarily

49

optimal, solution to the eigenvalue matching problem m x (L(D1), L(D2)). By valid we mean that

P satisfies the constraints given in the definition of matching problems in Section 1.4.2.

Proof. This fact follows directly from the constraints on P; and P,. A matrix M is a
valid matching matrix iff its entries are in {0,1} and it is orthogonal (this is an equivalent
expression of the constraints given in Section 1.4.2. If P; and P, are both orthogonal and

{0, 1}-valued, then we observe the following facts about their Kronecker product P, ® Ps:

e it is also {0, 1}-valued, since any of its entries is the product of an entry of P, and one

of]52.
e it is orthogonal, since A® B is orthogonal iff ATA = (I and BB = %I for some (> 0
[64]. Py and P, satisfy these conditions with ¢ = 1.

So P, ® P, satisfies the constraints given for the eigenvalue matching problem m * (L(D1), L(D2)).

]

3.8.1 Distortion-penalized Distance

We can add a term to the graph diffusion distance which penalizes large distortions induced

by «, as follows: define

iLl

on tLy

— €

D.ey(G1,G2) =sup inf inf {HPeiLl — etaLzPH +
i PlC(P) a>0 F

F
+ [[e™2P — P .}
We can show analytically that this distance satisfies the triangle inequality:

Theorem 3.8.2. D, satisfies the triangle inequality.

50

Proof. For graphs Gy, G5, G5 and Laplacians Ly, Lo, L3, for any fixed ¢t > 0, we have:

eéLl . 6tL1

D i = g, et~]

F
+ [P — e Pl L}
< Dreg<G17 G3|t’ o = 1)

- it 1Pt =P =

P|C(P)
+ || P — e P|| }
= inf HP@”J1 — etL3PH
P|c(P) F
Suppose that
Q39, P3o = arginf inf {HPeéL2 — etaL3PH + ‘ ealz _ otle
a>0 P|C(P) F F
L alL
+ |[ee P — et Pl[.}
s, Pyy = arginf inf {HPeéLl - etaLQPH + ‘ eall _ gthn
a>0 P|C(P) F F

+ [P — 2P|}

51

Then,

P|1£lf HPGtLl — GtLngF S HPgQPQletLI — €tL3P32P21HF

Pllélf Hpeml - tLSPH < HP32P21€ - P32P21€°‘21 + P321Dz16‘mL1

— Pye'® 2Py 4 Pryeonl2 Py Petle py)
_t _t
+ Poetl2 Py — Pyyeasa ™ Py; + Ppes 2 Py
e'3218 Py Pyy +¢'%218 Pyy Py — 6tL3P32P21HF

_t
= HP32P21€1U:1 - P:’)21DQ1€°‘21L1

F

_t 7,
+ || P Py ™ — Ppetotl2 py, P
+ HP32€MQIL2P21 - P32€tL2P21HF

tLo LLQ
+ || Page" 2 Py — Pygecs2 ™ Py

F

t
_t
+ || Psges2 2 Pyy — e'3253 Py, Py

tasa L tL
+H€ B2 PPy — e 3P32P21HF

by Lemma 3.2.1,

. _t
inf HpetLl _ tLJPH < ‘ thy e a1 1 + P21€°‘21 1 etoe21L2P21
P|C(P) F F
P = e
_t _t
+) 6tL2 o GQSQLQ + HP32GQ32 2 6ta32L3P H
+ [[e" 25 Py — e Py,

Dreg(Gla G2|t = C) + Dreg(Gg, G3|t = C)

52

Since this is true for any fixed ¢, let
t* = argsup Dyeg(G1, G3lt).
t
Then

Dreg(Gh Gg) = sup Dreg(Gh G3|t>

= Dieg(G1, G3t")
S Dreg(Gh G2|t*) "‘ Dreg(GQ, G3|t = t*)

< SUP Dieg (G, Galtar) + sup Dyeg(Ga, Gsltsz)

t21 t32

= Dreg(Gh G2) + Dreg(G27 G3)

We can construct a similar regularized version of the linear objective function:

) 1 1
Dieg(G1, Ga) = Hale _ aLgPH 4 HaLl — L+ H PL,— aLQPH

The additional terms included in D,z and Dreg penalize a distorting the respective Laplacians
far from their original values. In practice, many of the theoretical guarantees provided earlier
in this manuscript may not apply to optimization of the augmented objective function.
Hence, a major area of future work will be modification of our optimization procedure to

compute this form of distance.

53

3.9 Theory Summary

Triangle inequalities are proven for some members of the proposed family of graph distor-
tion or “distance” measures, including infinitesimal and finite diffusion time, a power law
for sparsity, and/or a power law for the time scaling factor between coarse and fine scales.
However, the case of an optimal (not power law) time conversion factor a needs to be inves-
tigated by numerical experiment, and that requires new algorithms, introduced in Section
4.3. We also show that in the case of distances between graph box products, optimization
over P for the product graphs is bounded above by a monotonic function of the optimum

over the component graphs.

o4

Chapter 4

Efficiently Calculating GDD

In previous chapters we have introduced and defined diffusion distance. A crucial component
of the optimization required to calculate GDD is the optimization of the a parameter for
conversion between coarse and fine time scales. Optimizing « in addition to optimizing the
prolongation matrix P under transitive constraints C(P), is a nontrivial numerical problem

that in our experience seems to require new methods. We develop such methods here.

4.1 Algorithm Development

In this section, we describe the algorithm used to calculate upper bounds on graph distances
as the joint optima (over P, ¢, and «) of the distance equations Equation 2.2 and Equation
2.3, under orthogonality constraints only, i.e. the case C(P) = {P|PTP = I}. At the core of
both algorithms is a subroutine to solve the Linear Assignment Problem (LAP - see Equation
(1.5)) repeatedly, in order to find the subpermutation matrix which is optimal at a particular

value of a. Namely, we are interested in calculating D as

55

D(Gy,G5) = min f(a) where f(a)= inf

PIPTP=] ||t

1
—PL(Gy) — aL(Gg)PH (4.1)
which, for orthogonality or any other compact constraint

= min
P|PTP=T

éPL(Gl) - aL(GQ)PH .

However, we have found that the unique structure of this optimization problem admits a
specialized procedure which is faster and more accurate than nested univariate optimization
of a and t (where each innermost function evaluation consists of a full optimization over P at
some t,). We first briefly describe the algorithm used to find the optimal P and « for D2.
The formal description of the algorithm is given by Algorithm 1. In both cases, we reduce the
computational complexity of the optimization over P by imposing the additional constraint
that P must be a subpermutation matrix when rotated into the spectral basis (we define
subpermutations in the proof of Theorem 4.4.1). This constraint is compatible with the
orthogonality constraint (all subpermutation matrices are orthogonal, but not vice versa).
The tradeoff of this reduction of computational complexity is that we can only guarantee
that our optima are upper bounds of the optima over all orthogonal P. However, in practice,
this bound seems to be tight: over a large number of empirical evaluations we did not find
any example where orthogonally-constrained optimization was able to improve in objective
function value over optimization constrained to subpermutation matrices. Therefore, we
shall for the remainder of this paper refer to the optima calculated as distance values, when
strictly they are distance upper bounds. We also note here that a distance lower bound is
also possible to calculate by relazing the constraints in C(P) (for instance, by replacing the

optimization over all P with a less constrained matching problem - see Section 2.4).

56

2.5

2.0

/N
&

N—

=Y

(5]

1.0

0.5

0.95 1.00 1.05 1.10 1.15

Exponential Distance as a function of a, for fixed t
D*(Gy,G, | as= ac t= 318)

0.040 \ \‘ ‘

0.035 \‘ ‘\‘ \\‘ ' '\\\\ ‘y\”’\,i :“\ “‘

0.030 \ \ /‘Q% / ,,,,/////'///' '/,Zzé\\\\\ ‘ \§
\ AP

6

(b) o025 \ . J “‘\\\\ ‘
0.020 \\\ \\ /,":\’//} ' \&{\\\ \
0.015 \g\" 2 \
0.010 \\\
0.005 N

0.90 0.95 1.00 1.05 1.10 1.15

Figure 4.1: Two plots demonstrating characteristics of distance calculation between a (7 x 7)
grid and an (8 x 8) grid.

(a): Plot illustrating the discontinuity and multimodality of the linear version of dis-
tance. Each gray curve represents a function fp. (o) = D?(Sqy, Sag|aw, P.). The thicker
curve is the lower convex hull of the thinner curves as a function of «, that is: f(a.) =
inf pic(p) D? (Saz, Saglae). We see that f(«) is continuous, but has discontinuous slope, as
well as several local minima (marked by arrowheads - note in this plot some of these look
like inflection points or maxima because they are obscured by the red line, but the are all
local minima). These properties make D difficult to optimize, necessitating the development
of Algorithm 1.

(b): As in (a), but with D? (Sq,, Sqg|t = .318) plotted instead of D?. This t value is the
location of the maximum in Figure 2.1.

57

4.2 Optimization of D?

Algorithm 1 Abbreviated pseudocode for the algorithm described in Section 4.2, for com-
puting infp, D%

1: procedure D-TILDE(Ly, La, (o, Chigh-)

2: Compute A, \?) as the eigenvalues of Ly and L.

3: Compute, by optimizing a linear assignment, Mo, and Mg as the optimal match-
ings at Qow, Qnigh respectively. Initialize the list of optimal matchings as { Migw, Mhigh }-

4: Until the current list of matchings is not expanded in the following step, or the entire
interval [(ow, Qnign] i marked as explored:

5: Attempt to expand the list of optimal matchings by solving a linear assignment
problem at the a where the cost curves of two matchings (currently in the list) intersect.
If no better assignment exists, then mark the interval covered by those matchings as
explored, as guaranteed by Theorem 4.4.3.

6: Return the lowest-cost M and its optimal «.

7: end procedure

Joint optimization of D? over o and P is a nested optimization problem (see [77] and [98]
for a description of nested optimization), with potential combinatorial optimization over P
dependent on each choice of a. Furthermore, the function f(a) = infpjc(p) D?(Gy, Gsla) is
both multimodal and continuous but, in general, with a discontinuous derivative (See Figure
4.1). Univariate optimization procedures such as Golden Section Search result in many
loops of some procedure to optimize over P, which in our restricted case must each time
compute a full solution to a LAP with ny x n; weights. In our experience, this means that
these univariate methods have a tendency to get stuck in local optima. We reduce the total
number of calls to the LAP solver, as well as the size of the LAPs solved, by taking advantage
of several unique properties of the optimization as a function of «. When the optimal P
and P are known for a; and as, then for any . such that min(a;, as) < o, < max(aq, ay),
the optimal P at o, must satisfy: Pijl) =1A Pi(f) =1 = Pl-(jc) =1 (see Theorem 4.4.3).
Thus, the optimization over P at «. is already partially solved given the solutions at ay
and aw, and so we need only re-compute the remaining (smaller) subproblem on the set of
assignments where P and P disagree. This has two consequences for our search over o

First, the size of LAP problems which must be solved at each step decreases over time (as we

58

find P-optima for a denser and denser set of o). Secondly, these theoretical guarantees mean

that we can mark intervals of a-values as being explored (meaning we have provably found

the P which are optimal over the interval) and thus do not have to perform the relatively

expensive optimization over P for any « in that interval.

4.3 Optimization of D?

Algorithm 2 Abbreviated pseudocode for the algorithm described in Section 4.3, for com-
puting sup, infp, D%

1:
2:
3:

procedure D(Lq, Ly, (uoy, Qhign, Step size ¢)

Compute A1, \?) as the eigenvalues of Ly and L.

Solve the Linear Version of the problem using Algorithm 1, obtaining a*, M*. Ac-
cording to the argument presented in the definition of linear distance (Equation 2.3) this
solution holds for very small t. Keep the entire frontier of matchings found during the
execution of Algorithm 1. Set ¢t = 0, d(0) = D(G1, Ga|ax, Mx,t)

Until d(t + €) < d(t):

t=t+e

Use the linear algorithm with e'** and e’ as the input matrices, initializing the
list of matchings with those found at the previous ¢.

Set d(t) = D(G1, Ga|ax, M*,t) where ax, Mx are the optima from the previous
step.
Return the max; d(t).
end procedure

Many of the theoretical guarantees underlying our algorithm for computing D? no longer

hold for the exponential version of the distance. We adapt our linear-version procedure into

an algorithm for computing this version, with the caveat that the lack of these guarantees

means that our upper bound on the exponential version may be looser than that on the

linear version. It is still clearly an upper bound, since the a and P found by this procedure

satisfy the given constraints a > 0 and PTP = I. In particular, we have observed cases

where the exponential-distance analog of Theorem 4.4.3 would not hold, meaning we cannot

rule out a-intervals as we can in the linear version. Thus, this upper bound may be looser

than that computed for the linear objective function.

59

For the exponential version of the algorithm, we first compute the list of optimal P for the
linear version, assuming (since e’ ~ I + L for very small ¢) that this is also the list of
optimal P for the exponential version of the objective function at some low t. We proceed
to increment ¢ with some step size At, in the manner of a continuation method [3]. At each
new t value, we search for new optimal P along the currently known frontier of optima as
a function of &. When a new P is found as the intersection of two known P;, Py, it is
inserted into the list, which is kept in order of increasing . For each P in this frontier, we
find the optimal a, keeping P and ¢ constant. Assuming infp inf, D*(G1, Gslt.) is unimodal
as a function of ¢., we increase t, until infp inf, D*(Gy, Golt.) > infpinf, D?(Gy, Golt.+ At),
storing all P matrices found as optima at each t. value. P which were on the lower convex
hull at some prior value of ¢ but not the current value are retained, as they may regain
optimality for some a-range at a future value of ¢ (we have observed this, in practice). For
this list P, P, ... P,,, we then compute sup, inf, inf; D*(G1, G| P;). Since the exponential
map is continuous, and we are incrementing ¢ by very small steps, we also propose the further
computational shortcut of storing the list of optimal « at time ¢ to use as starting points
for the optimization at ¢ + At. In practice, this made little difference in the runtime of our

optimization procedure.

4.4 Algorithm Correctness Proof

Theorem 4.4.1. For any two graphs Gy and Gy with Laplacians L(Gy) and L(Gs), for fized
a, the optimization over P given in the innermost loop of Equation 2.3 is upper bounded by
a Linear Assignment Problem as defined in Fquation (1.5). This LAP is given by taking R

to be the eigenvalues)\5-1) of L(Gy1) and S to be the eigenvalues)\52) of L(Gy), with the cost

60

of a pair (equivalently, one entry of the cost matriz C') given by

t 07 aj

1 2
Cij = c(si,1m5) = ¢ (A(-Q) /\(-1)> = (—/\(1) - a)\l@) (4.2)

Proof. L(G1) and L(G9) are both real symmetric matrices, so they may be diagonalized as
L(G;) = U;A,UF | where the U; are rotation matrices, and the A; are diagonal matrices with

the eigenvalues A@,)\g) e A&Z} along the diagonal. Because the Frobenius norm is invariant

under rotation, we have:

1 2

D*(Gy,Gy) = inf inf ||=PL(G,) — aL(G5)P

a>0 pTp=J || «x

F
2

1
= inf inf aU;“PL(Gl)Ul—ozUZTL(Gz)PU1

a>0 pT p—g

F
1 2
= inf inf ||=U]PUMNUU, — U] UyA UL PU, (4.3)
a>0 PTp=J || ¢ F
1 2
=inf inf ||—U]PU A, — alU] PU,
a>0 pPTp=J || x F

Because the U; are orthogonal, the transformation P= UL PU, preserves orthogonality, so

2

3 1
D*(Gy,Gy) = inf inf [|[=PA; — aAyP
a>0 PTp=J ||« F
1] 2
—inf inf ||=A|| + H aAgPH — 2Ty [PTA,PA,]
a>0 pTp—7 || v F F
1
= inf inf (Tr {—2/\’;’} + Tr [@*PTASP] — 2Tv [PTAQPAJ)
a>0 pTp=gJ (8%

61

writing P = [py;],

~ 1 ni na N1
2 o . z : (1
D (Gl, Gg) = éI;]E) PTI’IJIDfZI <E)\j + Oé E E ij i (44)

j=1 =1 j=1

—2iipfjA£2>A§1>)

i=1 j=1

n2 ni))
Clxr;O PTI“IIID:I <; ; 1: ng (&)\)\2)\] + o)\Z

ng ny 1 " o 9
(1)(1;0 P%IFI):I (; 7=1 pl] <Oé J “ ¢)) ()

For any given «a,

. ny N1 /\ (1) 2 ny N1 /\ (1) 2
P%Izlﬂfzz ZZP”(OM(Q)) P\slifp) ijl (0‘)‘(2)> '

i=1 j5=1 =1

where subperm(P) could be any other condition more strict than the constraint PTP = I.
Here we take this stricter constraint to be the condition that P is a subpermutation matriz: an
orthogonal matrix (i.e. PTP = I) for which P € {0,1}">*™ . Equivalently, a subpermutation
matrix is a {0, 1}-valued matrix [p;;] such that for each ¢ € {1,...n; < ny}, exactly one
j € {l,...n2 > ni} takes the value 1 rather than 0 (so > 72, P;; = 1), and for each

Jj € {1,...ny > ny}, either zero or one i € {1,...n; < ny} takes the value 1 rather than 0

(s0 320, P < 1).

Furthermore, this optimization is exactly a linear assignment problem of eigenvalues of L(G)

to L(Gy), with the cost of a pair ()\y), A§2)> given by

2
c (/\gl),)\2(2)) = (l)\gl) — aA§2)>
o)

62

Note also that the same argument applies to the innermost two optimizations of the calcu-
lation of D? (the exponential version of the diffusion distance) as well as D?. In the D? case

the entries of the cost matrix are instead given by

1,(1) @)\ 2
(ea)\j _eoa/\i)

If we instead loosen the constraints on P, we can calculate a lower bound on the distance.

o
~~
>
<.~
=
>
S
[\
=
~—
Il

See Section 2.4 for lower bound details.

Recall that our definition of a ‘matching’ in Section 1.4.2 was a P matrix representing a
particular solution to the linear assignment problem with costs given as in Equation (4.2).

For given G, Gy, and some matching M, let
fM(Oé) = [)Z(Gl,G2|Ot,U2TMU1) (46)

where Uy, U,y diagonalize Ly and Ls as in Equation (4.3).

Lemma 4.4.2. For two unique matchings My and My (for the same G1,G3) the equation
fan (@) — fan, () = 0 has at most one real positive solution in «. This follows from the fact
that when P and t are fized, the objective function is a rational function in « (see Equation

(4.4)), with a quadratic numerator and an asymptote at o = 0.

63

Proof. By Equation (4.4), we have

fM1<a) - fM2(a) =

Lo 02, axn NS ety @)
(? A+ MEADT =235) AP A (4.7)
Jj=1 =1 j=1 i=1 j=1
1~ (02 She 22 N~ Y o)
o2)‘j Ta ZZ MQZJ i 2 Z 2liiAi)‘ (4.8)
Jj= i=1 j=1 =1 j=1
ny N1 nz ni
(zz =S) 0o
i=1 j=1 i=1 j=1
N ROEFS ol PR INENG
+ (2 AN — 23S " a2 AP) (4.10)
i=1 J=1 i=1 j=1

Abbreviating the sums, we have

042 <A1 - Ag) + (Cg - Cl) =0 (411)
and so
Cz Ch
==+ 4.12
=R AT, (4.12)
Since Aq, Ay, C1, Cy are all nonnegative reals, at most one of these roots is positive. O

We will say that a matching M “assigns” j to ¢ if and only if M;; = 1.

Theorem 4.4.3. If two matchings My and Ms which yield optimal upper bounds for the
linear distance D> (at oy < a and ag > « respectively) agree on a set of assignments, then

the optimal M at o must also agree with that set of assignments.

Proof. We need the following lemmas:

64

Lemma 4.4.4. If an optimal matching assigns © to m(i) (so that eigenvalue)\gl) of Gy is
paired with)\;2()1.) of Gy in the sum of costs Equation (4.2)), then the sequence m(1), m(2),...m(ny)

18 monotonic increasing.

Proof. This follows from the fact that the two sequences of eigenvalues are monotonic nonde-
creasing, so if there’s a ‘crossing’ (73 < i but m(iz) < m(71)) then the new matching obtained
by uncrossing those two pairs (performing a 2-opt step as defined in [25]) has strictly lesser

objective function value. Hence an optimal matching can’t contain any such crossings. [

Lemma 4.4.5. For all positive real o* > € > 0, let My be an optimal matching at o™ — €
and My be optimal at o* 4+ ¢. For 1 <i <y, let 5,(i) and s5() be the indices of A paired

with © in My and Msy, respectively. Then for all i, s1(i) < s9(7).

Proof. Define a “run” for sy, so as a sequence of consecutive indices [, +1,...1+k in [1,n4]
such that for any [, [+ 1: min(s1(l 4+ 1), s2(l + 1)) < max(si(l), s2(1)). The following must

be true about a “run”:

1. Within a run, either s1(l) < s9(l) or s1(l) > sy(l) for all I. Otherwise, we have
one or more crossings (as in Lemma 4.4.4): for some | we have s1(I) > s1(l + 1) or
S9(l) > sa2(I+1). Any crossing may be uncrossed for a strictly lower objective function

value - violating optimality of M; or M,.

2. Any pair of matchings as defined above consists of a sequence of runs, where we allow

a run to be trivial i.e. be a single index.

Next, we show that within a run, we must have s; (i) < so(7) for alli. Let S = {l,+1,...1+k}

be a run. By optimality of My, Ms at a* — € and a* + € respectively, we have:

65

and

L . @\ NG @\

1€S

Respectively, these simplify to

2 2 i " 2 (2 2
=30 (W =) (27 + 0 = 97 (AT +250)) > 0

€S

and

Summing these inequalities and cancelling —2/\§i), we have:

S {0 (8) + (4%)") = @ =0 (4%)"+ (6%)) } > o

€S

Summing and reducing gives us

. @ \? @ \? @ \? @ \?
da’e (Z <Asl<i>> - (Asw))) >0 andso) (Asm‘)) > ()\Sz(i)> :

ic€S i€S €S €S

. 2
However, since the /\5-) are monotonic nondecreasing, this means we cannot also have s (i) >

66

so(7) for all i € S, since that would imply

ni ni

S () <> ()"

=1 =1

Therefore, in a run of arbitrary length, all indices must move ‘forward’ (meaning that s, (i) <
s9(i) for all 7 in the run), and so (since any pair of matchings optimal at such « define a set

of runs) we must have s1(i) < s9(). This completes the proof of the lemma.

Thus, for three matchings M, My, M3 which are optimal at a sequence of a; < ay < ag, we
must have s1(i) < s5(i) < s3(i) for all 7. In particular, if s1(7) = s3(i), we must also have

Sl(i) = Sg(i) = Sg(i). UJ

Theorem 4.4.6. If two matchings M, and Ms yield optimal upper bounds for the linear
distance D? at aq and ag respectively, and fur, (qe) = far, (o) for some ag s.t. o < as < as,
then either (1) My and Mjz are optimal over the entire interval [y, o] or (1) some other

matching Ms improves over My and M3 at cs.

Proof. This follows directly from the facts that fy, («) and fu,(«) (as defined in Equation
(4.6)), can only meet at one real positive value of o (Lemma 4.4.2). Say that the cost curves
for M; (known to be optimal at & = ;) and M3 (optimal at o = a3) meet at a = ay, and
furthermore assume that a; < ay < ag. If some other matching M; improves over (meaning,
has lesser obj. function value as a function of o) M; or M3 anywhere in the interval [y, as),
it must improve over both at ae = aw, since it may intersect each of these cost curves at most
once on this interval. If M; and M3 are both optimal at their intersection point (meaning no
such distinct My exists) then we know that no other matching improves on either of them

over the the interval [y, a3] and may therefore mark it as explored during the outermost

67

loop (otimization over «) of Algorithm 1. O

Together, the preceeding properties verify that our algorithm will indeed find the joint opti-
mum over all o and P (for fixed t = ¢, for D, subject to subpermutation constraints on P):
it allows us to find the entire set of P subpermutation matrices which appear on the lower

convex hull of distance as a function of alpha.

4.5 Implementation Details

We implement Algorithms 1 and 2 in the programming language Python (version 3.6.1) [87].
Numerical arrays were stored using the numpy package [109]. Our inner LAP solver was
the package lapsolver [50]. Univariate optimization over ¢t and « was performed with the
‘bounded’ method of the scipy.optimize package [30], with bounds set at [0, 10.0] for each
variable and a input tolerance of 10~*2. Laplacians were computed with the laplacian method

from the package networkX [47], and their eigenvalues were computed with scipy.linalg. eigh.

Because of numerical precision issues arising during eigenvalue computation, it can be dif-
ficult to determine when two matchings agree, using eigenvalue comparison. In practice
we ignore this issue and assume that two matchings are only identical if they associate the
same indices of the two lists of eigenvalues. This means we may be accumulating multiple
equivalent representations of the same matching (up to multiplicity of eigenvalues) during

our sweeps through ¢ and . We leave mitigating this inefficiency for future work.

Code for computing diffusion distance, both with our algorithm and with naive univariate
optimization, may be found in the Supplementary Information associated with this paper,

as well as a maintained GitHub repository [93].

68

Chapter 5

Numerical Properties of GDD

Previous chapters have introduced graph diffusion distance and explored some of its theo-
retical properties, as well as demonstrating an efficient method for computing GDD. This
chapter presents several experiments, using the machinery developed in Chapter 4 to explore

numerical properties of GDD as well as numerical properties of Algorithm 1.

5.1 Graph Lineages

In this section we introduce several specific graph lineages for which we will compute various
intra- and inter-lineage distances. Three of these are well-known lineages of graphs, and the

fourth is defined in terms of a product of complete graphs:
Path Graphs (Pay,): 1D grid graphs of length n, with aperiodic boundary conditions.
Cycle Graphs (Cy,): 1D grid graphs of length n, with periodic boundary conditions.

Square Grid Graphs (Sq,): 2D grid graphs of dimensions n, with aperiodic boundary con-

69

ZQ Gr'%ds

Paths
Cycles
T e T P)) . /.H' o\
/ ¥ . i 'y
.'P ® .“f :r;
i [Py Pt P
f R P ?
o e, A “‘.\‘ Pt

k-Barbell graphs

= | ”

Figure 5.1: Graph lineages used in multiple numerical experiments in the main text.

ditions. Sq,, = Pa,,[1Pa,

“Multi-Barbell” Graphs (Ba,): Constructed as Cy,JK,, where K, is the complete graph

on n vertices.
These familes are all illustrated in Figure 5.1.

Additionally, some examples distances between elements of these graph lineages are illus-
trated in Figure 5.2. In these tables we see that in general intra-lineage distances are small,

and inter-lineage distances are large.

70

e
HIE

0. 1.9503 1.8761 2,7913
1.95603 0. 0.11222 8.7278
1.8761 0.11222 0. 8.5680
2.7913 8.7278 8.5680 0.

0.0073773 0.13869 0.13480 2.0063

0.93560 0.0010996 0.0047038 6.5342

é %\\é 0.88127 0.0044003 0.0037881 6.3850

0.73808 2.6478 2.5853 0.044084

Figure 5.2: Distances D?*(G, H) calculated for several pairs of graphs. The top plot shows
distances where G and H are both chosen from {Gridisxis, Pigo, Ci60, Bais}. At bot-
tom, distances are calculated from G chosen in {Gridjox1a, Pias, Craa, Bao} to H chosen
in {Gridisx13, P19, Cie9, Bais}. As expected, diagonal entries are smallest.

71

5.2 Numerical Optimization Methods

We briefly discuss here the other numerical methods we have used to calculate D? and D?.
In general we have found these methods inferior to the algoithm presented in Chapter 4, but

we present them here for completeness.

Nelder-Mead in Mathematica For very small graph pairs (n; x ny < 100) we are able to find
optimal P, a,t using constrained optimization in Mathematica 11.3 [53] using NMinimize,
which uses Nelder-Mead as its backend by default. The size limitation made this approach

unusable for any real experiments.

Orthogonally Constrained Opt. We also tried a variety of codes specialized for numeric
optimization subject to orthogonality constraints. These included (1) the python package
PyManopt [105], a code designed for manifold-constrained optimization; (2) gradient descent
in Tensorflow using the penalty function g(P) = c| ‘PTP —1 ‘ | » (with ¢ < 1 a small positive
constant weight) to maintain orthogonality, as well as (3) an implementation of the Cayley
reparametrization method from [114] (written by the authors of that same paper). In our
experience, these codes were slower, with poorer scaling with problem size, than combina-
torial optimization over subpermutation matrices, and did not produce improved results on

our optimization problem.

5.2.1 Black-Box Optimization Over «.

We compare in more detail two methods of joint optimization over o and P when P is
constrained to be a subpermutation matrix in the diagonal basis for L(G;) and L(Gs).
Specifically, we compare our approach given in Algorithm 1 to univariate optimization over
a, where each function evaluation consists of full optimization over P. Figure 5.3 shows the

results of this experiment. We randomly sample pairs of graphs as follows:

72

1. ny is drawn uniformly from [5, 120].
2. ng is drawn uniformly from [ny,n; + 60).

3. G71 and G4 are generated by adding edges according to a Bernoulli distribution with
probability p. We ran 60 trials for each p in { .125, .25, .375, .5, .625, .75, .875 }.

We compute the linear version of distance for each pair. Because our algorithm finds all of
the local minima as a function of alpha, we compute the cost of the golden section approach
as the summed cost of multiple golden section searches in alpha: one GS search starting from
the initial bracket [0.618a*,1.618a*] for each local minimum o* found by our algorithm. We
see that our algorithm is always faster by at least a factor of 10, and occasionally faster by
as much as a factor of 103. This can be attributed to the fact that the golden section search
is unaware of the structure of the linear assignment problem: it must solve a full ny X ng
linear assignment problem for each value of « it explores. In contrast, our algorithm is able
to use information from prior calls to the LAP solver, and therefore solves a series of LAP

problems whose sizes are monotonically nonincreasing.

5.3 Triangle Inequality violation of D (Exponential Dis-

tance) and D (Linear Distance)

As stated in Section 2.3, our full graph dissimilarity measure does not necessarily obey the
triangle inequality. In this section we systematically explore conditions under which the
triangle inequality is satisfied or not satisfied. We generate triplets Gy, Go, G3 of random
graphs of sizes n; for ny € [5,30], ny € [n1,n1 + 30|, and n3 € [ng,ny + 30| by drawing
edges from the Bernoulli distribution with probability p (we perform 4500 trials for each
p value in [.125, .25, .375, .5, .625, .75, .875]). We compute the distance D(G;, Gy) (for

73

Speedup for two methods of Eigenvalue Matching

tnovel

Logqo

{Golden
n

1.5 2.0 2.5 3.0 3.5 n,

-1.5 o ° o’ .. oo *

°
.. ° o o °‘:’~::.' t .

-3.0

Figure 5.3: Comparison of runtimes for our algorithm and bounded golden section search
over the same interval [107% 10]. Runtimes were measured by a weighted count of evaluations
of the Linear Assignment Problem solver, with an n x n linear assignment problem counted
as n3 units of cost. Because our algorithm recovers the entire lower convex hull of the
objective function as a function of a, we compute the cost of the golden section search
as the summed cost of multiple searches, starting from an interval bracketing each local
optimum found by our algorithm. We see that our algorithm is much less computationally
expensive, sometimes by a factor of 103. The most dramatic speedup occurs in the regime
where n; << ny. Graphs were generated by drawing n; uniformly from [5,120], drawing
ngy uniformly from [nq,n1 4+ 60|, and then adding edges according to a Bernoulli distribution
with p in { .125, .25, .375, .5, .625, .75, .875 } (60 trials each).

74

(i, k) € {(1,3),(1,2),(2,3)}). The results may be seen in Figure 5.4. In this figure we plot

a histogram of the “discrepancy score”

DiSC(Gl, GQ, Gg) = D(Gl, Gg)/(D(Gl, GQ) + D(GQ, Gg)), (51)

which measures the degree to which a triplet of graphs violates the triangle inequality (i.e.
falls outside of the unit interval [0,1]), for approximately 3 x 10% such triplets. It is clear
that, especially for the linear definition of the distance, the triangle inequality is not always
satisfied. However, we also observe that (for graphs of these sizes) the discrepancy score is
bounded: no triple violates the triangle inequality by more than a factor of approximately
1.8. This is shown by the histogram of discrepancies in Figure 5.4. Additionally, the triangle

inequality is satisfied in 28184 (95.2%) of cases.

We see similar but even stronger results when we run the same experiment with D? instead
of D?; these may also be seen in Figure 5.4. We calculated the discrepancy score analogously,
but with D substituted for D. We see similarly that the degree of violation is bounded. In
this case, no triple violated the triangle inequality by a factor of more than 5, and in this
case the triangle inequality was satisfied in 99.8% of the triples. More work is needed to
examine this trend; in particular, it would be interesting to examine whether other models
of graph generation also satisfy the triangle inequality up to this constant. In both of these
cases, the triangle inequality violations may be a result of our optimization procedure finding
local minima/maxima for one or more of the three distances computed. We also repeat the
above procedure for the same triplets of graphs, but with distances computed not in order of
increasing vertex size: calculating Disc(Ga, G, G5) and Disc(Gs, G2, G1). All of these results

are plotted in Figure 5.4.

1)

Triangle Inequality Violation (Linear Distance)

n

800

600

400

200

0]) 3 4 DiscCLinear(Gi, Gj, Gi)

Triangle Inequality Violation (Exponential Distance)

n

1400
1200
1000
800
600
400

200

0 0 A 2 3 4 DiscExponential(Gis st Gk)

[] G1! GZ! GS G1! GS! G2 G2! G1! G3

Figure 5.4: Histograms of triangle inequality violation. These plots show the distribution
of Disc(G1, Go,G3), as defined in the text, for the cases (a) top: the linear or small-time
version of distance and (b) bottom: the exponential or arbitrary-time version of distance.
We see that for the sizes of graph we consider, the largest violation of the triangle inequality
is bounded, suggesting that our distance measure may be an infra-p-pseudometric for some
value of p ~ 1.8 (linear version) or p &~ 5.0 (exponential version). See Table 2.1 for a summary
of the distance metric variants introduced in this paper. We also plot the same histogram for
out-of-order (by vertex size) graph sequences: Disc(Gs, G1,G3) and Disc(Gs, G, G1). Each
plot has a line at = 1, the maximum discrepancy score for which the underlying distances
satisfy the triangle inequality.

76

5.4 Intra- and Inter-Lineage Distances

We compute pairwise distances for sequences of graphs in the graph lineages displayed in
Figure 5.1. For each pair of graph families (Square Grids, Paths, Cycles, and Multi-Barbells),
we compute the distance from the ith member of one lineage to the (i+ 1)-st member of each
other lineage, and take the average of the resulting distances from i = 1 to ¢« = 12. These
distances are listed in Table 5.1. As expected, average distances within a lineage are smaller

than the distances from one lineage to another.

Square Grids | Paths Cycles Multi-Barbells

Square Grids | 0.0096700 0.048162 | 0.046841 | 0.63429

Paths 0.30256 0.0018735 | 0.010300 | 2.1483
Cycles 0.27150 0.0083606 | 0.0060738 | 2.0357
Multi-Barbells | 0.21666 0.75212 0.72697 0.029317

Table 5.1: Mean distances between graphs in several lineages. For two lineages G1,Gs. ..
(listed at left) and H,, Ha,... (listed at the top), each entry shows the mean distance
D(G;, Hiy1) (where the average is taken over i = 1 to 12). As expected, we see that the
distance from elements of a graph lineage to other members of the same lineage (the di-
agonal entries of the table) is smaller than distances taken between lineages. Furthermore
as expected, 1D paths are more similar (but not equal) to 1D cycles than to other graph
lineages.

We note here that the idea of computing intra- and inter- lineage distances is similar to
recent work [49] computing distances between graph ensembles: certain classes of similarly-
generated random graphs. Graph diffusion distance has been previously shown (in [49]) to
capture key structural information about graphs; for example, GDD is known to be sensitive
to certain critical transitions in ensembles of random graphs as the random parameters are
varied. This is also true for our time dilated version of GDD. More formally: let G, and G;,
represent random graphs on n vertices, drawn from the Erdds-Renyi distribution with edge

probability p. Then D(G,, G;) has a local maximum at p = %, representing the transition

7

between disconnected and connected graphs. This is true for our distance as well as the

original version due to Hammond.

5.5 Graph Limits

Here, we provide preliminary evidence that graph distance measures of this type may be
used in the definition of a graph limit - a graphlike object which is the limit of an infinite
sequence of graphs. This idea has been previously explored, most famously by Lovéasz [68],
whose definition of a graph limit (called a graphon) is as follows: Recall the definition of
graph cut-distance D (G, H) from Equation 1.3, namely: the cut distance is the maximum
discrepancy in sizes of edge-cuts, taken over all possible subsets of vertices, between two
graphs on the same vertex-set. A graphon is then an equivalence class of Cauchy sequences
of graphs!, under the equivalence relation that two sequences G4, Gy, ... and Hy, Hs, ... are

equivalent if D..(G;, H;) approaches 0 as n — oc.

We propose a similar definition of graph limits, but with our diffusion distance substituted
as the distance measure used in the definition of a Cauchy sequence of graphs. Hammond et.
al. argue in [48] why their variant of diffusion distance may be a more descriptive distance
measure than cut-distance. More specifically, they show that on some classes of graphs, some
edge deletions ‘matter’ much more than others: removal of a single edge changes the diffusive
properties of the graph significantly. However, the graph-cut distance between the new and
old graphs is the same, regardless of which edge has been removed, while the diffusion
distance captures this nuance. For graph limits, however, our generalization to unequal-sized
graphs via P is of course essential. Furthermore, previous work [14] on sparse graph limits has

shown that in the framework of Lovasz all sequences of sparse graphs converge (in the infinite-

'Here we are calling a sequence of graphs “Cauchy” if for any e > 0 there is some N such that for all
n,m2=> N, Dcut(Gn7 Gm) <€

78

size limit) to the zero graphon. Graph convergence results specific to sparse graphs include
the Benjamini-Schramm framework [10], in which graph sequences are compared using the
distributional limits of subgraph frequencies. These two graph comparison methods both
have the characteristic that the “limit object” of a sequence of graphs is rigorously defined.
It is unclear that density functions on the unit square are the best choice of limit objects for
graphs; while graphons have many nice properties as detailed by Lovasz, other underlying
limit objects may be a more natural choice for sparse graphs. In this section we attempt
to show empirically that such a limit object of graph sequences under GDD may exist, and

therefore merit further investigation.

We examine several sequences of graphs of increasing size for the required Cauchy behavior
(in terms of our distance measure) to justify this variant definition of a “graph limit”.
For each of the graph sequences defined in Section 5.1, we examine the distance between
successive members of the sequence, plotting D*(G,,, H,,1) for each choice of G and H.

These sequences of distances are plotted in Figure 5.7.

In this figure, we see that generally distance diverges between different graph lineages, and
converges for successive members of the same lineage, as n — co. We note the exceptions

to this trend:

1. The distances between n-paths and n + 1-cycles appear to be converging; this is in-
tuitive, as we would expect that difference between the two spectra due to distortion

from the ends of the path graph would decrease in effect as n — oo.

2. We also show analytically, under similar assumtions, that the distance between succes-

sive path graphs also shrinks to zero (Theorem 5.6.2).

We do not show that all similarly-constructed graph sequences display this Cauchy-like

behavior. We hope to address this deeper question, as well as a more formal exploration of

79

the limit object, with one or more modified versions of the objective function (see Section

3.8.1).

5.6 Limit of Path Graph Distances

In this section, we demonstrate analytically that the sequence of path graphs of increasing
size is Cauchy in the sense described by the previous section. In the following theorem
(Theorem 5.6.2), we assume that the optimal value of ¢ approaches some value # as n — oc.
We have not proven this to be the case, but have observed this behavior for both square
grids and path graphs (see Figure 5.5 for an example of this behavior). Lemmas 5.6.1 and
5.6.2 show a related result for path graphs; we note that the spectrum of the Laplacian (as

we define it in this paper) of a path graph of size n is given by

Ak = —2 + 2cos ke {0..n—1}.

Lemma 5.6.1. For any finite k,t, we have

lim n(et<—2+2cos<%’“>> _ H=242co0s ;fl»)? 0
n—oo

Proof. Clearly for finite k,t

lim (et(_“%os(%k)) — et(_2+2008(an1))> -0
n—0o0

80

Then,

k k
lim n<6—2+2c0s(%) . 6—2+2cos(n“—_|_l)>
n—oo
(6—2+2COS("7’“) _ 6*2“005(%1)
= lim T
n—oo =
n

Evaluating this expression requires applying L’Hopital’s rule. Hence, we have:

(672+2 cos(%k) . e—2+2 COS(%))

Jm 1
. - t(cos %k —1) . - 2t(cos(n7rk)—1)
sm(T’“)e2 (() sm(nikl)e 1
2rkt (— — o
= 1
2 & 7k 2t<cos(n"—k)—1)
— 27T]{3t hm n-sm (n+1) € * o SiIl W_k e2t(cos(“—nk)fl)

Since both of the limits

<n2 sin (2 e?t(eos(ﬁﬁ)l))

lim
n—oo

(n+1)

and

lim (—sin (%k) e%(cos("f)l))

n—o0

exist (and are 0),

<n2 sin () () (=) e?t(cos(’:f)—l)) o

n+1
(n+1)2

27kt lim

n—o0

81

and therefore

lim n<et<—2+2cos<%)> _ 6t(—2+2cos(,:f1>>>2 _ 0
n—oo

Theorem 5.6.2. If lim,, ., argsup, D? (Pa,, Pa,1|t) exists, then:

lim D? (Pay,, Pa, 1) = 0.

n—oo

Proof. Assume that lim,,_,, argsup, D? (Pa,, Pa,;1|t) = t. Then, we must have

lim D? (Pa,,Pa,.1) < lim D? (Pa,, Pa,|t)

n—oo n—o0

Hence, it remains only to prove that

lim D? (Pa,,Pa,1|t) =0

n—o0

for any finite ¢ (which will then include t). First, for any particular (n+1) x n subpermutation

matrix S, note that

2 (Pay, Payy1|t) = inf inf D?(Pay,,Pay|t, P
D* (Pay, Pay1t) inf it (Pay, Pa, 1| t, P, a)

< D? (Pay,Pa,1|t,a =1,UL,,SU,)

Here, U, and U, ; are the matrices which diagonalize L(Pa,) and L(Pa, 1) respectively

(note also that a diagonalizer of a matrix L also diagonalizes e). If at each n we select S

I
to be the subpermutation S = , then (using the same argument as in Theorem 4.4.1)

0

82

the objective function simplifies to:

D? (Pa,, Pa,1|t, P =UL SU,,a =1)

n

= ||Sectren — et ||

n—1 9
_ Z (ec(—2+2cos(”7f)) _ ec(—2+2c0s(n’f—_ﬁ))>
k=0
2
_ nk _ mk
< r]?ax n<ec(24+2cos(T7)) _ ec(2+2cos(n+1))>
0<k<n—1

By Lemma 5.6.1, for any finite k, ¢, we have

lim n(et(*2+2605(%)) . et(—2—&-2cos(n7r+’“1)))2 —0
n—00

So for any € > 0, 3N such that when n > N, for any c, k,

n(ec(72+2cos(%k)) . ec(_2+2008(nﬂ+kl))>2 <

But then

—_

3

<€c(72+2cos(%k)) . ec(2+2005(rzrfl))>2 <

0

il

as required. Thus, the Cauchy condition is satisfied for the lineage of path graphs Pa,, [

Given a graph lineage which consists of levelwise box products between two lineages, it seems
natural to use our upper bound on successive distances between graph box products to prove
convergence of the sequence of products. As an example, the lineage consisting of square
grids is the levelwise box product of the lineage of path graphs with itself. However, in this

we see that this bound may not be very tight. Applying Equation (3.29) from Theorem

83

Distance Optimal a Optimal Time

0.0012] 25
0.0010|
0.0008| 11
0.0006|
0.0004|

0.0002| 0.5

5 10 50 100 500 1000 n 5 10 50 100 500 1000 n 5 10 50 100 500 1000 n

Figure 5.5: Limiting behavior of D and two parameters as path graph size approaches
infinity. All distances were calculated between Path,, and Path,,.,;. We plot the value of the
objective function, as well as the optimal values of a and ¢, as n — oco. Optimal « rapidly
approach 1 and the optimal distance tends to 0. Additionally, the optimal ¢ value approaches
a constant (¢t ~ .316345), providing experimental validation of the assumption we make in
proving Theorem 5.6.2.

3.6.1, we have (for any t., a.):

D (Sqnv Sqn+1> S D (Sqn7 Sqn+1| tcy ac)

S D (Pan-i-la Pan—i—l |tca ac) <‘ L(Pan)

e
€ ac

‘ F

+ [[eteect o])

As we can see in Figure 5.6, the right side of this inequality seems to be tending to a nonzero
value as n — oo, whereas the actual distance (calculated by our optimization procedure)

appears to be tending to zero.

84

Optimized Distance vs. Graph Product Upper Bound
D2

0.015¢

— D? (Optimized)
Upper Bound

0.010F

0.005

IQTC'I I Ie‘—IDI I I5:3I I ISTC'I I I'[IJCI I I12IDI -n

Figure 5.6: Comparison of the distance D(Sq,,Sq,,;) as a function of n, to the upper
bound calculated as the optimum of distance between Pa, and Pa,,;. We see that the
upper found converges to some constant D = 0.01782, whereas the actual distance appears
to be converging to 0 as n — oo.

Square Grids Paths Cycles Multi-Barbells

0.25 3.0

0.20 25

- 2.0
0.15

0.10 1a

1.0

0.05 0s

20 40 60 80 100 2 4 6 B 10 12 14 2 4 6 8 10 12 2 4 6 8 10 12

0012

0.010

. 0.008

0.006

Square Grids oo

o o oo
= oW e

15 10
0.0035
0:0030 o 5
0.0025
o 0.0020 0.008 6
Paths 0.0015 0.006 :
0.5 0.0010 0.004
0.0005 0.002 2
T2 4 6 8 10 12 2 4 6 81012 2 4 6 51012 T2 4 6 8 10 12
1.4 5 10
14 0.015 0012 ’
1.0 0.010
C 1 08 0.010 0.008 6
0.6 n 0.006
yc es 0.4 0.005 0.004 4
0.2 0.002 2

2 4 6 8 10 12 2 4 6 B 1012 2 4 6 8 1012 NN

0.04
0.03
0.02
001

Multi-Barbells

cpooo

 REomome

)K
—now e
— oW os

2 4 6 B 10 12 2 4 6 B 10 12 2 4 6 B 10 12 2 45 80

Figure 5.7: Cauchy-like behavior of graph distance as a function of sequence index, n. The
distance between successive square grids and all other graph sequences appears to diverge
(the same behavior is seen for k-barbells). Notably, the distance between Grid,, and
Grid(p+1)x(nt1) does not appear to converge, until much higher values of n (n > 100) than
the other convergent series. This may be because the distances calculated are an upper
bound, and may be converging more slowly than the ‘true’ optima.

85

Chapter 6

Application: Multiscale Neural

Network Training

Previous chapters have explored the properties of Graph Diffusion Distance, as well as ex-
plained how to compute it efficiently. In this chapter, we use the P matrices which are
a byproduct of computing Graph Diffusion Distance to accelerate the process of training
a neural network. This is accomplished by defining a network which operates on multiple
spatial scales of the input data, with the mapping in between scales performed by pre- and
post-multiplication with P matrices. The final model shares some structural similarities with

multigrid solvers for differential equations, which we discuss in the next section.

6.1 Prior Work

In this section, we discuss prior attempts to apply ideas from multigrid methods to neural
network models. Broadly speaking, prior approaches to neural net multigrid can be catego-

rized into two classes: (1) Neural network models which are “structurally multigrid”, i.e. are

86

typical neural network models which make use of multiple scales of resolution; and (2) Neural
network training processes which are hierarchical in some way, or use a coarsening-refinement

procedure as part of the training process.

In the first class are approaches [43, 58, 95]. Ke et al [58] implement a convolutional network
in which convolutions make use of a multigrid-like structure similar to a Gaussian pyramid,
with the motivation that the network will learn features at multiple scales of resolution. Grais
et. al [43] define a convolution operation, inspired by multigrid methods, that convolves at
multiple levels of resolution simultaneously. Serban et. al [95] demonstrate a recurrent neural
network model which similarly operates in multiple levels of some scale space; but in this
work the scale space is a space of aggregated language models (specifically, the differing scales
are different levels of generality in language models - for example, topic models are coarsest,
word models are finest, with document models somewhere in between). Common to all three
of these approaches is that they make use of a modified neural net structure while leaving

the training process unchanged, except that the network accepts multiresolution inputs.

In contrast, multilevel neural network models [8, 91] in the second category present modified
learning procedures which also use methodology similar to multilevel modeling. Reference
8] introduces a network which learns at coarse scales, and then gradually refines its decision
making by increasing the resolution of the input space and learning “corrections” at each
scale. However, that paper focuses on the capability of a particular family of basis functions
for neural networks, and not on the capabilities of the multigrid approach. Reference [91]
presents a reframing of the neural network training process as an evolution equation in time,
and then applies a method called MGRIT (Multigrid Reduction in Time [33]) to achieve the

same results as parallelizing over many runs of training.

Our approach is fundamentally different: we use coarsened versions of the network model

to make coarse updates to the weight variables of our model, followed by ‘smoothing steps’

87

in which the fine-scale weights are refined. This approach is more general than any of
[43, 58, 95], since it can be applied to any feed-forward network and is not tied to a particular
network structure. The approach in [91] is to parallelize the training process by reframing
it as a continuous-in-time evolution equation, but it still uses the same base model and

therefore only learns at one spatial scale.

Our method is both structurally multilevel and learns using a multilevel training procedure.
Our hierarchical neural network architecture is the first to learn at all spatial scales simulta-
neously over the course of training, transitioning between neural networks of varying input
resolution according to standard multigrid method schedules of coarsening and refinement.
To our knowledge, this represents a fully novel approach to combining the powerful data

analysis of neural networks with the model acceleration of multiscale modeling.

6.1.1 Outline

Building on the terminology in Chapters 1 and 2, in Section 6.2 we define an objective
function which evaluates a map between two graphs, in terms of how well it preserves the
behavior of some local process operating on those graphs (interpreting the smaller of the two
graphs as a coarsened version of the larger). This is the core theory of this chapter: that of
optimal prolongation maps between computational processes running on graph-based data
structures, and hence between graphs. In this chapter we use a specific example of such a
process, single-particle diffusion on graphs, to examine the behavior of these prolongation
maps. Finally, we discuss numerical methods for finding (given two input graphs G; and
Go, and a process) prolongation and restriction maps which minimize the error of using
(G1 as a surrogate structure for simulating the behavior of that process on G,. We will
define more rigorously what we mean by “process”, “error”, and “prolongation” in Section

6.2. In Subsection 6.3.2 we examine some properties of this objective function, including

88

presenting some projection matrices which are local optima for particular choices of graph
structure and process. In Subsections 6.4 and 6.4.2, we define the Multiscale Artificial
Neural Network (MsANN), a hierarchically-structured neural network model which uses these
optimized projection matrices to project network parameters between levels of the hierarchy,
resulting in more efficient training. In Section 6.5, we demonstrate this efficiency by training
a simple neural network model on a variety of datasets, comparing the cost of our approach

to that of training only the finest network in the hierarchy.

6.2 Optimal Prolongation Maps Between Graphs

Given two graphs G; and G2, we find the optimal prolongation map between them as follows:
We first calculate the graph Laplacians L; and Lo, as well as pairwise vertex Manhattan
distance matrices (i.e. the matrix with 7;; the minimal number of graph edges between
vertices ¢ and j in the graph), 77 and T3, of each graph. Calculating these matrices may
not be trivial for arbitrary dense graphs; for example, calculating the pairwise Manhattan
distance of a graph with m edges on n vertices can be accomplished in O(m+nlogn) by the
Fibonacci heap version of Dijkstra’s algorithm [35]. Additionally, in Section 6.3 we discuss an
optimization procedure which requires computing the eigenvalues of L; (which are referred
to as the spectrum of G;). Computing graph spectra is a well studied problem; we direct
the reader to [23, 79]. In practice, all of the graph spectra computed for experiments in this
chapter took a negligible amount of time (< 1s) on a modern consumer-grade laptop using

the scipy.linalg package [56], which in turn uses LAPACK routines for Schur decomposition

89

of the matrix [4]. The optimal map is defined as P which minimizes the matrix function

inf E(P 6.1
pe om0 (P) (6.1)

2

1
—PL, — ValLyP

= inf (1—y9) “Diffusion Term”
P|C(P),a>0,3>0 Va .
1 2
+s||—= P11 — \/BTQP “Locality Term”!
VB F
where || - || is the Frobenius norm, and C'(P) is a set of constraints on P (in particular,

we require PTP = I, but could also impose other restrictions such as sparsity, regularity,
and/or bandedness). The manifold of real-valued orthogonal ny x n; matrices with ny <
ng is known as the Stiefel manifold; minimization constrained to this manifold is a well-
studied problem [84, 106]. This optimization problem can be thought of as measuring the
agreement between processes on each graph, as mapped through P. The expression PX; —

X5 P compares the end result of

1. Advancing process X, forward in time on GGy and then using P to interpolate vertex

states to the smaller graph, to:

2. Interpolating the initial state (the all-ones vector) using P and then advancing process

X1 on Gl.

Strictly speaking the above interpretation of our objective function does not apply to the
Manhattan distance matrix T of a graph, since 7" is not a valid time evolution operator and
thus is not a valid choice for X. However, the objective function term containing 7" may
still be interpreted as comparing travel distance in one graph to travel distance in the other.
That is, we are implicitly comparing the similarity of two ways of measuring the distance of

two nodes v, and v; in Gy:

!By this we mean the notion that neighborhoods of G should be mapped to neighborhoods of G and
vice versa.

90

1. The Manhattan distance, as defined above, and;

2. 572 Zyilpikdgz(ui,uj)pjl, a sum of path distances in G5 weighted by how strongly

v, and v; are connected, through P, to the endpoints of those paths, u; and u;.

Parameters « and [are rescaling parameters to compensate for different graph sizes; in other
words, P must only ensure that processes 1 and 2 above agree up to some multiplicative
constant. In operator theory terminology, the Laplacian is a time evolution operator for the
single particle diffusion equation: L; = A(G;) — diag(1 - A(G;)). This operator evolves the
probability distribution of states of a single-particle diffusion process on a graph G; (but
other processes could be used - for example, a chemical reaction network or multiple-particle
diffusion). The process L defines a probability-conserving Master Equation of nonequilib-
rium statistical mechanics dp/dt = L - p which has formal solution p(t) = exp (tL) - p(0).
Pre-multiplication by the prolongation matrix P is clearly a linear operator i.e. linear trans-
formation from R™ to R™. Thus, we are requiring P which minimizes the degree to which

the operator diagram

At
Ly Ly
P P (Diagram 1)
At ,
Ly Lo

fails to commute. At of course refers to advancement in time. See [55], Figure 1, for a more

complete version of this commutative diagram for model reduction.

We thus include in our objective function terms with 1) graph diffusion and 2) graph locality
as the underlying process matrices (7', the Manhattan distance matrix, cannot be considered

a time evolution operator because it is not probability-preserving). Parameter s adjusts the

91

Figure 6.1: Several solutions of our objective function found by PyManOpt as s, the relative
weight of the two terms of our objective function, is tuned from 0 (fully diffuse, top left)
to 1 (fully local, bottom right). Within each subplot, grayscale indicates the magnitude of
matrix entries. Note that the P matrices found with s = 0 do not appear to be structured
in a way which respects the locality of the original graphs, whereas the matrices with s = 1
do.

relative strength of these terms to each other; so we may find “fully diffuse” P when s = 0 and
“fully local” P when s = 1. Figure 6.1 illustrates this tradeoff for an example prolongation
problem on a pair of grid graphs, including the transition from a global optimum of the
diffusion term to a global optimum of the locality term. In each case, we only require P
to map these processes into one another up to a multiplicative constant: « for the diffusion
term and f for the locality term. KExhaustive grid search over o and [for a variety of
prolongations between (a) path graphs and (b) 2D grid graphs of varying sizes has suggested
that for prolongation problems where the G; are both paths or both grids, the best values
(up to the resolution of our search, 107%) for these parameters are a = 1.0 and 3 = ny/ns.

However, we do not expect this scaling law to hold for general graphs.

92

6.3 Comparison of Numerical Methods

To find minima of this objective function, we explore several numerical methods. For pro-
totyping, we initially used Nelder-Mead [75] optimization with explicit orthogonality con-
straints, as implemented in the Mathematica commercial computer algebra program. How-
ever, this approach does not scale - in our hands Mathematica was not able to minimize this
objective function with more than approximately 200 unknowns in a reasonable amount of
time. Our next approach was to use a special-purpose code [114] for orthogonally-constrained
gradient descent. While this software package scaled well to pairs of large graphs, it required
many random restarts to find minima of our objective function. Motivated by its automatic
differentiation capability and its ability to handle larger numbers of unknowns, we tried the
TensorFlow minimization package [1]: first custom-written code and then a package called
PyManOpt [105] which performs manifold-constrained optimization of arbitrary objective
functions expressed as TensorFlow computation graphs. PyManOpt is able to perform first-
and second-order minimization while staying within the constraint manifold (rather than our
custom code, which takes gradient descent steps and then projects back to the constraint sur-
face). These latter two approaches performed best in terms of optimization solution quality,

and we compare them more throughly below.

To compare the performance of the TensorFlow method and the PyManOpt method, we
explore the performance of both minimization methods as the relative weight s of the lo-
cality and diffusion terms is adjusted. Figure 6.2 shows the tradeoff plot of the optimized
unweighted value of each term as the weight parameter s is tuned. The four subplots corre-
spond to four runs of this experiment with differing sizes of graphs; in each we find optimal
prolongations from a cycle graph of size n to one of size 2n. The PyManOpt-based mini-
mization code is clearly superior, as we see a clear linear tradeoff between objective function

terms as a function of s. The TensorFlow code which maintains orthogonality by projecting

93

n1=8,n2=16 n1=16,n2=32

” ..
12 . .
" . - 15 "
n
] . ° "
L] u L]
L] L
.. ..Il.- .I ".
. -
.... !l
., . e, "
[] -]
... L. ... - L]
... L L . "=
%o, . o..'-.
.. [] -
E | . ®o) " &
a Y L] L L]
|2]
- : s : : ‘oo » : = : b P
2 4 5 8 10 12 5 10 15 20
5 ny =32, n; =64 ny=64,n; =128
E » 12 .
o 7 []
-l
. 10
n
"]
LEL I "L}
.l
I... - .
l. ™
...I .'
2".... "a . L] "y
L T T "a 20] . L]
1 'O.......... l.. N " am ..
L X) L] L]
.Q..:_.‘ - JMMM“‘“HW
10 15 20 25 b 10 20 30 20

Diffusion Term

o PyManOpt = TensorFlow

Figure 6.2: Tradeoff plot of locality vs. diffusion for several pairs of graphs. Multiple
solutions are plotted in each subplot, representing the adjustment of the s parameter in
our objective function from totally local to totally diffuse. We see that the PyManOpt
boundary shows a linear tradeoff between the two terms of the objective function as their
relative weight is tuned, whereas the Tensorflow boundary is more irregular. Furthermore,
the PyManOpt method in general finds optima with lower objective function value than
Tensorflow (for both objectives). We note that Nelder-Mead in Mathematica would not be
able to tackle problems of this size, and the method due to Wen and Yin [114] produced
points which are off of this plot by at least an order of magnitude (we do not present these
points).

back to the Stiefel manifold falls short of this boundary in all cases. Therefore unless oth-
erwise specified, for the rest of this chapter when we discuss solving for P matrices, we are

reporting results of using the PyManOpt method.

94

6.3.1 Initialization

We initialize our minimization with an upper-bound solution given by the Munkres minimum-
cost matching algorithm; the initial P is m*(L;, L) as defined in equation 1.6, i.e. the binary
matrix where an entry P ;) is 1 if the pair (i,) is one of the minimal-cost pairs selected
by the minimum-cost assignment algorithm, and 0 otherwise. While this solution is, strictly
speaking, minimizing the error associated with mapping the spectrum of one graph into the
spectrum of the other (rather than actually mapping a process running on one graph into

a process on the other) we found it to be a reasonable initialization, outperforming both

1

random restarts and initialization with the appropriately sized block matrix

0

6.3.2 Precomputing P matrices

For some structured graph lineages it may be possible to derive formulaic expressions for
optimal P and «, as a function of the lineage index. For example, during our experiments
we discovered species of P which are local minima of prolongation between path graphs,
cycle graphs, and grid graphs. A set of these outputs is shown in Figure 6.1. They feature
various diagonal patterns as naturally idealized in Figure 6.3. These idealized versions of
these patterns all are also empirical local minima of our optimization procedure, for s = 0 or
s = 1, as indicated. Each column of Figure 6.3 provides a regular family of P structures for
use in our subsequent experiments in Section 6.5. We have additionally derived closed-form
expressions for global minima of the diffusion term of our objective function for some graph
families (cycle graphs and grid graphs with periodic boundary conditions). However, in
practice these global minima are nonlocal (in the sense that they are not close to optimizing
the locality term) and thus may not preserve learned spatial rules between weights in levels

of our hierarchy.

95

Examples of these formulaic P matrices can be seen in Figure 6.3. Each column of that
figure shows increasing sizes of P generated by closed-form solutions which were initially
found by solving smaller prolongation problems (for various graph pairs and choices of s) and
generalizing the solution to higher n. Many of these examples are similar to what a human
being would design as interpolation matrices between cycles and periodic grids. However, (a)
they are valid local optima found by our optimization code and (b) our approach generalizes
to processes running on more complicated or non-regular graphs, for which there may not

be an obvious a priori choice of prolongation operator.

We highlight the best of these multiple species of closed-form solution, for both cycle graphs
and grid graphs. The interpolation matrix-like P seen in the third column of the “Cycle
Graphs” section, or the sixth column of the “Grid Graphs” section of Figure 6.3, were the
local optima with lowest objective function value (with s = 1, i.e. they are fully local). As
the best optima found by our method(s), these matrices were our choice for line graph and
grid graph prolongation operators in our neural network experiments, detailed in Section 6.5.
We reiterate that in those experiments we do not find the P matrices via any optimization
method - since the neural networks in question have layer sizes of order 103, finding the
prolongation matrices from scratch may be computationally difficult. Instead, we use the
solutions found on smaller problems as a recipe for generating prolongation matrices of the

proper size.

Furthermore, given two graph lineages Ggl),G?),G?) ... and Gél),GgQ),Ggg) ..., and se-
quences of optimal matrices Pl(l), PI(Q), P1(3) ... and PQ(I), P2(2), P2(3) ... mapping between suc-
cessive members of each, we can construct P which are related to the optima for prolonging
between members of a new graph lineage which is comprised of the levelwise graph box prod-
uct of the two sequences. We show in (Section 3.5, Corollary 3.5.2) conditions under which
the value of the objective function at Pé?x = Pl(i) ® PQ(i) is an upper bound of the optimal

value for prolongations between members of the lineage Ggl)DGgl), G§2)DG§) , Ggg)DG?), N

96

Cycle Graphs

Figure 6.3: Examples of P matrices for cycle graph (left) and grid graph (right) prolongation
problems of various sizes, which can be generated by closed-form representations dependent
on problem size. Within each of the top and bottom plots, columns represent a series of
matrices each generated by a particular numerical recipe, with rows representing increasing
sizes of prolongation problem. Each matrix plot is a plot of the absolute value of matrix
cell values. These closed-form representations were initially found as local minima of our
objective function on small problems and then generalized to closed-form representations.
For the “Cycle Graphs” section, the prolongation problems were between cycle graphs of
sizes n; = 2,4,8,16 and ny = 2 % n;. Columns 1-3 were solutions found with s = 1 (fully
local), and the rest were found with s = 0 (fully diffuse). For the “Grid Graphs” section,
the prolongation problems were between grids of size (n1,ny) to grids of size (2nq,2n;) for
ny in 4,8,16. Columns 1-6 are fully local and columns 7-10 are fully diffuse, respectively. As
in Figure 6.1, grayscale values indicate the magnitude of each matrix entry.

We leave open the question of whether such formulaic P exist for other families of structured
graphs (complete graphs, k-partite graphs, etc.). Even in cases where formulaic P are not
known, the computational cost of numerically optimizing over P may be amortized, in the
sense that once a P-map is calculated, it may be used in many different hierarchical neural

networks or indeed many different multiscale models.

97

6.4 Multiscale Artificial Neural Network Algorithm

In this section we describe the Multiscale Artificial Neural Network (MSANN) training pro-
cedure, both in prose and in pseudocode (Algorithm 3). Let M,... M/ be a sequence of
neural network models with identical “aspect ratios” (meaning the sizes of each layer relative
to other layers in the same model) but differing input resolution, so that M, operates at the
finest scale and M, at the coarsest. For each model M;, let Hél), 9%”, o fov)ars_l be a list of

the Ny, network parameters (each in matrix or vector form) in some canonical order which

is maintained across all scales. Let the symbol PJ@ represent either:

e If the network parameters 9]@ at levels 1 = 0... L are weight matrices between layers
my and my of each hierarchy, then P;l) represents a pair of matrices (Pi(nl;ut_, Po(lll)tputj>,
J

such that:

- 1(nl;)>ut]. prolongs or restricts between possible values of nodes in layer m; of model

M, and values of nodes in layer m; of model M ;.

_ pW)

output, does the same for possible values of nodes in layer msy of each model.

e [f the network parameters 0]@ at levels © = 0... L are bias vectors which are added to
layer m of each hierarchy, then 73](»1) represents a single Pj(l) which prolongs or restricts
between possible values of nodes in layer m of model M;, and values of nodes in layer

m of model M ;.

As a concrete example, for a hierarchy of single-layer networks Mg, M1, Ms, each with one
weight matrix W©® and one bias vector), we could have 0(()” = W(l),ﬁgl) = b for each
M. 73(50) would represent a pair of matrices which map between the space of possible values
of W© and the space of possible values of W™ in a manner detailed in the next section.

On the other hand, 731(0) would represent a single matrix which maps between () and b(1).

98

Similarly, 73(()1) would map between W and W®, and 771(1) between b and b?). In Section
6.4.2, we describe a general procedure for training such a hierarchy according to standard
multilevel modeling schedules of refinement and coarsening, with the result that the finest

network, informed by the weights of all coarser networks, requires fewer training examples.

6.4.1 Weight Prolongation and Restriction Operators

In this section we introduce the prolongation and restriction operators for neural network

weight and bias optimization variables in matrix or vector form respectively.

For a 2D matrix of weights W, define

yoW = PupuWPE

output

Prop o W = Prop,

nput 7P0utput

(6.2)
Resp © W = R‘eS(Pinput:Poutput) © W = PT

input

Wpoutput

where Ppy and Poyput are each prolongation maps between graphs which respect the struc-
ture of the spaces of inputs and outputs of W, i.e. whose structure is similar to the structure
of correlations in that space. Further research is necessary to make this notion more precise.
In our experiments on autoencoder networks in Section 6.5, we use example problems with
an obvious choice of graph to use. In these 1D and 2D machine vision tasks, where we expect
each pixel to be highly correlated with the activity of its immediate neighbors in the grid,
1D and 2D grids are clear choices of graphs for our prolongtion matrix calculation. Other
choices may lead to similar results; for instance, we speculate that since neural network
weight matrices may be interpreted as the weights of a multipartite graph of connected neu-
rons in the network, these graphs could be an alternate choice of structure to prolong/restrict
between. We leave for future work the development of automatic methods for determining

these structures.

99

Note that the Pro and Res linear operators satisfy Resp o Prop = I, the identity operator,

so Prop o Resp is a projection operator.

For a 1D matrix of biases b, define

Propob=P-b
(6.3)

Respob=PT .}

where, as before, we require that P be a prolongation matrix between graphs which are

appropriate for the dynamics of the network layer where b is applied. Again RespoProp = I.

Given such a hierarchy of models M ... M, and appropriate Pro and Res operators as
defined above, we define a Multiscale Artificial Neural Network (MsANN) to be a neural
network model with the same layer and parameter dimensions as the largest model in the
hierarchy, where each layer parameter ©; is given by a sum of prolonged weight matrices

from level j of each of the models defined above:

@j = 9](0) + PI'01_>0 o 9](1) + PI‘02_>0 o 6](2) . PI‘OL_>0 o ¢9§L) (64)

Here we are using Prog_o as a shorthand to indicate composed prolongation from model &

to model 0, so if (9]@ are weight variables we have (by Equation 6.2)

T
0, =0 + P o7 (0 69

1 2 1 r 0 T
+ PElp)ut Plglp)utj 0]()<Po(u‘2putj> <Po(u2put]~>

0 L p-1) " 0 r
+ e + (]Diglpzutj e Plglput)9()<Pcfutpu‘)c > e (Po(uzputj)
and if (9]@ are bias variables we have (by Equation 6.3)

0; = 017 + PO + PO PR 0P + o (PSR P o) (6.6)

J blas ias;~ bias; bias; © bias; blas

100

We note that matrix products such as pY p®

nput; -+ Dinput, need only be computed once, during

model construction.

6.4.2 Multiscale Artificial Neural Network Training

The Multiscale Artificial Neural Network algorithm is defined in terms of a recursive ‘cycle’
that is analogous to one epoch of default neural network training. Starting with M, (i.e.
the finest model in the hierarchy), we call the routine MsANNCycle(0), which is defined
recursively. At any level I, MSANNCycle trains the network at level [for k batches of
training examples, recurses by calling MsANNCycle(l + 1), and then returns to train for k
further batches at level [. The number of calls to MsANNCycle(l + 1) inside each call to

MsANNCycle(l) is given by a parameter ~.

This is followed by additional training at the refined scale; this process is normally [111]
referred to by the multigrid methods community as ‘restriction” and ‘prolongation’ followed
by ‘smoothing’. The multigrid methods community additionally has special names for this
type of recursive refining procedure with v = 1 (“V-Cycles”) and v = 2 (“W-Cycles”). See
Figure 6.4 for an illustration of these contraction and refinement schedules. In our numerical

experiments below, we examine the effect of this parameter on multigrid network training.

Neural network training with gradient descent requires computing the gradient of the error £
between the network output and target with regard to the network parameters. This gradient
is computed by taking a vector of error for the nodes in the output layer, and backpropagating
that error backward through the network layer by layer to compute the individual weight
matrix and bias vector gradients. An individual network weight or bias term w is then
adjusted using gradient descent, i.e. the new value w’ is given by v’ = w — n%, where 7 is
a learning rate or step size. Several techniques can be used to dynamically change learning

rate during model training - we refer the reader to [13] for a description of these techniques

101

and backpropagation in general.

Our construction of the MSANN model above did not make use of the Res (restriction) op-
erator - we show here how this operator is used to compute the gradient of the coarsened
variables in the hierarchy. This can be thought of as continuing the process of backpropaga-
tion through the Pro operator. For these calculations we assume ©); is a weight matrix, and
derive the gradient for a particular 0](-k). For notational simplicity we rename these matrices

W and V', respectively. We also collapse the matrix products

inpu k
P(put) = Pigl(gutjpigllgut e Piglp)utj (67)
outpu T - T T
(Peen” = (D) (P2) (P, (6.8)
Let % be a matrix where (j—E)mn = %, calculated via backpropagation as described
above. Then, for some m, n:
AWy d
=—(..+P V+... 6.9
dvkl dvkl(oo +)mn ()
d (...+P V+..) d (P V)
=—(... I'Og_s0 O e = —(Prog_0 0
dvkl k—0 mn d'Ukl k—0 mn
d : T
_ v P(mput)v P(output)) (1nput (OUtPUt)
dvkl (() mn dvkl ;p
_ (pg)i;;put)pgzutput)>
Then,
dE dw,,,
6.10
dvkl Z dwmn dvkl ()

. Z (1nput) (output)
dwmn D

— <(P(input))T dE P(output))

aw ki

102

and so

dE Tﬂ

h— p(input) ploutput)
dV () AW
and therefore finally
dFE dFE
e Resg_, 0 T (6.11)

where Res is as in 6.2.

Algorithm 3 One ‘cycle’ of the MsANN procedure.

Procedure MsANNCycle(():
Train model M, for k£ batches, where each consists of:

1. Feed examples through the network in feed-forward mode;
2. Compute error F between network output and target;

3. Use the classical backpropagation algorithm to compute the gradient of top-level pa-

rameter ©; w.r.t. this error;

4. Use the appropriate Res operations to compute the gradient of F w.r.t. the parameters

in M, as described in Equation 6.11.

if max_depth has not been reached then

for 1 <i<~vdo
MsANNCycle(l + 1);

Train model M, for k batches, as above

end

end

103

¥

=0 ¥ =1 ¥ = 2 ¥ = 3

Figure 6.4: Visits to models in a hierarchy of neural networks realized by several values
of the recursion frequency parameter v. The v = 1 case and the v = 2 case are referred
to as “V-cycles” and “W-cycles”, respectively. Each time the multilevel training procedure
visits a level, it performs some number, k, of smoothing steps (i.e. gradient descent at that
resolution) at that model.

We also note here that our code implementation of this procedure does not make explicit use
of the Res operator; instead, we use the automatic differentiation capability of Tensorflow [1]
to compute this restricted gradient. This is necessary because data is supplied to the model,
and error is calculated, at the finest scale only. Hence we calculate the gradient at this
scale and restrict it to the coarser layers of the model. It may be possible to feed coarsened
data through only the coarser layers of the model, eliminating the need for computing the

gradient at the finest scale, but we do not explore this method in this thesis.

6.5 Machine Learning Experiments

We present four experiments using this Multiscale Neural Network method. All of the
experiments below demonstrate that our multigrid method outperforms default training
(i.e. training only the finest-scale network), in terms of the number of training examples
(summed over all scales) needed to reach a particular mean-squared error (MSE) value. We
perform two experiments with synthetic machine vision tasks, as well as two experiments with
benchmark image datasets for machine learning. While all of the examples presente