Theoretical Properties of GDD

Having introduced Graph Diffusion Distance in Chapter 2, we proceed to prove several of properties of various instances of our graph dissimilarity score, including triangle inequalities for some specific versions and an upper bound on the distance between two graph products. We will here rely heavily on various properties of the Kronecker sum and product of matrices which may be found in (Hogben 2006), Section 11.4.

Optimization over P is equivalent to an eigenvalue matching problem

For the purpose of the calculations in this section, we restrict ourselves to the “diffusion” term of our objective function [eqn:objfunction] (the term which coerces two diffusion processes to agree), which we will write as DP,α(G1,G2)=||1αPL1αL2P||F.\begin{aligned} \label{eqn:distancedefn} D_{P,\alpha} \left( G_1, G_2 \right) &= \left| \left| \frac{1}{\sqrt{\alpha}} P L_1 - \sqrt{\alpha} L_2 P \right| \right|_F .\end{aligned} Because L1L_1 and L2L_2 are each real and symmetric, they may both be diagonalized as Li=UiΛiUiTL_i = U_i \Lambda_i U_i^T where UiU_i is a rotation matrix and Λi\Lambda_i is a diagonal matrix with the eigenvalues of LiL_i on the diagonal. Substituting into [eqn:distancedefn], and letting P̃=U2TPU1\tilde{P} = U_2^T P U_1, we have DP,α(G1,G2)=||1αPL1αL2P||F=||1αPU1Λ1U1TαU2Λ2U2TP||F=||1α(U2TPU1)Λ1αΛ2(U2TPU1)||F=||1αP̃Λ1αΛ2P̃||F\begin{aligned} D_{P,\alpha} \left( G_1, G_2 \right) &= \left| \left| \frac{1}{\sqrt{\alpha}} P L_1 - \sqrt{\alpha} L_2 P \right| \right|_F \nonumber \\ &= \left| \left| \frac{1}{\sqrt{\alpha}} P U_1 \Lambda_1 U_1^T - \sqrt{\alpha} U_2 \Lambda_2 U_2^T P \right| \right|_F \nonumber \\ &= \left| \left| \frac{1}{\sqrt{\alpha}} \left( U_2^T P U_1 \right) \Lambda_1 - \sqrt{\alpha} \Lambda_2 \left( U_2^T P U_1 \right) \right| \right|_F \nonumber \\ &= \left| \left| \frac{1}{\sqrt{\alpha}} \tilde{P} \Lambda_1 - \sqrt{\alpha} \Lambda_2 \tilde{P} \right| \right|_F \label{eqn:spectral_form}\end{aligned} where P̃\tilde{P} is an orthogonal matrix P̃TP̃=I\tilde{P}^T \tilde{P} = I if and only if PP is as well. Since the Frobenius norm is invariant under multiplication by rotation matrices, [eqn:spectral_form] is a re-formulation of our original Laplacian matrix objective function in terms of the spectra of the two graphs. Optimization of this modified form of the objective function subject to orthogonality constraints on PP is upper-bounded by optimization over matchings of eigenvalues: for any fixed α\alpha the eigenvalue-matching problem has the same objective function, but our optimization is over all real valued orthogonal PP. The orthogonality constraint is a relaxed version of the constraints on matching problems (Equation [eqn:matchingconstraints]) discussed in subsection [subsub:definitions], since matching matrices M are also orthogonal (MTM=I)(M^T M = I). Many algorithms exist for solving the inner partial and 0-1 constrained minimum-cost assignment problems, such as the Munkres algorithm (Munkres 1957) (also in subsection [subsub:definitions]).

We note three corollaries of the above argument. Namely, because the Frobenius norm is invariant under the mapping to and from eigenspace:

  1. Optimal or near-optimal P̃\tilde{P} in eigenvalue-space maintain their optimality through the mapping U2U1TU_2 \cdot U_1^T back to graph-space.

  2. Solutions which are within ϵ\epsilon of the optimum in P̃\tilde{P}-space are also within ϵ\epsilon of the optimum in PP-space; and

  3. More precisely, if they exist, zero-cost eigenvalue matchings correspond exactly with zero-cost PP.

A natural next question would be why it might be worthwhile to work in the original graph-space, rather than always optimizing this simpler eigenvalue-matching problem instead. In many cases (path graphs, cycle graphs) the spectrum of a member GlG_l of a graph lineage is a subset of that of Gl+1G_{l+1}, guaranteeing that zero-cost eigenvalue matchings (and thus, by the argument above, prolongations with zero diffusion cost) exist. However, when this is not the case, the above argument only upper bounds the true distance, since the matching problem constraints are more strict. Thus, numerical optimization over PP, with orthogonality constraints only, may find a better bound on DP,α(Gl,Gl+1)D^{P,\alpha} \left( G_{l}, G_{l+1} \right).

Triangle Inequality for α=1\alpha = 1

In this section, we show that both the linear and exponential versions of diffusion distance satisfy the triangle inequality when α=1\alpha = 1.

[lem:p_lem_1] For any matrices MM and PP, with PP satisfying PTP=IP^T P = I,
||PM||F2||M||F2{\left| \left| P M\right| \right|}^2_F \leq {\left| \left| M \right| \right|}^2_F and ||MP||F2||M||F2{\left| \left| M P \right| \right|}^2_F \leq {\left| \left| M \right| \right|}^2_F .

Suppose without loss of generality that PTP=IP^T P = I. Then:

  1. ${\left| \left| P M\right| \right|}^2_F = \Tr [ M^T P^T P M ] = \Tr[M^T M] = {\left| \left|M\right| \right|}^2_F$

  2. If PTP=IP^T P = I, then letting PPT=ΠP P^T = \Pi, Π\Pi is a projection operator satisfying ΠT=Π=Π2\Pi^T = \Pi = \Pi^2. Then,

$$\begin{split} {\left| \left| M \right| \right|}^2_F = \Tr [M^T M ] &= \Tr[M^T M (\Pi + (I - \Pi))] \\ &= \Tr[M^T M \Pi] + \Tr[M^T M (I - \Pi)] \\ &= \Tr[M^T M P P^T] + \Tr[M^T M {(I - \Pi)}^2] \\ &= {\left| \left| M P \right| \right|}_F^2 + {\left| \left| M (I - \Pi) \right| \right|}_F^2 \\ &\geq {\left| \left| M P \right| \right|}_F^2 \end{split}$$

[thm:constant_alpha_thm] D̃2\tilde{D}^2 satisfies the triangle inequality for α=1\alpha = 1.

Let G1,G2,G3G_1, G_2, G_3 be simple graphs, with Laplacians L1,L2,L3L_1, L_2, L_3. Let P31=arginfP|𝒞(P)||PL1L3P||F2.\begin{aligned} P_{31} = \arg\inf_{P | \mathcal{C}(P)} {\left| \left| P L_1 - L_3 P \right| \right|}_F^2 .\end{aligned} P31P_{31} is guaranteed to exist for constraints 𝒞\mathcal{C} which form a compact space of matrices; orthogonality constraints are an example, since the space of orthogonal matrices is closed and bounded. Then D̃2(G1,G3|α=1)=||P31L1L3P31||F2=infP|𝒞(P)||PL1L3P||F2infP32,P21|𝒞(P32P21)||P32P21L1L3P32P21||F2\begin{split} \tilde{D}^2(G_1, G_3 \left| \alpha= 1\right.) &= {\left| \left| P_{31} L_1 - L_3 P_{31} \right| \right|}_F^2 = \inf_{P | \mathcal{C}(P)} {\left| \left| P L_1 - L_3 P \right| \right|}_F^2 \label{defn:alpha_1_linear} \\ &\leq \inf_{P_{32}, P_{21} | \mathcal{C}(P_{32} P_{21})} {\left| \left| P_{32} P_{21} L_1 - L_3 P_{32} P_{21} \right| \right|}_F^2 \\ \end{split} where we write 𝒞(P32P21)\mathcal{C}(P_{32} P_{21}) to signify that the product P32P21P_{32} P_{21} satisfies the original transitive constraints on PP, e.g. orthogonality and/or sparsity. Since the constraint predicate 𝒞(P)\mathcal{C}(P) satisfies Equation [eqn:tran_constraint_defn], then so does their product, so we may write D̃(G1,G3|α=1)infP32|𝒞(P32)infP21|𝒞(P21)||P32P21L1L3P32P21||F=infP32|𝒞(P32)infP21|𝒞(P21)||P32P21L1P32L2P21+P32L2P21L3P32P21||FinfP32|𝒞(P32)infP21|𝒞(P21)(||P32P21L1P32L2P21||F+||P32L2P21L3P32P21||F)=infP32|𝒞(P32)infP21|𝒞(P21)(||P32(P21L1L2P21)||F+||(P32L2L3P32)P21||F)\begin{split} \tilde{D}(G_1, G_3 \left| \alpha= 1\right.) &\leq \inf_{P_{32} | \mathcal{C}(P_{32})} \inf_{P_{21} | \mathcal{C}(P_{21})} {\left| \left| P_{32} P_{21} L_1 - L_3 P_{32} P_{21} \right| \right|}_F \\ &= \inf_{P_{32} | \mathcal{C}(P_{32})} \inf_{P_{21} | \mathcal{C}(P_{21})} {\left| \left| P_{32} P_{21} L_1 - P_{32} L_2 P_{21} \right. \right.} \\ & {\left. \left. \quad \quad \qquad + \quad P_{32} L_2 P_{21} - L_3 P_{32} P_{21} \right| \right|}_F \\ &\leq \inf_{P_{32} | \mathcal{C}(P_{32})} \inf_{P_{21} | \mathcal{C}(P_{21})} \left( {\left| \left| P_{32} P_{21} L_1 - P_{32} L_2 P_{21} \right| \right|}_F \right. \\ & \quad \quad \qquad + \quad \left. {\left| \left| P_{32} L_2 P_{21} - L_3 P_{32} P_{21} \right| \right|}_F \right) \\ &=\inf_{P_{32} | \mathcal{C}(P_{32})} \inf_{P_{21} | \mathcal{C}(P_{21})} \left( {\left| \left| P_{32} \left( P_{21} L_1 - L_2 P_{21} \right) \right| \right|}_F \right. \\ &\quad \quad \qquad + \quad \left. {\left| \left| \left( P_{32} L_2 - L_3 P_{32} \right) P_{21} \right| \right|}_F \right)\\ \end{split} By Lemma [lem:p_lem_1], D̃(G1,G3|α=1)infP32|𝒞(P32)infP21|𝒞(P21)(||P21L1L2P21||F+||P32L2L3P32||F)=infP21|𝒞(P21)||P21L1L2P21||F+infP32|𝒞(P32)||P32L2L3P32||F=D̃(G1,G2|α=1)+D̃(G2,G3|α=1)\begin{split} \tilde{D}(G_1, G_3 \left| \alpha= 1\right.) &\leq \inf_{P_{32} | \mathcal{C}(P_{32})} \inf_{P_{21} | \mathcal{C}(P_{21})} \left( {\left| \left| P_{21} L_1 - L_2 P_{21} \right| \right|}_F \right. \\ & \quad \quad \qquad + \quad \left. {\left| \left| P_{32} L_2 - L_3 P_{32} \right| \right|}_F \right) \\ &= \inf_{P_{21} | \mathcal{C}(P_{21})} {\left| \left| P_{21} L_1 - L_2 P_{21} \right| \right|}_F \\ & \quad \quad \qquad + \quad \inf_{P_{32} | \mathcal{C}(P_{32})} {\left| \left| P_{32} L_2 - L_3 P_{32} \right| \right|}_F \\ &= \tilde{D}(G_1, G_2 \left| \alpha= 1\right.) + \tilde{D}(G_2, G_3 \left| \alpha= 1\right.) \end{split}

We note that in this proof we use L1,L2,L_1, L_2, and L3L_3 (making this the small-tt or linear version of the objective function), but the same argument holds when all three are replaced with etLie^{t L_i}, so we also have

[cor:constant_alpha_exp] DD satisfies the triangle inequality for α=1\alpha = 1.

By the same calculation as in Theorem [thm:constant_alpha_thm], with all LiL_i replaced by etcLie^{t_c L_i}, we have D(G1,G3|tc,α=1)D(G1,G2|tc,α=1)+D(G2,G3|tc,α=1)\begin{aligned} D\left( \left. G_1, G_3 \right| t_c, \alpha = 1 \right) &\leq D(G_1, G_2\left| t_c, \alpha= 1 \right) + D(G_2, G_3\left| t_c, \alpha= 1 \right)\\ \nonumber\end{aligned} for any constant tct_c. Then, letting t13=argsuptcD(G1,G3|tc,α=1)\begin{aligned} t_{13} = \arg \sup_{t_c} D\left( \left. G_1, G_3 \right| t_c, \alpha = 1 \right)\end{aligned} we have: D(G1,G3|α=1)=suptcD(G1,G3|tc,α=1)=D(G1,G3|t13,α=1)D(G1,G2|t13,α=1)+D(G2,G3|t13,α=1)suptcD(G1,G2|tc,α=1)+suptcD(G2,G3|tc,α=1)=D(G1,G2|α=1)+D(G2,G3|α=1)\begin{split} D\left( \left. G_1, G_3 \right| \alpha = 1 \right) &= \sup_{t_c} D\left( \left. G_1, G_3 \right| t_c, \alpha = 1 \right) \\ &= D\left( \left. G_1, G_3 \right| t_{13}, \alpha = 1 \right) \\ &\leq D(G_1, G_2\left| t_{13}, \alpha = 1 \right) + D(G_2, G_3\left| t_{13}, \alpha = 1 \right) \\ &\leq \sup_{t_c} D\left( \left. G_1, G_2 \right| t_c, \alpha = 1 \right) \\ & \quad \quad \qquad + \quad \sup_{t_c} D\left( \left. G_2, G_3 \right| t_c, \alpha = 1 \right) \\ &= D\left( \left. G_1, G_2 \right| \alpha = 1 \right) + D\left( \left. G_2, G_3 \right| \alpha = 1 \right) \end{split}

Note that in the proofs of Theorem [thm:constant_alpha_thm], Theorem [thm:tsgdd_triangle], and Corollary [cor:constant_alpha_exp], we assume that the constraint predicate 𝒞(P)\mathcal{C}(P) includes at least orthogonality (so that we may apply Lemma [lem:p_lem_1]). However, this constraint predicate could be more strict, e.g. include both orthogonality and sparsity. Hence these statements also apply to the s>0s > 0 cases in Table [tab:dist_versions], which we do not otherwise consider in this work: in our numerical experiments we (for reasons of computational simplicity) only require our optimization over PP be orthogonally constrained.

Time-Scaled Graph Diffusion Distance

For any graphs G1G_1 and G2G_2, and some real nuber rr, we define the Time-Scaled Graph Diffusion Distance (TSGDD) as a scaled version of the linear distance, with α\alpha fixed. Namely, let D̃r2(G1,G2)=(n1n2)2rD̃2(G1,G2|α=(n1n2)r)=infP|𝒞(P)(n1n2)2r||(n1n2)rPL1(n1n2)rL2P||F2\begin{aligned} \tilde{D}^2_r(G_1, G_2) &= {\left( n_1 n_2 \right)}^{-2r} \tilde{D}^2\left(G_1, G_2 \left| \alpha = {\left(\frac{n_1}{n_2}\right)}^r \right. \right) \label{eqn:TSGDD_defn}\\ &= \inf_{P | \mathcal{C}(P)} {\left( n_1 n_2 \right)}^{-2r} {\left| \left| {\left(\frac{n_1}{n_2}\right)}^{-r} P L_1 - {\left(\frac{n_1}{n_2}\right)}^r L_2 P \right| \right|}^2_F \nonumber \end{aligned} The intuition for this version of the distance measure is that we are constraining the time dilation, α\alpha, between G1G_1 and G2G_2 to be a power of the ratio of the two graph sizes. The factor (n1n2)2r{\left(n_1 n_2 \right)}^{-2r} is needed to ensure this version of the distance satisfies the triangle inequality, as seen in Theorem [thm:tsgdd_triangle].

[thm:tsgdd_triangle] The TSGDD, as defined above, satisfies the triangle inequality.

As above, let G1,G2,G3G_1, G_2, G_3 be three graphs with ni=|Gi|n_i = \left| G_i \right| and n1n2n3n_1 \leq n_2 \leq n_3, and let LiL_i be the Laplacian of GiG_i. Let 𝒞(P)\mathcal{C}(P) represent a transitive constraint predicate, also as described previously. Then, for a constant rr \in \mathbb{R}, we have: $$\begin{aligned} &\tilde{D}_r(G_1, G_3) = \\ & \qquad \inf_{P|\mathcal{C}(P)} {\left( n_1 n_3\right)}^{-r} {\left|\left| {\left( \frac{n_1}{n_3} \right)}^{-r} P L_1 - {\left( \frac{n_1}{n_3} \right)}^{r} L_3 P \right|\right|}_F \nonumber \\ & \qquad \leq \inf_{P_{32}, P_{21} | \mathcal{C}(P_{32} P_{21})} {\left( n_1 n_3\right)}^{-r} {\left|\left| {\left( \frac{n_1}{n_3} \right)}^{-r} P_{32} P_{21} L_1 - {\left( \frac{n_1}{n_3} \right)}^{r} L_3 P_{32} P_{21} \right|\right|}_F \nonumber \\ \intertext{under the assumption, as in Equation \eqref{eqn:tran_constraint_defn}, that $ \mathcal{C}(P_{32}) \wedge \mathcal{C}(P_{21}) \implies \mathcal{C}(P_{32} P_{21}) $, } \end{aligned}$$ $$\begin{aligned} % &\tilde{D}_r(G_1, G_3) \leq \\ &\inf_{P_{32}, P_{21} | \mathcal{C}(P_{32}) \wedge \mathcal{C}(P_{21})} {\left( n_1 n_3\right)}^{-r} {\left|\left| {\left( \frac{n_1}{n_3} \right)}^{-r} P_{32} P_{21} L_1 - {\left( \frac{n_1}{n_3} \right)}^{r} L_3 P_{32} P_{21} \right|\right|}_F \nonumber \\ % &= \inf_{P_{32}, P_{21} | \mathcal{C}(P_{32}) \wedge \mathcal{C}(P_{21})} {\left( n_1 n_3\right)}^{-r} {\left|\left| {\left( \frac{n_1}{n_3} \right)}^{-r} P_{32} P_{21} L_1 - {\left( \frac{n_1 n_3}{n_2^2} \right)}^{r} P_{32} L_2 P_{21} \right. \right. } \nonumber \\* &\null \qquad + \qquad {\left. \left. {\left( \frac{n_1 n_3}{n_2^2} \right)}^{r} P_{32} L_2 P_{21} - {\left( \frac{n_1}{n_3} \right)}^{r} L_3 P_{32} P_{21} \right|\right|}_F \\ % &\leq \inf_{P_{32}, P_{21} | \mathcal{C}(P_{32}) \wedge \mathcal{C}(P_{21})} {\left( n_1 n_3\right)}^{-r} {\left|\left| {\left( \frac{n_1}{n_3} \right)}^{-r} P_{32} P_{21} L_1 - {\left( \frac{n_1 n_3}{n_2^2} \right)}^{r} P_{32} L_2 P_{21} \right|\right|}_F \\ &\null \qquad + \qquad {\left( n_1 n_3\right)}^{-r} {\left|\left| {\left( \frac{n_1 n_3}{n_2^2} \right)}^{r} P_{32} L_2 P_{21} - {\left( \frac{n_1}{n_3} \right)}^{r} L_3 P_{32} P_{21} \right|\right|}_F \\ % &= \inf_{P_{32}, P_{21} | \mathcal{C}(P_{32}) \wedge \mathcal{C}(P_{21})} {\left( n_1 n_3\right)}^{-r} {\left( \frac{n_3}{n_2} \right)}^{r} {\left|\left| {\left( \frac{n_1}{n_2} \right)}^{-r} P_{32} P_{21} L_1 - {\left( \frac{n_1}{n_2} \right)}^{r} P_{32} L_2 P_{21} \right|\right|}_F \\ &\null \qquad + \qquad {\left( n_1 n_3\right)}^{-r} {\left( \frac{n_1}{n_2} \right)}^{r} {\left|\left| {\left( \frac{n_2}{n_3} \right)}^{-r} P_{32} L_2 P_{21} - {\left( \frac{n_2}{n_3} \right)}^{r} L_3 P_{32} P_{21} \right|\right|}_F \\ % &= \inf_{P_{32}, P_{21} | \mathcal{C}(P_{32}) \wedge \mathcal{C}(P_{21})} {\left( n_1 n_2\right)}^{-r} {\left|\left| {\left( \frac{n_1}{n_2} \right)}^{-r} P_{32} P_{21} L_1 - {\left( \frac{n_1}{n_2} \right)}^{r} P_{32} L_2 P_{21} \right|\right|}_F \\ &\null \qquad + \qquad {\left( n_2 n_3\right)}^{-r} {\left|\left| {\left( \frac{n_2}{n_3} \right)}^{-r} P_{32} L_2 P_{21} - {\left( \frac{n_2}{n_3} \right)}^{r} L_3 P_{32} P_{21} \right|\right|}_F \intertext{By Lemma \ref{lem:p_lem_1},} \end{aligned}$$ $$\begin{aligned} \tilde{D}_r(G_1, G_3) &\leq \inf_{P_{32}, P_{21} | \mathcal{C}(P_{32}) \wedge \mathcal{C}(P_{21})} {\left( n_1 n_2\right)}^{-r} {\left|\left| {\left( \frac{n_1}{n_2} \right)}^{-r} P_{21} L_1 - {\left( \frac{n_1}{n_2} \right)}^{r} L_2 P_{21} \right|\right|}_F \\* &\null \qquad + \qquad {\left( n_2 n_3\right)}^{-r} {\left|\left| {\left( \frac{n_2}{n_3} \right)}^{-r} P_{32} L_2 - {\left( \frac{n_2}{n_3} \right)}^{r} L_3 P_{32} \right|\right|}_F \\ % &= \inf_{P_{21} | \mathcal{C}(P_{21})} {\left( n_1 n_2\right)}^{-r} {\left|\left| {\left( \frac{n_1}{n_2} \right)}^{-r} P_{21} L_1 - {\left( \frac{n_1}{n_2} \right)}^{r} L_2 P_{21} \right|\right|}_F \\* &\null \qquad + \qquad \inf_{P_{32} | \mathcal{C}(P_{32})} {\left( n_2 n_3\right)}^{-r} {\left|\left| {\left( \frac{n_2}{n_3} \right)}^{-r} P_{32} L_2 - {\left( \frac{n_2}{n_3} \right)}^{r} L_3 P_{32} \right|\right|}_F \\ &= \tilde{D}_r(G_1, G_2) + \tilde{D}_r(G_2, G_3) \nonumber \intertext{and so} &\tilde{D}_r(G_1, G_3) \leq \tilde{D}_r(G_1, G_2) + \tilde{D}_r(G_2, G_3)\end{aligned}$$ for any fixed rr \in \mathbb{R}.

Sparse-Diffusion Distance

Recall that we use the notation 𝒞(P)\mathcal{C}(P) for a constraint predicate that must be satisfied by prolongation matrix PP, which is transitive in the sense that: 𝒞(P32)𝒞(P21)𝒞(P32P21).\begin{aligned} \label{eqn:tran_constraint_defn} \mathcal{C}(P_{32}) \wedge \mathcal{C}(P_{21}) \implies \mathcal{C}(P_{32} P_{21}).\end{aligned} The simplest example is 𝒞(P)=𝒞orthog(P)(PTP=I)\mathcal{C}(P) = \mathcal{C}_{\text{orthog}}(P) \equiv (P^T P = I). Let degreei,j(M)\text{degree}_{i,j}(M) is the total number of nonzero entries in row ii or column jj of MM. Sparsity can be introduced in transitive form by 𝒞(P)=𝒞orthog(P)Csparsity(P)\mathcal{C}(P) = \mathcal{C}_{\text{orthog}}(P) \wedge C_{\text{sparsity}}(P) where 𝒞sparsity(P)(maxi,jdegreei,j(P)(nPcoarse/nPfine)s)\mathcal{C}_{\text{sparsity}}(P) \equiv \Big( \max_{i,j} \text{degree}_{i,j}(P) \leq (n_{P \text{coarse}}/n_{P \text{fine}})^-s \Big) for some real number s0s\geq 0. Here, nPfinen_{P \text{fine}} and nPcoarsen_{P \text{coarse}} are the dimensions of PP. This predicate is transitive since maxi,jdegreei,j(P32P21)(maxi,jdegreei,j(P32))(maxi,jdegreei,j(P21)),\max_{i,j} \text{degree}_{i,j}(P_{3 2} P_{2 1}) \leq \left( \max_{i,j} \text{degree}_{i,j}(P_{3 2} ) \right) \left( \max_{i,j} \text{degree}_{i,j}(P_{2 1})\right) , and since n2n_2 cancels out from the numerator and denominator of the product of the fanout bounds. This transitive sparsity constraint depends on a power-law parameter s0s \geq 0. When s=0s=0, there is no sparsity constraint.

Another form of sparsity constraints are those which specify a pattern on matrix entries which are allowed to be nonzero. Two simple examples (which are also transitive) are matrices which are constrained to be upper triangular, as well as matrices which are constrained to be of the form ABA \otimes B where AA and BB are themselves both constrained to be sparse. More complicated are n1×n2n_1 \times n_2 matrices which are constrained to be banded for some specified pattern of bands: more specifically, that there is a reordering of the rows and columns that the number of diagonal bands (of width 1, slope n1n2\frac{n_1}{n_2}) with nonzero entries is less than (n1n2)q{\left(\frac{n_1}{n_2}\right)}^q for some 0q<10 \leq q < 1. For example, linear interpolation matrices between d-dimensional grids, with non-overlapping source regions, follow this constraint.

As a final note on sparsity, we observe that any of the optimizations detailed in this work could also be performed including a sparsity term (for example, the ||1|\cdot|_1-norm of the matrix PP, calculated as ij|pij|\sum_i \sum_j |p_{i j}| is one possibility, as are terms which penalize tt or α\alpha far from 1), rather than explicit sparsity constraints. A potential method of performing this optimization would be to start by optimizing the non-sparse version of the objective function (as detailed in Section 4.1) and then slowly increasing the strength of the regularization term.

Upper Bounds for Graph Products (Linear Version)

We next consider the problem of finding optimal prolongations between two graphs 𝐆(1)=G1(1)G1(2)\mathbf{G}_\Box^{(1)} = G^{(1)}_1 \Box G^{(2)}_1 and 𝐆(2)=G2(1)G2(2)\mathbf{G}_\Box^{(2)} = G^{(1)}_2 \Box G^{(2)}_2 when optimal prolongations are known between G1(1)G^{(1)}_1 and G2(1)G^{(1)}_2, and G1(2)G^{(2)}_1 and G2(2)G^{(2)}_2. We show that under some reasonable assumptions, these two prolongation optimizations decouple - we may thus solve them separately and combine the solutions to obtain the optimal prolongations between the two product graphs.

From the definition of graph box product, we have L(j)=L(G1(j)G2(j))=A(G1(j)G2(j))D(G1(j)G2(j))=(A(G1(j))I2(j)+I1(j)A(G2(j)))(D(G1(j))I2(j)+I1(j)D(G2(j)))=(A(G1(j))I2(j)D(G1(j))I2(j))(I1(j)A(G2(j))I1(j)D(G2(j)))=(L1(j)I2(j))+(I1(j)L2(j))=L(G1(j))L(G2(j))\begin{aligned} L_\Box^{(j)} &= L(G_1^{(j)} \Box G_2^{(j)}) \\ &= A(G_1^{(j)} \Box G_2^{(j)}) - D(G_1^{(j)} \Box G_2^{(j)}) \\ &= \left( A(G_1^{(j)}) \otimes I_2^{(j)} + I_1^{(j)} \otimes A(G_2^{(j)}) \right) - \left( D(G_1^{(j)}) \otimes I_2^{(j)} + I_1^{(j)} \otimes D(G_2^{(j)}) \right) \\ &= \left( A(G_1^{(j)}) \otimes I_2^{(j)} -D(G_1^{(j)}) \otimes I_2^{(j)} \right) - \left(I_1^{(j)} \otimes A(G_2^{(j)}) - I_1^{(j)} \otimes D(G_2^{(j)}) \right) \\ &= (L_1^{(j)} \otimes I_2^{(j)}) + (I_1^{(j)} \otimes L_2^{(j)}) \\ &= L(G_1^{(j)}) \oplus L(G_2^{(j)})\end{aligned} where \oplus is the Kronecker sum of matrices as previously defined. See (Fiedler 1973), Item 3.4 for more details on Laplacians of graph products. We calculate

$$\begin{aligned} D^{P,\alpha} \left( G_\Box^{(1)}, G_\Box^{(2)} \right) &= \left| \left| \frac{1}{\sqrt{\alpha}} P L_\Box^{(1)} - \sqrt{\alpha} L_\Box^{(2)} P \right| \right|_F\\ &= \left| \left| \frac{1}{\sqrt{\alpha}} P \left( \left( L_1^{(1)} \otimes I_2^{(1)} \right) + \left(I_1^{(1)} \otimes L_2^{(1)}\right) \right) \right. \right. \\ & \left. \left. \qquad - \sqrt{\alpha} \left( \left( L_1^{(2)} \otimes I_2^{(2)}\right) + \left(I_1^{(2)} \otimes L_2^{(2)} \right) \right) P \right| \right|_F \\ &= \left| \left| \left( \frac{1}{\sqrt{\alpha}} P \left(L_1^{(1)} \otimes I_2^{(1)}\right) - \sqrt{\alpha}\left(L_1^{(2)} \otimes I_2^{(2)}\right) P \right) \right. \right. \\ & \left. \left. \qquad + \left( \frac{1}{\sqrt{\alpha}} P \left( I_1^{(1)} \otimes L_2^{(1)} \right) - \sqrt{\alpha} \left( I_1^{(2)} \otimes L_2^{(2)} \right) P\right) \right| \right|_F \\ \intertext{Now we try out the assumption that $P = P_1 \otimes P_2$, which restricts the search space over $P$ and may increase the objective function:} D^{P,\alpha} \left( G_\Box^{(1)}, G_\Box^{(2)} \right) &= \left| \left| \left[ \frac{1}{\sqrt{\alpha}} \left( P_1 \otimes P_2 \right)\left(L_1^{(1)} \otimes I_2^{(1)}\right) \right. \right. \right. \\ & \qquad \qquad - \left. \sqrt{\alpha}\left(L_1^{(2)} \otimes I_2^{(2)}\right) \left( P_1 \otimes P_2 \right) \right] \\ & \qquad + \left[ \frac{1}{\sqrt{\alpha}} \left( P_1 \otimes P_2 \right) \left( I_1^{(1)} \otimes L_2^{(1)} \right) \right. \\ & \left. \left. \left. \qquad \qquad - \sqrt{\alpha} \left( I_1^{(2)} \otimes L_2^{(2)} \right) \left( P_1 \otimes P_2 \right) \right] \right| \right|_F \\ &= \left| \left| \left( \frac{1}{\sqrt{\alpha}} \left( P_1 L_1^{(1)} \otimes P_2 \right) - \sqrt{\alpha}\left(L_1^{(2)} P_1 \otimes P_2 \right) \right) \right. \right. \\ & \left. \left. \qquad + \left( \frac{1}{\sqrt{\alpha}} \left( P_1 \otimes P_2 L_2^{(1)} \right) - \sqrt{\alpha} \left( P_1 \otimes L_2^{(2)} P_2 \right) \right) \right| \right|_F \\ &= \left| \left| \left( \left( \frac{1}{\sqrt{\alpha}} P_1 L_1^{(1)} - \sqrt{\alpha} L_1^{(2)} P_1 \right) \otimes P_2 \right) \right. \right. \\ & \left. \left. \qquad + \left( P_1 \otimes \left( \frac{1}{\sqrt{\alpha}} P_2 L_2^{(1)} - \sqrt{\alpha} L_2^{(2)} P_2 \right) \right) \right| \right|_F \intertext{Since $|| A + B ||_F \leq ||A||_F + ||B||_F$,} &\leq \left| \left| \left( \left( \frac{1}{\sqrt{\alpha}} P_1 L_1^{(1)} - \sqrt{\alpha} L_1^{(2)} P_1 \right) \otimes P_2 \right) \right| \right| \\ & \qquad + \left| \left| \left( P_1 \otimes \left( \frac{1}{\sqrt{\alpha}} P_2 L_2^{(1)} - \sqrt{\alpha} L_2^{(2)} P_2 \right) \right) \right| \right|_F \\ &= \left| \left| \frac{1}{\sqrt{\alpha}} P_1 L_1^{(1)} - \sqrt{\alpha} L_1^{(2)} P_1 \right| \right|_F \left| \left| P_2 \right| \right|_F \\ & \qquad + \left| \left| P_1 \right| \right|_F \left| \left| \frac{1}{\sqrt{\alpha}} P_2 L_2^{(1)} - \sqrt{\alpha} L_2^{(2)} P_2 \right| \right|_F , \\ \intertext{Thus assuming $P = P_1 \otimes P_2$} D^{P,\alpha} \left( G_\Box^{(1)}, G_\Box^{(2)} \right) &\leq \left| \left| \tilde{P}_2 \right| \right|_F D_{\alpha, P_1} \left(G_1^{(1)},G_1^{(2)} \right) \\ & \qquad + \left| \left| \tilde{P}_1 \right| \right|_F D_{\alpha, P_2} \left( G_2^{(1)},G_2^{(2)} \right), %\end{aligned}$$ which is a weighted sum of objectives of the optimizations for prolongation from G1(1)G_1^{(1)} to G1(2)G_1^{(2)} and G2(1)G_2^{(1)} to G2(2)G_2^{(2)}. Recall that our original constraint on PP was that PTP=IP^T P = I; since P=P1P2P = P_1 \otimes P_2 this is equivalent (by a property of the Kronecker product; see Corollary 13.8 in (Laub 2005)) to the coupled constraints on P1P_1 and P2P_2: (P1TP1=1ηI1(1))(P2TP2=ηI2(1))\begin{aligned} \label{eqn:p1p2const} \left( {P_1}^T P_1 = \frac{1}{\eta} I_1^{(1)} \right) \qquad \wedge \qquad \left( {P_2}^T P_2 = \eta I_2^{(1)} \right)\end{aligned} for some η\eta \in \mathbb{R}. For any P1,P2P_1, P_2 which obey [eqn:p1p2const], we may rescale them by η\eta to make them orthogonal without changing the value of the objective, so we take η=1\eta = 1 in subsequent calculations. Noting that ||A||F=Tr(ATA)||A||_F = \sqrt{\text{Tr}(A^T A)}, we see that ||P1||F=Tr(I1(1))=n1(1)and similarly||P2||F=n2(1).\begin{aligned} \left| \left| P_1 \right| \right|_F = \sqrt{\text{Tr}( I_1^{(1)})} = \sqrt{n_1^{(1)}} \quad \text{and similarly} \quad \left| \left| P_2 \right| \right|_F = \sqrt{ n_2^{(1)}}.\end{aligned}

Thus, we have proven the following:

[thm:decompthm] Assuming that PP decomposes as P=P1P2P = P_1 \otimes P_2, the diffusion distance DP,α(G(1),G(2))D_{P, \alpha} \left(G_\Box^{(1)}, G_\Box^{(2)} \right) between G(1)G_\Box^{(1)} and G(2)G_\Box^{(2)} is bounded above by the strictly monotonically increasing function of the two distances DP1,αD_{P_1,\alpha} and DP2,αD_{P_2,\alpha}: $$\begin{aligned} \mathcal{F}(D_{P_1,\alpha}, D_{P_2,\alpha}) &= \sqrt{n_2^{(1)}} D_{P_1,\alpha} + \sqrt{n_1^{(1)}} D_{P_2,\alpha} , \intertext{Namely,} D_{P, \alpha} \left(G_\Box^{(1)}, G_\Box^{(2)} \right) &\leq \mathcal{F} \left( D_{P_1,\alpha} \left( G_1^{(1)}, G_1^{(2)} \right), D_{P_2,\alpha} \left( G_2^{(1)}, G_2^{(2)} \right) \right)\end{aligned}$$

Thus, the original optimization over the product graphs decouples into separate optimizations over the two sets of factors, constrained to have the same value of α\alpha. Additionally, since the requirement that P=P1P2P = P_1 \otimes P_2 is an additional constraint,

[thm:decompcorollary] If (α1,P1)(\alpha_1, P_1) and (α2,P2)(\alpha_2, P_2), subject to orthogonality constraints, are optima of Dα,P(G1(1),G1(1))D_{\alpha, P} \left( G_1^{(1)}, G_1^{(1)} \right) and Dα,P(G2(1),G2(1))D_{\alpha, P} \left( G_2^{(1)}, G_2^{(1)} \right), and furthermore if α1=α2\alpha_1 = \alpha_2, then the value of DP,α(G1(1)G2(1),G1(2)G2(2))D_{P, \alpha} (G_1^{(1)} \Box G_2^{(1)}, G_1^{(2)} \Box G_2^{(2)}) for an optimal PP is bounded above by DP1P2,α1(G1(1)G2(1),G1(2)G2(2))D_{P_1 \otimes P_2, \alpha_1} (G_1^{(1)} \Box G_2^{(1)}, G_1^{(2)} \Box G_2^{(2)}).

This upper bound on the original objective function is a monotonically increasing function of the objectives for the two smaller problems. A consequence of this upper bound is that if DP1,α(G1(1),G1(2))ϵ1{D_{P_1,\alpha} \left( G_1^{(1)}, G_1^{(2)} \right) \leq \epsilon_1} and DP2,α(G2(1),G2(2))ϵ2{D_{P_2,\alpha} \left( G_2^{(1)}, G_2^{(2)} \right) \leq \epsilon_2}, then the composite solution P1P2P_1 \otimes P_2 must have DP1P2,α(G(1),G(2))ϵ=(n1+n2)max(ϵ1,ϵ2){D_{P_1 \otimes P_2,\alpha} \left( G_\Box^{(1)}, G_\Box^{(2)} \right) \leq \epsilon = \left( \sqrt{n_1} + \sqrt{n_2} \right) \max(\epsilon_1, \epsilon_2)}. Thus if both of these distances are arbitrarily small then the composite distance must also be small. Furthermore, if only one of these is small, so that DP1,α(G1(1),G1(2))0{D_{P_1,\alpha} \left( G_1^{(1)}, G_1^{(2)} \right) \approx 0} or DP2,α(G2(1),G2(2))0{D_{P_2,\alpha} \left( G_2^{(1)}, G_2^{(2)} \right) \approx 0}, then DP1P2,αDP2,α{D_{P_1 \otimes P_2,\alpha} \approx D_{P_2, \alpha}} or DP1P2,αDP1,α{D_{P_1 \otimes P_2,\alpha} \approx D_{P_1, \alpha}}, respectively.

We have experimentally found that many families of graphs do not require scaling between the two diffusion processes: the optimal (α,P)(\alpha, P) pair has α=1\alpha = 1. In particular, prolongation between path (cycle) graphs of size nn and size 2n2n always have αoptimal=1\alpha_\text{optimal} = 1, since the spectrum of the former graph is a subset of that of the larger - therefore, there is a matching solution of cost 0 which by the argument above can be mapped to a graph-space PP with objective function value 0 (we prove this in Section 3.7). In this case, the two terms of the upper bound are totally decoupled and may each be optimized separately (whereas in the form given above, they both depend on a α\alpha).

Upper Bounds for Graph Products (Exponential Version)

We now consider the case where we want to compute the distance of two graph box products, i.e. D(𝐆1,𝐆2)D \left(\mathbf{G}_1, \mathbf{G}_2 \right) where 𝐆1=G1(1)G1(2)and𝐆2=G2(1)G2(2)\begin{aligned} \mathbf{G}_1 = G_1^{(1)} \Box G_1^{(2)} \quad \text{and} \quad \mathbf{G}_2 = G_2^{(1)} \Box G_2^{(2)}\end{aligned} and P(1)=arginfPc|𝒞(Pc)D(G1(1),G2(1)|tc,αc,Pc)P(2)=arginfPc|𝒞(Pc)D(G1(2),G2(2)|tc,αc,Pc)\begin{split} P^{(1)} = \arg \inf_{P_c \left| \mathcal{C} (P_c) \right. } D \left( G_1^{(1)}, G_2^{(1)} | t_c, \alpha_c, P_c \right) \\ P^{(2)}= \arg \inf_{P_c \left| \mathcal{C} (P_c) \right. } D \left( G_1^{(2)}, G_2^{(2)} | t_c, \alpha_c, P_c \right) \end{split}

are known for some tc,αct_c, \alpha_c.

[thm:sq_grid_lim_lem] Let 𝐆1\mathbf{G}_1 and 𝐆2\mathbf{G}_2 be graph box products as described above, and for a graph GG let L(G)L(G) be its Laplacian. For fixed t=tct=t_c, α=αc\alpha = \alpha_c, P(i)P^{(i)} as given above, for any λ[0,1]\lambda \in [0,1], we have infPc|𝒞(Pc)D(𝐆1,𝐆2)λ(||etcαcL(G1(2))||F+||etcαcL(G2(2))||F)D(G1(1),G2(1)|P(1))+(1λ)(||etcαcL(G1(1))||F+||etcαcL(G2(1))||F)D(G1(2),G2(2)|P(2))\begin{aligned} &\inf_{P_c \left| \mathcal{C}(P_c) \right. } D \left(\mathbf{G}_1, \mathbf{G}_2 \right) \quad \leq \quad \\ &\qquad \lambda \left({\left| \left| e^{\frac{t_c}{\alpha_c} L(G^{(2)}_1)} \right| \right|}_F + {\left| \left| e^{t_c \alpha_c L(G^{(2)}_2)} \right| \right|}_F \right) D \left( G_1^{(1)}, G_2^{(1)} | P^{(1)} \right) \\ &\qquad \qquad + \left( 1 - \lambda \right) \left({\left| \left| e^{\frac{t_c}{\alpha_c} L(G^{(1)}_1)} \right| \right|}_F + {\left| \left| e^{t_c \alpha_c L(G^{(1)}_2)} \right| \right|}_F \right) D \left( G_1^{(2)}, G_2^{(2)} | P^{(2)} \right) \end{aligned} where all distances are evaluated at t=tct=t_c, α=αc\alpha = \alpha_c, but we have omitted that notation for simplicity.

For graph products 𝐆i\mathbf{G}_i, we have L(𝐆i)=L(Gi(1))L(Gi(2))=(L(Gi(1))I|L(Gi(2))|)+(I|L(Gi(1))|L(Gi(2)))\begin{aligned} L(\mathbf{G}_i) &= L(G^{(1)}_i) \oplus L(G^{(2)}_i) \\ &= \left( L(G^{(1)}_i) \otimes I_{\left| L(G^{(2)}_i) \right|} \right) + \left( I_{\left| L(G^{(1)}_i) \right|} \otimes L(G^{(2)}_i) \right) \end{aligned} (this fact can be easily verified from the formula for the adjacency matrix of a graph box product, given in the definition in Section 1.4.2), and so exp[cL(𝐆i)]=exp[c(L(Gi(1))I|L(Gi(2))|)+(I|L(Gi(1))|L(Gi(2)))].\begin{aligned} \exp \left[{c L(\mathbf{G}_i)}\right] &= \exp \left[c {\left( L(G^{(1)}_i) \otimes I_{\left| L(G^{(2)}_i) \right|} \right) + \left( I_{\left| L(G^{(1)}_i) \right|} \otimes L(G^{(2)}_i) \right)}\right].\\ \end{aligned} Because AI|B|A \otimes I_{|B|} and I|A|BI_{|A|} \otimes B commute for any AA and BB, exp[cL(𝐆i)]=exp[c(L(Gi(1))I|L(Gi(2))|)]exp[c(I|L(Gi(1))|L(Gi(2)))]=(exp[cL(Gi(1))]I|L(Gi(2))|)(I|L(Gi(1))|exp[cL(Gi(2))])=exp[cL(Gi(1))]exp[cL(Gi(2))]\begin{aligned} \exp \left[{c L(\mathbf{G}_i)}\right] &= \exp \left[ c {\left( L(G^{(1)}_i) \otimes I_{\left| L(G^{(2)}_i) \right|} \right)}\right] \exp \left[ c {\left( I_{\left| L(G^{(1)}_i) \right|} \otimes L(G^{(2)}_i) \right)}\right] \\ &= \left( \exp \left[ c { L(G^{(1)}_i) } \right] \otimes I_{\left| L(G^{(2)}_i) \right|} \right) \left(I_{\left| L(G^{(1)}_i) \right|} \otimes \exp \left[ c { L(G^{(2)}_i) }\right]\right) \\ &= \exp \left[ c { L(G^{(1)}_i) } \right] \otimes \exp \left[ c { L(G^{(2)}_i) }\right]\ \end{aligned} We will make the following abbreviations: 𝐄1=etcαcL(𝐆1)E1(1)=etcαcL(G1(1))E1(2)=etcαcL(G1(2))𝐄2=etcαcL(𝐆2)E2(1)=etcαcL(G2(1))E2(2)=etcαcL(G2(2))\begin{array}{ccc} \mathbf{E}_1 = e^{\frac{t_c}{\alpha_c} L(\mathbf{G}_1)} & E^{(1)}_1 = e^{\frac{t_c}{\alpha_c} L(G^{(1)}_1)} & E^{(2)}_1 = e^{\frac{t_c}{\alpha_c} L(G^{(2)}_1)} \\ \mathbf{E}_2 = e^{t_c \alpha_c L(\mathbf{G}_2)} & E^{(1)}_2 = e^{t_c \alpha_c L(G^{(1)}_2)} & E^{(2)}_2 = e^{t_c \alpha_c L(G^{(2)}_2)} \end{array} Then, infP|𝒞(P)D(𝐆1,𝐆2)D(𝐆1,𝐆2|P(1)P(2))=||(P(1)P(2))𝐄1𝐄2(P(1)P(2))||F\begin{aligned} \inf_{P | \mathcal{C}(P)} D \left(\mathbf{G}_1, \mathbf{G}_2 \right) &\leq D \left(\mathbf{G}_1, \mathbf{G}_2 | P^{(1)} \otimes P^{(2)} \right) \\ &= {\left| \left| \left( P^{(1)} \otimes P^{(2)} \right) \mathbf{E}_1 - \mathbf{E}_2 \left( P^{(1)} \otimes P^{(2)} \right) \right| \right|}_F \nonumber\end{aligned} =||(P(1)P(2))(E1(1)E1(2))(E2(1)E2(2))(P(1)P(2))||F=||(P(1)E1(1)P(2)E1(2))(E2(1)P(1)E2(2)P(2))||F2=||(P(1)E1(1)P(2)E1(2))(P(1)E1(1)E2(2)P(2))*+(P(1)E1(1)E2(2)P(2))(E2(1)P(1)E2(2)P(2))||F||(P(1)E1(1)P(2)E1(2))(P(1)E1(1)E2(2)P(2))||F+||(P(1)E1(1)E2(2)P(2))(E2(1)P(1)E2(2)P(2))||F=||P(1)E1(1)(P(2)E1(2)E2(2)P(2))||F+||(P(1)E1(1)E2(1)P(1))E2(2)P(2)||F=||P(1)E1(1)||F||P(2)E1(2)E2(2)P(2)||F+||P(1)E1(1)E2(1)P(1)||F||E2(2)P(2)||F.\begin{aligned} &= {\left| \left| \left( P^{(1)} \otimes P^{(2)} \right) \left(E^{(1)}_1 \otimes E^{(2)}_1 \right) - \left(E^{(1)}_2 \otimes E^{(2)}_2 \right) \left( P^{(1)} \otimes P^{(2)} \right) \right| \right|}_F \nonumber \\ &= {\left| \left| \left( P^{(1)} E^{(1)}_1 \otimes P^{(2)} E^{(2)}_1 \right) - \left(E^{(1)}_2 P^{(1)} \otimes E^{(2)}_2 P^{(2)} \right) \right| \right|}_F^2 \nonumber \\ &= {\left| \left| \left( P^{(1)} E^{(1)}_1 \otimes P^{(2)} E^{(2)}_1 \right) - \left( P^{(1)} E^{(1)}_1 \otimes E^{(2)}_2 P^{(2)} \right) \right. \right.} \label{eqn:cross_term_eqn} \\* & \quad + {\left. \left. \left( P^{(1)} E^{(1)}_1 \otimes E^{(2)}_2 P^{(2)} \right) - \left(E^{(1)}_2 P^{(1)} \otimes E^{(2)}_2 P^{(2)} \right) \right| \right|}_F \nonumber \\ & \leq {\left| \left| \left( P^{(1)} E^{(1)}_1 \otimes P^{(2)} E^{(2)}_1 \right) - \left( P^{(1)} E^{(1)}_1 \otimes E^{(2)}_2 P^{(2)} \right) \right| \right|}_F \nonumber \\ & \quad + {\left| \left| \left( P^{(1)} E^{(1)}_1 \otimes E^{(2)}_2 P^{(2)} \right) - \left(E^{(1)}_2 P^{(1)} \otimes E^{(2)}_2 P^{(2)} \right) \right| \right|}_F \nonumber \\ &= {\left| \left| P^{(1)} E^{(1)}_1 \otimes \left( P^{(2)} E^{(2)}_1 - E^{(2)}_2 P^{(2)} \right) \right| \right|}_F \\ & \quad \quad + \quad {\left| \left| \left( P^{(1)} E^{(1)}_1 - E^{(1)}_2 P^{(1)} \right) \otimes E^{(2)}_2 P^{(2)} \right| \right|}_F \nonumber \\ &= {\left| \left| P^{(1)} E^{(1)}_1 \right| \right|}_F {\left| \left| P^{(2)} E^{(2)}_1 - E^{(2)}_2 P^{(2)} \right| \right|}_F \\ & \quad \quad + \quad {\left| \left| P^{(1)} E^{(1)}_1 - E^{(1)}_2 P^{(1)} \right| \right|}_F {\left| \left| E^{(2)}_2 P^{(2)} \right| \right|}_F . \nonumber \end{aligned} By Lemma [lem:p_lem_1], infP|𝒞(P)D(𝐆1,𝐆2)||E1(1)||F||P(2)E1(2)E2(2)P(2)||F+||P(1)E1(1)E2(1)P(1)||F||E2(2)||F.\begin{split} \inf_{P | \mathcal{C}(P)} D \left(\mathbf{G}_1, \mathbf{G}_2 \right) &\leq {\left| \left| E^{(1)}_1 \right| \right|}_F {\left| \left| P^{(2)} E^{(2)}_1 - E^{(2)}_2 P^{(2)} \right| \right|}_F \\ & \quad \quad + \quad {\left| \left| P^{(1)} E^{(1)}_1 - E^{(1)}_2 P^{(1)} \right| \right|}_F {\left| \left| E^{(2)}_2 \right| \right|}_F . \end{split} $$\begin{aligned} \intertext{If we instead use $\left( E^{(1)}_2 P^{(1)} \otimes P^{(2)} E^{(2)}_1 \right)$ as the cross term in Equation \eqref{eqn:cross_term_eqn}, we have } \inf_P D \left(\mathbf{G}_1, \mathbf{G}_2 \right) \leq {\left| \left| E^{(1)}_2 \right| \right|}_F {\left| \left| P^{(2)} E^{(2)}_1 - E^{(2)}_2 P^{(2)} \right| \right|}_F \\ \quad \quad + \quad {\left| \left| P^{(1)} E^{(1)}_1 - E^{(1)}_2 P^{(1)} \right| \right|}_F {\left| \left| E^{(2)}_1 \right| \right|}_F \nonumber\end{aligned}$$ A linear combination of these two bounds gives us the desired bound.

This has the additional consequence that infPc|𝒞(Pc)D(𝐆1,𝐆2)min[(||etcαcL(G1(2))||F+||etcαcL(G2(2))||F)D(G1(1),G2(1)|P(1)),(||etcαcL(G1(1))||F+||etcαcL(G2(1))||F)D(G1(2),G2(2)|P(2))]\begin{aligned} &\inf_{P_c \left| \mathcal{C}(P_c) \right.} D \left(\mathbf{G}_1, \mathbf{G}_2 \right) \quad \leq & \\ &\min \left[ \left({\left| \left| e^{\frac{t_c}{\alpha_c} L(G^{(2)}_1)} \right| \right|}_F + {\left| \left| e^{t_c \alpha_c L(G^{(2)}_2)} \right| \right|}_F \right) D \left( G_1^{(1)}, G_2^{(1)} | P^{(1)} \right), \right. \\ & \quad \quad \left. \left({\left| \left| e^{\frac{t_c}{\alpha_c} L(G^{(1)}_1)} \right| \right|}_F + {\left| \left| e^{t_c \alpha_c L(G^{(1)}_2)} \right| \right|}_F \right) D \left( G_1^{(2)}, G_2^{(2)} | P^{(2)} \right) \right] \end{aligned} Additionally, if Ei(1)=Ei(2) for i1,2andP(1)=P(2),\begin{aligned} E^{(1)}_i = E^{(2)}_i \text{ for } i \in 1,2 \quad \text{and} \quad P^{(1)} = P^{(2)},\end{aligned} This reduces further to D(𝐆1,𝐆2|P(1)P(1))min(||E1(1)||F,||E2(1)||F)||P(1)E1(1)E2(1)P(1)||F\begin{aligned} D \left(\mathbf{G}_1, \mathbf{G}_2 | P^{(1)} \otimes P^{(1)} \right) &\leq \min \left( {\left| \left| E^{(1)}_1 \right| \right|}_F , {\left| \left| E^{(1)}_2 \right| \right|}_F \right) {\left| \left| P^{(1)} E^{(1)}_1 - E^{(1)}_2 P^{(1)} \right| \right|}_F \end{aligned} and so $$\begin{aligned} & D \left( \left. G_1^{(1)} \Box G_1^{(1)}, G_2^{(1)} \Box G_2^{(1)} \right| t_c, \alpha_c \right) \label{eqn:graph_product_special_case} \\ &\null \quad \quad \quad \leq \min \left( {\left| \left| e^{\frac{t_c}{a_c} L(G^{(1)}_1)} \right| \right|}_F , {\left| \left| e^{t_c a_c L(G^{(1)}_2)} \right| \right|}_F \right) D \left( G_1^{(1)}, G_2^{(1)} \left. \right| t_c, \alpha_c \right) \nonumber \end{aligned}$$ An example of such a graph sequence is the sequence of two-dimensional square grids, which are each the box product of two identical one-dimensional grids i.e., path graphs: Sqn=PanPan\text{Sq}_n = \text{Pa}_n \Box \text{Pa}_n.

Existence of Zero-Error PP for Cycle Graphs

[theorem:spectralzero] In this section, we give an example closed-form solution for a prolongation matrix which achieves zero error when prolonging between cycle graphs. Let G(1)G^{(1)} and G(2)G^{(2)} be graphs with spectra λi(1)\lambda^{(1)}_i and λj(2)\lambda^{(2)}_j, respectively, with n1=|G(1)|n2=|G(2)|n_1 = \left| G^{(1)} \right| \leq n_2 = \left| G^{(2)} \right|. Suppose that for every λi(1)=r\lambda^{(1)}_i = r of multiplicity kk, rr is also an eigenvalue of G(2)G^{(2)} of multiplicity k\geq k. Then there is a zero-cost eigenvalue matching MM between G(1)G^{(1)} and G(2)G^{(2)}.

Let (i1,j1),(i1,j1)(in1,jn1)(i_1, j_1), (i_1, j_1) \ldots (i_{n_1}, j_{n_1}) be a list of pairs of indices such that the following hold:

Define PP as follows: Pij={1(i,j) appears in the above list.0else.P_{ij} = \begin{cases} 1 & (i,j) \text{ appears in the above list.} \\ 0 & \text{else.} \\ \end{cases} PP is clearly orthogonal, since it has exactly one 11 in each row and each column and zeros elsewhere (PP is a permutation matrix for n1=n2n_1 = n_2 and a subpermutation matrix otherwise). Furthermore, we must have i=1n2j=1n1Pij(λj(1)λi(2))=0\sum_{i=1}^{n_2} \sum_{j=1}^{n_1} P_{ij} \left( \lambda^{(1)}_j - \lambda^{(2)}_i \right) = 0 and therefore ||PΛ(1)Λ(2)P||F=0\begin{aligned} \label{eqn:p_zero_cost} \left| \left| P \Lambda^{(1)} - \Lambda^{(2)} P \right| \right|_F = 0 \end{aligned}

For any nn, there exist zero-error matchings between cycle graphs CnC_n and C2nC_{2n}.

The spectra of CnC_n are given by the formula (see (Hogben 2006) Section 39.3): λ(Cn)=2cos(2πjn)for(j=0,1,n1)\lambda(C_n) = 2 \cos (\frac{2 \pi j}{n}) \qquad \text{for} \qquad (j=0, 1, \ldots n-1) Thus λ(Cn)\lambda(C_n) and λ(C2n)\lambda(C_{2n}) clearly satisfy the conditions of Theorem [theorem:spectralzero] above. In particular, the matrix Pij={1ifi=2j0else.P_{ij} = \begin{cases} 1 & \text{if} \quad i = 2j \\ 0 & \text{else.} \\ \end{cases} has 0 cost as in Equation [eqn:p_zero_cost]

Spectral Version of Decoupling for the Diffusion Term of Graph Product Prolongations

In this section we derive an eigenspace version of the bound derived in Section 3.5.

The eigenspace version of the diffusion term of the objective function of a graph product prolongation also decouples into two smaller prolongation problems.

As in section 3.1, we adopt the following notation: $$\begin{aligned} \null && L_i^{(j)} = L(G_i^{(j)}) = {U_i^{(j)}}^T \Lambda_i^{(j)} U_i^{(j)} && \text{for $i \in \{1,2\}$} \\ \null && L_\Box^{(j)} = L(G_\Box^{(j)}) ={U_\Box^{(j)}}^T \Lambda_\Box^{(j)} U_\Box^{(j)} && \null\end{aligned}$$

For the graph box product, we have L(j)=L(G1(j)G2(j))=L(G1(j))L(G2(j))=(L1(j)I2(j))+(I1(j)L2(j))\begin{aligned} L_\Box^{(j)} &= L(G_1^{(j)} \Box G_2^{(j)}) \\ &= L(G_1^{(j)}) \oplus L(G_2^{(j)}) \\ &= (L_1^{(j)} \otimes I_2^{(j)}) + (I_1^{(j)} \otimes L_2^{(j)}) \\\end{aligned} Where \oplus is the Kronecker sum of matrices as previously defined. Additionally, if U1(j)U_1^{(j)} diagonalizes L1(j)L_1^{(j)} and U2(j)U_2^{(j)} diagonalizes L2(j)L_2^{(j)}, then U(j)U1(j)U2(j)U_\Box^{(j)} \equiv U_1^{(j)} \otimes U_2^{(j)} diagonalizes L1(j)L2(j)L_1^{(j)} \otimes L_2^{(j)}, since U(j)L(j)U(j)T=(U1(j)U2(j))(L1(j)I2(j)+I1(j)L2(j))(U1(j)U2(j))T=(U1(j)U2(j))(L1(j)I2(j)+I1(j)L2(j))(U1(j)TU2(j)T)=(U1(j)U2(j))(L1(j)I2(j))(U1(j)TU2(j)T)+(U1(j)U2(j))(I1(j)L2(j))(U1(j)TU2(j)T)=(U1(j)L1(j)U1(j)TU2(j)I2(j)U2(j)T)+(U1(j)I1(j)U1(j)TU2(j)L2(j)U2(j)T)=(Λ1(j)I2(j))+(I1(j)Λ2(j))\begin{aligned} U_\Box^{(j)} L_\Box^{(j)} {U_\Box^{(j)}}^T &= (U_1^{(j)} \otimes U_2^{(j)})(L_1^{(j)} \otimes I_2^{(j)} + I_1^{(j)} \otimes L_2^{(j)}){(U_1^{(j)} \otimes U_2^{(j)})}^T \\ &= (U_1^{(j)} \otimes U_2^{(j)})(L_1^{(j)} \otimes I_2^{(j)} + I_1^{(j)} \otimes L_2^{(j)})({U_1^{(j)}}^T \otimes {U_2^{(j)}}^T) \\ &= (U_1^{(j)} \otimes U_2^{(j)})(L_1^{(j)} \otimes I_2^{(j)})({U_1^{(j)}}^T \otimes {U_2^{(j)}}^T) \\ & \qquad + (U_1^{(j)} \otimes U_2^{(j)})(I_1^{(j)} \otimes L_2^{(j)})({U_1^{(j)}}^T \otimes {U_2^{(j)}}^T) \\ &= (U_1^{(j)} L_1^{(j)} {U_1^{(j)}}^T \otimes U_2^{(j)} I_2^{(j)} {U_2^{(j)}}^T) + (U_1^{(j)} I_1^{(j)} {U_1^{(j)}}^T \otimes U_2^{(j)} L_2^{(j)} {U_2^{(j)}}^T) \\ &= (\Lambda_1^{(j)} \otimes I_2^{(j)}) + (I_1^{(j)} \otimes \Lambda_2^{(j)})\end{aligned} The Kronecker product of two diagonal matrices is itself diagonal, and so this is a sum of two diagonal matrices. Furthermore, the Kronecker product of two rotation matrices is itself a rotation matrix, and therefore U(j)U_\Box^{(j)} is a rotation matrix.

Applying this diagonalization to map to eigenspace in the same manner as subsection 3.1, we have $$\begin{aligned} D^2_{P,\alpha} \left( G_\Box^{(1)}, G_\Box^{(2)} \right) &= \left| \left| \frac{1}{\sqrt{\alpha}} P L_\Box^{(1)} - \sqrt{\alpha} L_\Box^{(2)} P \right| \right|_F\\ &= \left| \left| \frac{1}{\sqrt{\alpha}} \tilde{P} \Lambda_\Box^{(1)} - \sqrt{\alpha} \Lambda_\Box^{(2)} \tilde{P} \right| \right|_F \\ &= \left| \left| \frac{1}{\sqrt{\alpha}} \tilde{P} \left( \left( \Lambda_1^{(1)} \otimes I_2^{(1)} \right) + \left(I_1^{(1)} \otimes \Lambda_2^{(1)}\right) \right) \right. \right. \\ & \left. \left. \qquad - \sqrt{\alpha} \left( \left( \Lambda_1^{(2)} \otimes I_2^{(2)}\right) + \left(I_1^{(2)} \otimes \Lambda_2^{(2)} \right) \right) \tilde{P} \right| \right|_F \\ &= \left| \left| \left( \frac{1}{\sqrt{\alpha}} \tilde{P} \left(\Lambda_1^{(1)} \otimes I_2^{(1)}\right) - \sqrt{\alpha}\left(\Lambda_1^{(2)} \otimes I_2^{(2)}\right) \tilde{P} \right) \right. \right. \\ & \left. \left. \qquad + \left( \frac{1}{\sqrt{\alpha}} \tilde{P} \left( I_1^{(1)} \otimes \Lambda_2^{(1)} \right) - \sqrt{\alpha} \left( I_1^{(2)} \otimes \Lambda_2^{(2)} \right) \tilde{P} \right) \right| \right|_F \\ \intertext{Now we make the assumption that $P = P_1 \otimes P_2$ and therefore $\tilde{P} = \tilde{P}_1 \otimes \tilde{P}_2$ for some $\tilde{P}_1$ and $\tilde{P}_2$,} &= \left| \left| \left( \frac{1}{\sqrt{\alpha}} \left( \tilde{P}_1 \otimes \tilde{P}_2 \right)\left(\Lambda_1^{(1)} \otimes I_2^{(1)}\right) - \sqrt{\alpha}\left(\Lambda_1^{(2)} \otimes I_2^{(2)}\right) \left( \tilde{P}_1 \otimes \tilde{P}_2 \right) \right) \right. \right. \\ & \left. \left. \qquad + \left( \frac{1}{\sqrt{\alpha}} \left( \tilde{P}_1 \otimes \tilde{P}_2 \right) \left( I_1^{(1)} \otimes \Lambda_2^{(1)} \right) - \sqrt{\alpha} \left( I_1^{(2)} \otimes \Lambda_2^{(2)} \right) \left( \tilde{P}_1 \otimes \tilde{P}_2 \right) \right) \right| \right|_F \\ &= \left| \left| \left( \frac{1}{\sqrt{\alpha}} \left( \tilde{P}_1 \Lambda_1^{(1)} \otimes \tilde{P}_2 \right) - \sqrt{\alpha}\left(\Lambda_1^{(2)} \tilde{P}_1 \otimes \tilde{P}_2 \right) \right) \right. \right. \\ & \left. \left. \qquad + \left( \frac{1}{\sqrt{\alpha}} \left( \tilde{P}_1 \otimes \tilde{P}_2 \Lambda_2^{(1)} \right) - \sqrt{\alpha} \left( \tilde{P}_1 \otimes \Lambda_2^{(2)} \tilde{P}_2 \right) \right) \right| \right|_F \\ &= \left| \left| \left( \left( \frac{1}{\sqrt{\alpha}} \tilde{P}_1 \Lambda_1^{(1)} - \sqrt{\alpha} \Lambda_1^{(2)} \tilde{P}_1 \right) \otimes \tilde{P}_2 \right) \right. \right. \\ & \left. \left. \qquad + \left( \tilde{P}_1 \otimes \left( \frac{1}{\sqrt{\alpha}} \tilde{P}_2 \Lambda_2^{(1)} - \sqrt{\alpha} \Lambda_2^{(2)} \tilde{P}_2 \right) \right) \right| \right|_F \\ \intertext{Since $|| A + B ||_F \leq ||A||_F + ||B||_F$,} \\ &\leq \left| \left| \left( \left( \frac{1}{\sqrt{\alpha}} \tilde{P}_1 \Lambda_1^{(1)} - \sqrt{\alpha} \Lambda_1^{(2)} \tilde{P}_1 \right) \otimes \tilde{P}_2 \right) \right| \right| \\ & \qquad + \left| \left| \left( \tilde{P}_1 \otimes \left( \frac{1}{\sqrt{\alpha}} \tilde{P}_2 \Lambda_2^{(1)} - \sqrt{\alpha} \Lambda_2^{(2)} \tilde{P}_2 \right) \right) \right| \right|_F \\ &= \left| \left| \frac{1}{\sqrt{\alpha}} \tilde{P}_1 \Lambda_1^{(1)} - \sqrt{\alpha} \Lambda_1^{(2)} \tilde{P}_1 \right| \right|_F \left| \left| \tilde{P}_2 \right| \right|_F \\ & \qquad + \left| \left| \tilde{P}_1 \right| \right|_F \left| \left| \frac{1}{\sqrt{\alpha}} \tilde{P}_2 \Lambda_2^{(1)} - \sqrt{\alpha} \Lambda_2^{(2)} \tilde{P}_2 \right| \right|_F \\\end{aligned}$$ From Theorem [thm:decompthm] of the main manuscript, we know that for 𝐆(1)=G1(1)G1(2)and𝐆(2)=G2(1)G2(2),\begin{aligned} \mathbf{G}_\Box^{(1)} = G^{(1)}_1 \Box G^{(2)}_1 \qquad & \text{and} \qquad \mathbf{G}_\Box^{(2)} = G^{(1)}_2 \Box G^{(2)}_2 ,\end{aligned} and assuming P=P1P2P = P_1 \otimes P_2, DP,α(G(1),G(2))=||PL(1)L(2)P||Fn2(1)DP1,α(G1(1),G1(2))+n1(1)DP2,α(G2(1),G2(2))=n2(1)||1αP1L1(1)αL1(2)P1||F+n1(1)||1αP2L2(1)αL2(2)P2||F,\begin{aligned} D^{P,\alpha} \left( G_\Box^{(1)}, G_\Box^{(2)} \right) &= \left| \left| P L_\Box^{(1)} - L_\Box^{(2)} P \right| \right|_F\\ &\leq \sqrt{n_2^{(1)}} D_{P_1,\alpha} \left( G_1^{(1)}, G_1^{(2)} \right) + \sqrt{n_1^{(1)}} D_{P_2,\alpha} \left( G_2^{(1)}, G_2^{(2)} \right) \\ &= \sqrt{n_2^{(1)}} \left| \left| \frac{1}{\sqrt{\alpha}} P_1 L_1^{(1)} - \sqrt{\alpha} L_1^{(2)} P_1 \right| \right|_F \\ & \qquad + \sqrt{n_1^{(1)}} \left| \left| \frac{1}{\sqrt{\alpha}} P_2 L_2^{(1)} - \sqrt{\alpha} L_2^{(2)} P_2 \right| \right|_F , \\\end{aligned} Trivially, we can rewrite each of these Frobenius norms to be their spectral version, as in Equation [eqn:distancedefn]. Thus, ||PL(1)L(2)P||F=||P̃Λ(1)Λ(2)P̃||Fn2(1)||1αP̃1Λ1(1)αΛ1(2)P̃1||F+n1(1)||1αP̃2Λ2(1)αΛ2(2)P̃2||F,\begin{aligned} \left| \left| P L_\Box^{(1)} - L_\Box^{(2)} P \right| \right|_F &= \left| \left| \tilde{P} \Lambda_\Box^{(1)} - \Lambda_\Box^{(2)} \tilde{P} \right| \right|_F \\ &\leq \sqrt{n_2^{(1)}} \left| \left| \frac{1}{\sqrt{\alpha}} \tilde{P}_1 \Lambda_1^{(1)} - \sqrt{\alpha} \Lambda_1^{(2)} \tilde{P}_1 \right| \right|_F \\ & \qquad + \sqrt{n_1^{(1)}} \left| \left| \frac{1}{\sqrt{\alpha}} \tilde{P}_2 \Lambda_2^{(1)} - \sqrt{\alpha} \Lambda_2^{(2)} \tilde{P}_2 \right| \right|_F , \\\end{aligned} which is a weighted sum of objectives of the two spectral prolongation problems for the two factor lineages. We have thus also decoupled this eigenvalue-matching version of the objective function into two separate prolongation problems.

Finally, we show that if P̃1\tilde{P}_1 and P̃2\tilde{P}_2 are solutions to the eigenvalue matching problem m*(L1(1),L1(2))m*(L_1^{(1)}, L_1^{(2)}) and m*(L2(1),L2(2))m*(L_2^{(1)}, L_2^{(2)}) respectively, then P̃=P̃1P̃2\tilde{P} = \tilde{P}_1 \otimes \tilde{P}_2 is a valid, but not necessarily optimal, solution to the eigenvalue matching problem m*(L(1),L(2))m*(L_\Box^{(1)}, L_\Box^{(2)}). By valid we mean that P̃\tilde{P} satisfies the constraints given in the definition of matching problems in Section [subsub:definitions].

This fact follows directly from the constraints on P̃1\tilde{P}_1 and P̃2\tilde{P}_2. A matrix MM is a valid matching matrix iff its entries are in {0,1}\{ 0, 1\} and it is orthogonal (this is an equivalent expression of the constraints given in Section [subsub:definitions]. If P̃1\tilde{P}_1 and P̃2\tilde{P}_2 are both orthogonal and {0,1}\{0,1\}-valued, then we observe the following facts about their Kronecker product P̃1P̃2\tilde{P}_1 \otimes \tilde{P}_2:

So P̃1P̃2\tilde{P}_1 \otimes \tilde{P}_2 satisfies the constraints given for the eigenvalue matching problem m*(L(1),L(2)){m*(L_\Box^{(1)}, L_\Box^{(2)})}.

Distortion-penalized Distance

We can add a term to the graph diffusion distance which penalizes large distortions induced by α\alpha, as follows: define Dreg(G1,G2)=suptinfP|𝒞(P)infα>0{||PetαL1etαL2P||F+||etαL1etL1||F+||etL2PetαL2P||F}\begin{aligned} D_\text{reg}(G_1, G_2) &= \sup_t \inf_{P|\mathcal{C}(P)} \inf_{\alpha > 0} \left\{ {\left| \left| P e^{\frac{t}{\alpha} L_1} - e^{t \alpha L_2 } P \right| \right|}_F + {\left| \left| e^{\frac{t}{\alpha} L_1} - e^{t L_1 } \right| \right|}_F \right. \nonumber \\ &\quad \quad \quad + \left. {\left| \left| e^{t L_2} P - e^{t \alpha L_2 } P \right| \right|}_F \right\} \nonumber\end{aligned} We can show analytically that this distance satisfies the triangle inequality:

DregD_\text{reg} satisfies the triangle inequality.

For graphs G1,G2,G3G_1, G_2, G_3 and Laplacians L1,L2,L3L_1, L_2, L_3, for any fixed t0t \geq 0, we have: Dreg(G1,G3|t)=infP|𝒞(P)infα>0{||PetαL1etαL3P||F+||etαL1etL1||F*+||etL3PetαL3P||F}Dreg(G1,G3|t,α=1)=infP|𝒞(P){||PetL1etL3P||F+||etL1etL1||F+||etL3PetL3P||F}=infP|𝒞(P)||PetL1etL3P||F\begin{aligned} D_\text{reg}(G_1, G_3 | t) &= \inf_{P|\mathcal{C}(P)} \inf_{\alpha > 0} \left\{ {\left| \left| P e^{\frac{t}{\alpha} L_1} - e^{t \alpha L_3 } P \right| \right|}_F + {\left| \left| e^{\frac{t}{\alpha} L_1} - e^{t L_1 } \right| \right|}_F \right. \nonumber \\* &\quad \quad \quad + \left. {\left| \left| e^{t L_3} P - e^{t \alpha L_3 } P \right| \right|}_F \right\} \nonumber \\ % &\leq D_\text{reg}(G_1, G_3 | t, \alpha=1) \nonumber \\ % &= \inf_{P|\mathcal{C}(P)} \left\{ {\left| \left| P e^{t L_1} - e^{t L_3 } P \right| \right|}_F + {\left| \left| e^{t L_1} - e^{t L_1 } \right| \right|}_F \right. \nonumber \\ &\quad \quad \quad + \left. {\left| \left| e^{t L_3} P - e^{t L_3 } P \right| \right|}_F \right\} \nonumber \\ % &= \inf_{P|\mathcal{C}(P)} {\left| \left| P e^{t L_1} - e^{t L_3 } P \right| \right|}_F \nonumber \end{aligned} Suppose that α32,P32=arginfa>0infP|𝒞(P){||PetαL2etαL3P||F+||etαL2etL2||F+||etL3PetαL3P||F}α21,P21=arginfa>0infP|𝒞(P){||PetαL1etαL2P||F+||etαL1etL1||F+||etL2PetαL2P||F}\begin{aligned} \alpha_{32}, P_{32} &= \arg \inf_{a > 0} \inf_{P | \mathcal{C}(P)} \left\{ {\left| \left| P e^{\frac{t}{\alpha} L_2} - e^{t \alpha L_3 } P \right| \right|}_F + {\left| \left| e^{\frac{t}{\alpha} L_2} - e^{t L_2 } \right| \right|}_F \right. \nonumber \\ &\quad \quad \quad + \left. {\left| \left| e^{t L_3} P - e^{t \alpha L_3 } P \right| \right|}_F \right\} \nonumber \\ % \alpha_{21}, P_{21} &= \arg \inf_{a > 0} \inf_{P | \mathcal{C}(P)} \left\{ {\left| \left| P e^{\frac{t}{\alpha} L_1} - e^{t \alpha L_2 } P \right| \right|}_F + {\left| \left| e^{\frac{t}{\alpha} L_1} - e^{t L_1 } \right| \right|}_F \right. \nonumber \\ &\quad \quad \quad + \left. {\left| \left| e^{t L_2} P - e^{t \alpha L_2 } P \right| \right|}_F \right\} \nonumber \end{aligned} Then, $$\begin{aligned} \inf_{P|\mathcal{C}(P)} {\left| \left| P e^{t L_1} - e^{t L_3 } P \right| \right|}_F &\leq {\left| \left| P_{32} P_{21} e^{t L_1} - e^{t L_3 } P_{32} P_{21} \right| \right|}_F \\ \inf_{P|\mathcal{C}(P)} {\left| \left| P e^{t L_1} - e^{t L_3 } P \right| \right|}_F &\leq {\left| \left| P_{32} P_{21} e^{t L_1} - P_{32} P_{21} e^{\frac{t}{\alpha_{21}} L_1} \right. \right. } + P_{32} P_{21} e^{\frac{t}{\alpha_{21}} L_1} \\* & \quad - P_{32} e^{t \alpha_{21} L_2 } P_{21} + P_{32} e^{t \alpha_{21} L_2 } P_{21} - P_{32} e^{t L_2 } P_{21} \\* & \quad + P_{32} e^{t L_2 } P_{21} - P_{32} e^{\frac{t}{\alpha_{32}} L_2 } P_{21} + P_{32} e^{\frac{t}{\alpha_{32}} L_2 } P_{21} \\* & \quad - e^{t \alpha_{32} L_3 } P_{32} P_{21} {\left. \left. + e^{t \alpha_{32} L_3 } P_{32} P_{21} - e^{t L_3 } P_{32} P_{21} \right| \right|}_F \\ &\leq {\left| \left| P_{32} P_{21} e^{t L_1} - P_{32} P_{21} e^{\frac{t}{\alpha_{21}} L_1}\right| \right|}_F \\* & \quad + {\left| \left| P_{32} P_{21} e^{\frac{t}{\alpha_{21}} L_1} - P_{32} e^{t \alpha_{21} L_2 } P_{21} \right| \right|}_F \\* & \quad + {\left| \left| P_{32} e^{t \alpha_{21} L_2 } P_{21} -P_{32} e^{t L_2 } P_{21} \right| \right|}_F \\* & \quad + {\left| \left| P_{32} e^{t L_2 } P_{21} - P_{32} e^{\frac{t}{\alpha_{32}} L_2 } P_{21} \right| \right|}_F \\* & \quad + {\left| \left| P_{32} e^{\frac{t}{\alpha_{32}} L_2 } P_{21} - e^{t \alpha_{32} L_3 } P_{32} P_{21} \right| \right|}_F \\* & \quad + {\left| \left| e^{t \alpha_{32} L_3 } P_{32} P_{21} - e^{t L_3 } P_{32} P_{21} \right| \right|}_F \\ \intertext{by Lemma \ref{lem:p_lem_1},} \inf_{P|\mathcal{C}(P)} {\left| \left| P e^{t L_1} - e^{t L_3 } P \right| \right|}_F &\leq {\left| \left| e^{t L_1} - e^{\frac{t}{\alpha_{21}} L_1}\right| \right|}_F + {\left| \left| P_{21} e^{\frac{t}{\alpha_{21}} L_1} - e^{t \alpha_{21} L_2 } P_{21} \right| \right|}_F \\ & \quad + {\left| \left| e^{t \alpha_{21} L_2 } P_{21} - e^{t L_2 } P_{21} \right| \right|}_F \\ &+ {\left| \left| e^{t L_2 } - e^{\frac{t}{\alpha_{32}} L_2 } \right| \right|}_F + {\left| \left| P_{32} e^{\frac{t}{\alpha_{32}} L_2 } - e^{t \alpha_{32} L_3 } P_{32} \right| \right|}_F \\ & \quad + {\left| \left| e^{t \alpha_{32} L_3 } P_{32} - e^{t L_3 } P_{32} \right| \right|}_F \\ &= D_\text{reg}(G_1, G_2 | t = c) + D_\text{reg}(G_2, G_3 | t = c)\end{aligned}$$ Since this is true for any fixed tt, let t*=argsuptDreg(G1,G3|t).\begin{aligned} t^* = \arg \sup_t D_\text{reg}(G_1, G_3 | t).\end{aligned} Then Dreg(G1,G3)=supcDreg(G1,G3|t)=Dreg(G1,G3|t*)Dreg(G1,G2|t*)+Dreg(G2,G3|t=t*)supt21Dreg(G1,G2|t21)+supt32Dreg(G2,G3|t32)=Dreg(G1,G2)+Dreg(G2,G3)\begin{aligned} D_\text{reg}(G_1, G_3) &= \sup_c D_\text{reg}(G_1, G_3 | t) \\ &= D_\text{reg}(G_1, G_3 | t^*) \\ & \leq D_\text{reg}(G_1, G_2 | t^*) + D_\text{reg}(G_2, G_3 | t = t^*) \\ & \leq \sup_{t_{21}} D_\text{reg}(G_1, G_2 | t_{21}) + \sup_{t_{32}} D_\text{reg}(G_2, G_3 | t_{32}) \\ &= D_\text{reg}(G_1, G_2) + D_\text{reg}(G_2, G_3)\end{aligned}

We can construct a similar regularized version of the linear objective function: $$\begin{aligned} \tilde{D}_\text{reg}(G_1, G_2) &= {\left| \left| \frac{1}{\alpha} P L_1 - \alpha L_2 P \right| \right|} + {\left| \left| \frac{1}{\alpha} L_1 - L_1 \right| \right|} + {\left| \left| \frac{\null}{\null} P L_2 - \alpha L_2 P \right| \right|}\end{aligned}$$

The additional terms included in DregD_\text{reg} and D̃reg\tilde{D}_\text{reg} penalize α\alpha distorting the respective Laplacians far from their original values. In practice, many of the theoretical guarantees provided earlier in this manuscript may not apply to optimization of the augmented objective function. Hence, a major area of future work will be modification of our optimization procedure to compute this form of distance.

Theory Summary

Triangle inequalities are proven for some members of the proposed family of graph distortion or “distance” measures, including infinitesimal and finite diffusion time, a power law for sparsity, and/or a power law for the time scaling factor between coarse and fine scales. However, the case of an optimal (not power law) time conversion factor α\alpha needs to be investigated by numerical experiment, and that requires new algorithms, introduced in Section 4.3. We also show that in the case of distances between graph box products, optimization over PP for the product graphs is bounded above by a monotonic function of the optimum over the component graphs.