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Local search algorithms 
• In many optimization problems, the path to the goal is 

irrelevant; the goal state itself is the solution 
– Local  search: widely used for very big problems 
– Returns good but not optimal solutions 
– Usually very slow, but can yield good solutions if you  wait 

 

• State space = set of "complete" configurations 
• Find a complete configuration satisfying constraints 

– Examples: n-Queens, VLSI layout, airline flight schedules 
 

• Local search algorithms 
– Keep a single "current" state, or small set of states 
– Iteratively try to improve it / them 
– Very memory efficient 

• keeps only one or a few states 
• You control how much memory you use 



Typically, “tired of doing it” means that some resource limit is exceeded, 
e.g., number of iterations, wall clock time, CPU time, etc. 
It may also mean that result improvements are small and infrequent, 
e.g., less than 0.1% result improvement in the last week of run time. 

Basic idea of local search (many variations) 

// initialize to something, usually a random initial state 
// alternatively, might pass in a human-generated initial state 
best_found ← current_state ← RandomState() 
// now do local search 
loop do 
    if (tired of doing it) then return best_found 
    else 
        current_state ← MakeNeighbor( current_state ) 
        if ( Cost(current_state) < Cost(best_found) ) then 
            // keep best result found so far 
            best_found ← current_state 

You, as algorithm 
designer, write 
the functions 
named in red. 



Example: n-queens 
• Goal: Put n queens on an n × n board with no two 

queens on the same row, column, or diagonal 
• Neighbor: move one queen to another row 
• Search: go from one neighbor to the next… 



Algorithm design considerations 
• How do you represent your problem? 

 

• What is a “complete state”? 
 

• What is your objective function? 
– How do you measure cost or value of a state? 
– Stand on your head:  cost = −value, value = −cost 

 

• What is a “neighbor” of a state? 
– Or, what is a “step” from one state to another? 
– How can you compute a neighbor or a step? 

 

• Are there any constraints you can exploit? 



Random restart wrapper 
• We’ll use stochastic local search methods 

– Return different solution for each trial & initial state 
 

• Almost every trial hits difficulties (see sequel) 
– Most trials will not yield a good result (sad!) 

 

• Using many random restarts improves your chances 
– Many “shots at goal” may finally get a good one 

 

• Restart a random initial state, many times 
– Report the best result found across many trials 



Random restart wrapper 
best_found ← RandomState()   // initialize to something 
 
// now do repeated local search 
loop do 
    if (tired of doing it) 
        then return best_found 
    else 
        result ← LocalSearch( RandomState() ) 
        if ( Cost(result) < Cost(best_found) ) 
           // keep best result found so far 
            then best_found ← result 

Typically, “tired of doing it” means that some resource limit is exceeded, 
e.g., number of iterations, wall clock time, CPU time, etc. 
It may also mean that result improvements are small and infrequent, 
e.g., less than 0.1% result improvement in the last week of run time. 

You, as algorithm 
designer, write 
the functions 
named in red. 



Tabu search wrapper 
• Add recently visited states to a tabu-list 

– Temporarily excluded from being visited again 
– Forces solver away from explored regions 
– Less likely to get stuck in local minima (hope, in principle) 

 

• Implemented as a hash table + FIFO queue 
– Unit time cost per step; constant memory cost 
– You control how much memory is used 

 

• RandomRestart( TabuSearch ( LocalSearch() ) ) 



best_found ← current_state ← RandomState()   // initialize 
loop do // now do local search 
    if (tired of doing it) then return best_found else 
        neighbor ← MakeNeighbor( current_state ) 
        if ( neighbor is in hash_table ) then discard neighbor 

  else push neighbor onto fifo, pop oldest_state 
                remove oldest_state from hash_table, insert neighbor 

  current_state ← neighbor; 
           if ( Cost(current_state ) < Cost(best_found) ) 
               then best_found ← current_state  
 

 FIFO QUEUE Oldest 
State 

New 
State 

 HASH TABLE 
State 

Present? 

Tabu search wrapper (inside random restart! ) 



Local search algorithms 
• Hill-climbing search 

– Gradient descent in continuous state spaces 
– Can use, e.g., Newton’s method to find roots 

• Simulated annealing search 
• Local beam search 
• Genetic algorithms 
• Linear Programming (for specialized problems) 



Hill-climbing search 
“…like trying to find the top of Mount Everest in a thick fog while 

suffering from amnesia”  
 



12 (boxed) = best h 
among all neighors; 
select one randomly 

h = # of pairs of 
queens that are 
attacking each other, 
either directly or 
indirectly 
 
h=17 for this state 

Each number indicates h 
if we move a queen in its 
column to that square 

Ex: Hill-climbing, 8-queens 



• A local minimum with h=1 
 

• All one-step neighbors have 
higher h values 
 

• What can you do to get out 
of this local minimum? 

Ex: Hill-climbing, 8-queens 
 



Hill-climbing difficulties 
Note: these difficulties apply to all local search algorithms, and usually become 
much worse as the search space becomes higher dimensional 

 

• Problem: depending on initial state, can get stuck in local maxima 
•  

 



Hill-climbing difficulties 
Note: these difficulties apply to all local search algorithms, and usually become 
much worse as the search space becomes higher dimensional 

 

• Ridge problem: every neighbor appears to be downhill 
– But, search space has an uphill (just not in neighbors)  
–  

 Ridge: 
Fold a piece of 
paper and hold it 
tilted up at an 
unfavorable angle 
to every possible 
search space 
step. Every step 
leads downhill; 
but the ridge 
leads uphill. 

States / steps (discrete) 



• Hill-climbing in continuous state spaces 
• Denote “state” as θ, a vector of parameters 
• Denote cost as J(θ)  

• How to change θ to improve J(θ)? 
• Choose a direction in which J(θ) 

is decreasing 
• Derivative 

 
• Positive => increasing cost 
• Negative => decreasing cost 

Gradient descent 

The curly D means to take a 
derivative while holding all other 
variables constant. You are not 
responsible for multivariate calculus, 
but gradient descent is a very 
important method, so it is presented. 



(c) Alexander Ihler 

• Gradient vector 
 
 
 

Gradient = direction of 
steepest ascent 
Negative gradient = 
steepest descent 

 

Hill-climbing in continuous spaces 

Gradient descent 



 * Assume we have some cost-function:  
 and we want minimize over continuous variables x1,x2,..,xn  
 
1. Compute the gradient : 
 
2. Take a small step downhill in the direction of the gradient: 
 
 
3. Check if 
 
4. If true then accept move, if not “reject”.  
 
5. Repeat. 

Gradient = the most direct direction up-hill in the objective 
(cost) function, so its negative minimizes the cost function.  

Gradient descent 
Hill-climbing in continuous spaces 

(or, Armijo rule, etc.) 

(decrease step size, etc.) 

http://upload.wikimedia.org/wikipedia/commons/d/db/Gradient_ascent_(contour).png


• How do I determine the gradient? 
– Derive formula using multivariate calculus. 
– Ask a mathematician or a domain expert. 
– Do a literature search. 

 

• Variations of gradient descent can improve 
performance for this or that special case. 
– See Numerical Recipes in C (and in other languages) by 

Press, Teukolsky, Vetterling, and Flannery. 
– Simulated Annealing, Linear Programming too 

 

• Works well in smooth spaces; poorly in rough. 

 
 

Gradient descent 
Hill-climbing in continuous spaces 



Newton’s method 
• Want to find the roots of f(x) 

– “Root”: value of x for which f(x)=0 
 
 

• Initialize to some point xn 

• Compute the tangent at xn & compute xn+1 = where it crosses x-axis 
 



Newton’s method 
• Want to find the roots of f(x) 

– “Root”: value of x for which f(x)=0 
 
 

• Initialize to some point xn 

• Compute the tangent at xn & compute xn+1 = where it crosses x-axis 
• Repeat for xn+1 

 

– Does not always converge; sometimes unstable 
– If converges, usually very fast 
– Works well for smooth, non-pathological functions; accurate linearization 
– Works poorly for wiggly, ill-behaved functions; tangent is a poor guide to root 



Simulated annealing (Physics!) 
• Idea: escape local maxima by allowing some "bad" 

moves but gradually decrease their frequency 
 

Improvement: Track the 
BestResultFoundSoFar. 
Here, this slide follows Fig. 
4.5 of the textbook, which is 
simplified. 



• Usually use a decaying exponential 
• Axis values scaled to fit problem characteristics 

Tem
perature 

Typical annealing schedule 



• Decreases as temperature T decreases 
• Increases as |Δ E| decreases 
• Sometimes, step size also decreases with T 

 

Tem
perature 

e ∆E / T 
Temperature T 

High Low 

|∆E | 
High Medium Low 

Low High Medium 

Probability( accept worse successor ) 

(accept not “much” worse) 

(accept bad moves early on) 



Your “random restart 
wrapper” starts here. 

A 
Value=42 

B 
Value=41 

C 
Value=45 

D 
Value=44 

E 
Value=48 

F 
Value=47 

G  
Value=51 

Va
lu

e 

You want to get 
here.  HOW?? 

Goal: “ratchet up” a jagged slope 

This is an illustrative cartoon… 

Arbitrary (Fictitious) Search Space Coordinate 



Goal: “ratchet up” a jagged slope 
C 

Value=45 
∆E(CB)=-4 
∆E(CD)=-1 

P(CB) ≈.018 
P(CD)≈.37 

B 
Value=41 
∆E(BA)=1 
∆E(BC)=4 
P(BA)=1 
P(BC)=1 

A 
Value=42 
∆E(AB)=-1 
P(AB) ≈.37 

D 
Value=44 
∆E(DC)=1 
∆E(DE)=4 
P(DC)=1 
P(DE)=1 

E 
Value=48 
∆E(ED)=-4 
∆E(EF)=-1 

P(ED) ≈.018 
P(EF)≈.37 

F 
Value=47 
∆E(FE)=1 
∆E(FG)=4 
P(FE)=1 
P(FG)=1 

G 
Value=51 
∆E(GF)=-4 

P(GF) ≈.018 

x -1 -4 

ex ≈.37 ≈.018 

From A you will accept a move to B with P(AB) ≈.37. 
From B you are equally likely to go to A or to C. 
From C you are ≈20X more likely to go to D than to B. 
From D you are equally likely to go to C or to E. 
From E you are ≈20X more likely to go to F than to D. 
From F you are equally likely to go to E or to G. 
Remember best point you ever found (G or neighbor?). This is an illustrative cartoon… 

Your “random 
restart wrapper” 
starts here. 



Properties of simulated annealing 
• One can prove:  

– If T decreases slowly enough, then simulated annealing search 
will find a global optimum with probability approaching 1 

– Unfortunately this can take a VERY VERY long time 
– Note: in any finite search space, random guessing also will find 

a global optimum with probability approaching 1 
– So, ultimately this is a very weak claim 

 

• Often works very well in practice 
– But usually VERY VERY slow 

 

• Widely used in VLSI layout, airline scheduling, etc. 



Local beam search 
• Keep track of k states rather than just one 

 

• Start with k randomly generated states 
 

• At each iteration, all the successors of all k states are generated 
 

• If any one is a goal state, stop; else select the k best successors 
from the complete list and repeat. 

 

• Concentrates search effort in areas believed to be fruitful 
– May lose diversity as search progresses, resulting in wasted effort 



a1 b1 k1 … Create k random initial states 

… Generate their children 

a2 b2 k2 … Select the k best children 

… Repeat indefinitely… 

Is it better than simply running k searches?  
Maybe…?? 

Local beam search 



Genetic algorithms (Darwin!) 
• State = a string over a finite alphabet (an individual) 

– A successor state is generated by combining two parent states 
 

• Start with k randomly generated states (population) 
 

• Evaluation function (fitness function).  
– Higher values for better states. 

 

• Select individuals for next generation based on fitness 
– P(indiv. in next gen) = indiv. fitness / total population fitness 

 

• Crossover: fit parents to yield next generation (offspring) 
 

• Mutate the offspring randomly with some low probability 



fitness =  
#non-attacking 
queens 

 
 
 
 

 
• Fitness function: #non-attacking queen pairs 

– min = 0, max = 8 × 7/2 = 28 

• Σi fitness_i = 24+23+20+11 = 78 
• P(pick child_1 for next gen.) = fitness_1/(Σ_i fitness_i) = 24/78 = 31% 
• P(pick child_2 for next gen.) = fitness_2/(Σ_i fitness_i) = 23/78 = 29%; etc 

probability of being  
in next generation = 
fitness/(Σ_i fitness_i) 

How to convert a 
fitness value into a 
probability of being in 
the next generation. 



Linear Programming 

• Maximize: z = c1 x1 + c2 x2 +…+ cn xn 

• Primary constraints: x1≥0, x2≥0, …, xn≥0 
• Arbitrary additional linear constraints: 

ai1 x1 + ai2 x2 + … + ain xn ≤ ai, (ai ≥ 0) 
aj1 x1 + aj2 x2 + … + ajn xn ≥ aj ≥ 0 
bk1 x1 + bk2 x2 + … + bkn xn = bk ≥ 0 
 

• Restricted class of linear problems. 
– Efficient for very large problems(!!) in this class. 



Linear Programming 
Efficient Optimal Solution 
For a Restricted Class of Problems 

•Very efficient “off-the-shelf” 
  solvers are available for LPs. 
 
• They quickly solve large problems 
   with thousands of variables. 
 



Summary 
• Local search maintains a complete solution 

– Maintains a complete solution, seeks consistent (or at least good) 
– vs: Path search maintains a consistent solution; seeks complete 
– Goal of both: consistent & complete solution 

 

• Types: 
– hill climbing, gradient ascent 
– simulated annealing, other Monte Carlo methods 
– Population methods: beam search; genetic / evolutionary algorithms 
– Wrappers: random restart; tabu search 

 

• Local search often works well on very large problems 
– Abandons optimality 
– Always has some answer available (best found so far) 
– Often requires a very long time to achieve a good result 
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