
Providing Database as a Service

Hakan Hacıgümüş
Department of Information and

Computer Science
University of California
Irvine, CA 92697, USA

hakanh@acm.org

Bala Iyer
IBM Silicon Valley Lab.

San Jose, CA 95141, USA
balaiyer@us.ibm.com

Sharad Mehrotra
Department of Information and

Computer Science
University of California
Irvine, CA 92697, USA

sharad@ics.uci.edu

Abstract

In this paper, we explore a new paradigm for data
management in which a third party service provider hosts
”database as a service” providing its customers seamless
mechanisms to create, store, and access their databases
at the host site. Such a model alleviates the need for
organizations to purchase expensive hardware and soft-
ware, deal with software upgrades, and hire professionals
for administrative and maintenance tasks which are taken
over by the service provider. We have developed and de-
ployed a database service on the Internet, called NetDB2,
which is in constant use. In a sense, data management
model supported by NetDB2 provides an effective mecha-
nism for organizations to purchase data management as a
service, thereby freeing them to concentrate on their core
businesses. Among the primary challenges introduced by
”database as a service” are additional overhead of remote
access to data, an infrastructure to guarantee data privacy,
and user interface design for such a service. These issues
are investigated in the study. We identify data privacy as
a particularly vital problem and propose alternative solu-
tions based on data encryption. This paper is meant as a
challenges paper for the database community to explore a
rich set of research issues that arise in developing such a
service.

1. Introduction

Advances in the networking technologies have triggered
one of the key industry responses, the ”software as a ser-
vice” initiative, also referred to as the application ser-
vice provider (ASP) model. In this paper, we explore the
”database as a service” paradigm and the challenges intro-
duced by that.

Today, efficient data processing is a fundamental and vi-
tal issue for almost every scientific, academic, or business

organization. Therefore the organizations end up installing
and managing database management systems to satisfy dif-
ferent data processing needs. Although it is possible to pur-
chase the necessary hardware, deploy database products, es-
tablish network connectivity, and hire the professional peo-
ple who run the system, as a traditional solution, this solu-
tion has been getting increasingly expensive and impracti-
cal as the database systems and problems become larger and
more complicated.

As it is described above, the traditional solution entails
different costs. It might be arguable that hardware, soft-
ware, and network costs are decreasing constantly. Peo-
ple costs, however, generally, do not decrease. In the fu-
ture, it is likely that computing solution costs will be dom-
inated by people costs [13]. There is need for database
backup, database restore, and database reorganization to re-
claim space or to restore preferable arrangement of data.
Migration from one database version to the next, without
impacting solution availability, is an art still in its infancy
[5]. Parts of a database solution, if not the entire solution
usually become unavailable during version change. An or-
ganization that provides database service has an opportunity
to do these tasks and offer a value proposition provided it is
efficient.

The new paradigm challenges the traditional model
of data management followed by current organizations.
Database service provider provides seamless mechanisms
for organizations to create, store, and access their databases.
Moreover, the entire responsibility of database man-
agement, i.e., database backup, administration, restora-
tion, database reorganization to reclaim space or to re-
store preferable arrangement of data, migration from one
database version to the next without impacting availability
will befall such an organization. Users wishing to access
data will now access it using the hardware and software
at the service provider instead of their own organization’s
computing infrastructure. The application would not be im-
pacted by outages due to software, hardware and network-

Figure 1. System architecture of NetDB2

ing changes or failures at the database service provider’s
site. This would alleviate the problem of purchasing, in-
stalling, maintaining and updating the software and admin-
istrating the system. Instead of doing these, the organization
will only use the ready system maintained by the service
provider for its database needs.

The technological aspects of developing database as a
service lead to new research challenges. First and fore-
most is the issue of data privacy. In the database service
provider model, user data needs to reside on the premises
of the database service provider. Most corporations view
their data as a very valuable asset. The service provider
would need to provide sufficient security measures to guard
the data privacy. We propose data encryption as the solu-
tion to this problem. Detailed investigation of this solution
is presented in Section 5.

Second key challenge is that of performance. Since
the interaction between the users and the database service
provider takes place in a different medium, the network,
than it does in traditional databases, there are potential over-
heads introduced by this architecture. Therefore the sources
of performance degradation and its significance should be
determined.

Another challenge facing the database service provider
model is that of an appropriate user interface. Clearly, the
interface must be easy to use; yet it needs to be powerful
enough to allow ease in building applications.

We have developed and deployed a database service
on the Internet, called NetDB2, an experimental network-
based application service provider (ASP) system. It has
been operational over a year and used by number of uni-
versities to help teaching database courses at different loca-
tions. NetDB2 provides database services including tools
for application development, creating and loading tables,
and performing queries and transactions to the users over

the Internet.
In the system, data and all of the necessary database

products are located on the server site. A user makes a
connection to the system through the Internet and performs
the database queries and other relevant tasks over the data
through a web browser or an application programming in-
terface such as JDBC [6]. The design principle of the sys-
tem is to absorb complexity and workload on the server site
as much as possible. The goal is to keep the client side
lightweight, possibly requiring only a web browser to ac-
cess the system. This makes the system portable and read-
ily available from any location without any installation and
configuration at the client side. By using a web browser
based connection and web interface, the user has a chance to
access and use the whole set of database products, which are
professionally managed, without worrying about the system
administration, maintenance, upgrading the system etc.

The rest of the paper is organized as follows. Section 2
presents NetDB2’s system architecture. Section 3 describes
user interface design of NetDB2. Section 4 discusses ad-
ditional overheads due to the World Wide Web access to
NetDB2 system and presents experimental results based on
TPC-H benchmark queries. In Section 5 we describe our
solution to data privacy problem and provide experimental
results for different alternatives proposed in the study. We
conclude the paper in Section 6.

2. System Architecture

The basic NetDB2 system is implemented as a three-tier
architecture, namely; the presentation layer, the application
layer, the data management layer (Figure 1). There are two
benefits of separating NetDB2 into layers. The first is the in-
sulation of software components of one layer from another,

Figure 2. A snapshot from NetDB2 client screen

the other is the separation of concerns that helps achieve
better interoperability and higher scalability.

NetDB2’s presentation layer consists of the end user’s
web browser and NetDB2’s HTTP server. The end user’s
browser is responsible for displaying the user interface
and the HTTP server manages the communication between
the browser and the application. The application executes
server side logic, which generates the user interface.

The application layer consists of Java servlets managed
by a servlet engine. Java was selected out of the desire for
platform portability. In response to user interaction, HTML
pages are generated and handed over to the presentation
layer. This layer is also responsible for user authentication,
session management by using session ids, and database con-
nection management. Section 3.2 describes how the basic
architecture was extended to support user defined interfaces.

The data management layer consists of a database man-

ager and a backup/recovery server. The servlet engine com-
municates with the database using the JDBC protocol [6].
The database server and the backup/recovery server com-
municate, on a set schedule, through a private and secure
high-speed network, without human involvement. On a set
schedule backed up data is automatically restored to a warm
standby NetDB2 system, with take over capability.

3. User Interface

3.1. NetDB2’s Visual Interface

NetDB2 provides a web interface, which makes the sys-
tem accessible from any computer running a web browser
via Internet. Through NetDB2’s user interface, one can
create/remove tables, views, triggers, indexes, abstract data
types, SQL queries, generate and call user defined functions

and stored procedures, creating and deleting indexes, etc. In
a sense, this interface supports portions of database applica-
tion development that can be pushed into the database.

A screen snapshot of NetDB2’s visual interface is given
in Figure 2. (This view is obtained after (1) querying meta-
data for table names and (2) after submitting a select query.)
The first screen seen by the user logging on to NetDB2’s vi-
sual interface is divided into four parts. The left portion of
the screen (Region 1 in the Figure 2.) lists available tools
and documentation. The middle region of the screen is used
to type in queries and obtain their results. The upper half
(Region 2 in the Figure 2.) is reserved for entering a SQL
query, and the lower half (Region 3 in the Figure 2.) for
results. Users commonly refer to metadata, tools and docu-
mentation during the use of the service. Whenever metadata
is queried from here, the metadata queried is displayed on
the right portion of the screen (Region 4 in the Figure 2.).

The user interface mainly provides the following func-
tionality; metadata information for users database, the
Script Center, which allows users to send more than one
SQL queries, the Stored Procedure Center, which is used to
create stored procedures, the User Defined Function Cen-
ter, which is used to extend the built-in functions supplied
with the database manager, Load Utility, which is used to
upload (bulk) data from the end users computer through the
network and insert into tables specified by them.

3.2. NetDB2’s User Defined Interface

Another class of NetDB2 users is the users who provide
access to their data on NetDB2 to end-users. We refer to
such users as application service providers. They wish to
present their own user interfaces to the end-users instead of
NetDB2’s user interface. NetDB2 also supports these users
with its triangulation architecture given in Figure 3.

Application service providers are required to register
the URL of their user interface with NetDB2. When an
end-user logs into NetDB2, the end-user is redirected to
the registered URL and a NetDB2 session is initiated for
the end-user. Session management responsibility is pro-
vided by NetDB2, on behalf of the application service
provider, simplifying application service providers pro-
gramming. NetDB2 gives the application service provider
the ability to set the redirection URL dynamically by read-
ing it from an updateable table. Queries may be sent to
NetDB2 by using supported programmatic interfaces, like
JDBC [6], or by passing query parameters through URL.

It is also possible to allow NetDB2 end-users to be redi-
rected to application service providers interfaces without
logging into NetDB2. In this case, however, session man-
agement and authentication would need to be handled by
the application service provider. Database calls are coded
in the same way described above.

Redirection

Login

HTTP

Request/Response

HTTP Response HTTP Request

End-User

Intermediate UI NetDB2

Figure 3. NetDB2’s triangulation architecture
for user defined interface

4. Performance Considerations for Service De-
livery Penalty

In our implementation of database as a service, users ac-
cess the database over the Internet and the results of their
queries are sent back over the Internet. Therefore, we eval-
uated the overhead introduced by the extra infrastructure
that converted database into a service. This overhead will
be referred to as the service delivery penalty. We studied
NetDB2 performance using the industry standard TPC-H
benchmark [15] on scale factor of 0.1, 1, and 10 databases.

The TPC-H queries were first run directly on the DB2’s
database manager from the server machine console. In this
configuration, there is no network overhead. Next we re-ran
the TPC-H benchmark queries, this time using the NetDB2
interface, and over the Internet. The response time mea-
surements showed that for the overall benchmark the ser-
vice delivery penalty, i.e., the extra percent response time
overhead for running TPC-H is 28% for 0.1 scale database,
8% for scale 1 database, and 1% for scale 10 database. The
number of rows returned to the user grows less than linearly
with database size (scale), 10726 rows for 0.1 scale, 70815
for 1 scale, 541220 for 10 scale. The fractional overhead
due to the web decreases with TPC-H scale factor. The re-
sults are shown in Figure 4.

The TPC-H experiments were conducted on an IBM
Netfinity 5500 server with dual Pentium III 600 MHz pro-
cessors with 512 MB RAM. Software components used
were IBM DB2 v7.1, IBM WebSphere Application Server
v3.5, IBM JDK v 1.1.1.8 and Microsoft Windows NT 4.0.
The database service was made available on the Internet
over a 10-Mb link.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 1 10

Scale Factor

P
e
r
fo

r
m

a
n

c
e

R
a
ti

o

DB2 NetDB2

Figure 4. Relative performance comparison
for DB2 versus NetDB2

5. Data Privacy

Privacy on the Internet is an issue that is of significant in-
terest. There are two fundamental issues: 1) Privacy of data
during transmission and 2) Privacy of stored data. The first
issue, privacy during network transmission, has been stud-
ied widely in the Internet area and addressed by the Secure
Socket Layer protocol (SSL) [8] and Transport Layer Secu-
rity (TSL) protocol [4]. The second issue, privacy of stored
data in relational databases is less studied and of greater
relevance to database as a service model. If database as a
service is to be successful, and customer data is to reside
on the site of the database service provider, then the service
provider needs to find a way to preserve the privacy of the
user data. There needs to be security measure in place so
that even if the data is stolen, the thief cannot make sense of
it.

Encryption is the perfect technique to solve this prob-
lem. Prior work [7] [2] does not address the critical issue of
performance. But in this work, for the first time, we have
addressed and evaluated the most critical issue for the suc-
cess of encryption in databases, performance. To achieve
that, we have analyzed different solution alternatives.

There are two dimensions to encryption support in
databases. One is the granularity of data to be encrypted
or decrypted. The field, the row and the page, typically
4KB, are the alternatives. The field may appear to be the
best choice, because it would minimize the number of bytes
encrypted. However, as we have discovered, practical meth-
ods of embedding encryption within relational databases
entail a significant start up cost for an encryption operation.
Row or the page level encryption amortizes this cost over
larger data. The second dimension is software versus hard-
ware level implementation of encryption algorithms. Our
results show that the choice makes significant impact on the
performance.

5.1. Software level encryption

We considered two encryption algorithms: a) RSA [10]
and b) Blowfish [11]. We conducted experiments using
both these algorithms and found that the performance of the
Blowfish algorithm we implemented in Java is better than
the RSA implementation available to us. We report on our
experience with the Blowfish algorithm. Blowfish is fast,
compact, and simple, compared to other well-known en-
cryption algorithms such as DES [12]. Detailed description
of the algorithm is given in [12]. Blowfish is a 64-bit block
cipher, which means that data is encrypted and decrypted
in 64-bit chunks. This has implication on short data. Even
8-bit data, when encrypted by the algorithm will result in 64
bits.

Blowfish implementation was registered into the
database as a user defined function (UDF) (also known as
foreign function). Once it was registered, it could be used
to encrypt the data in one or more fields - whenever data
was inserted into the chosen fields, the values are encrypted
before being stored. On read access, the stored data is de-
crypted before being operated upon.

For example, if we were to encrypt the column
discount of a table called lineitem using the user de-
fined function called ”encrypt”, and decrypt it by the user
defined function ”decrypt” one would use the following
SQL command to insert data into the table lineitem:

insert into lineitem (discount)
values (encrypt(10,key))

The statement to select the encrypted field is given next:

select decrypt(discount,key)
from lineitem
where custid = 300

In this approach the creator of the encrypted data sup-
plies the key, and the database provides the encryption func-
tion. Only those users who are given the key can decrypt the
data using the decryption algorithm. Since the key is owned
by the creator, and not stored at the site of the database ser-
vice provider, unauthorized person who may get hold of
disk files can not get hold of the key. In fact, even em-
ployees of the database service provider do not have access
to the encryption key. The full security provided by the en-
cryption algorithm is inherited by the data in the database.
Note that we used the generic function name encrypt and
decrypt in the query. In fact, we could implement the two
functions with any encryption algorithm. Also note that
users of our database service can easily specify and use en-
cryption algorithms of their choice, using the facilities pro-
vided by our database service.

5.2. Hardware level encryption

Specialized encryption hardware, the IBM S/390 Cryp-
tographic Coprocessor, is available under IBM OS/390 en-
vironment with Integrated Cryptographic Service Facility
(ICSF) libraries. IBM DB2 for OS/390 provides a facility
called ”editproc” (or edit routine), which can be associated
with a database table. An edit routine is invoked for a whole
row of the database table, whenever the row is accessed by
the DBMS.

We registered an encryption/decryption edit routine for
the tables. When a read/write request arrives for a row
in one of these tables, the edit routine invokes encryp-
tion/decryption algorithm, which is implemented in hard-
ware, for whole row. We used the DES [3] algorithm option
for encryption hardware.

5.3. Encryption scheme alternatives

We did not consider all possible combinations of dif-
ferent encryption approaches, namely; software and hard-
ware level encryption, and different data granularity. We
started with software encryption at field level. As it is pre-
sented in the performance results, for some particular cases,
such as TPC-H Query #1, this introduced prohibitively large
overhead on query response time. Note that, one selected
field was encrypted to evaluate this combination. Having
these results, we predicted that software encryption at row
level, where all of the fields are encrypted, and page level
encryption will introduce even much higher performance
overheads. Because of this, we directed our experiments
to hardware level encryption alternatives.

In hardware encryption, we did not consider field level
encryption. The main reason is the expansion in the orig-
inal data size due to the nature of block cipher encryption
algorithms. This behavior is described in software level en-
cryption section. This problem is not severe when the in-
put data is typically 80-120 bytes row as generally the size
of a row is relatively larger than a size of a field. For ex-
ample, in TPC-H benchmark database, there are number of
fields, which are defined as one byte character data, which
becomes 8 bytes when processed by the encryption algo-
rithm.

5.4. Encryption Penalty

If we compare the response time for a query on unen-
crypted data with the response time for the same query over
the same data, but with some or all of it encrypted, the re-
sponse time over encrypted data will increase due to both
the cost of decryption as well as routine and/or hardware
invocations in DB2. This increase is referred to as the en-
cryption penalty. To measure the encryption penalty, first,

0

0.5

1

1.5

2

2.5

3

3.5

0.1 1 10

Scale Factor

P
e
r
fo

r
m

a
n

c
e

R
a
ti

o

NetDB2 NetDB2 with encryption

Figure 5. Relative performance comparison
for NetDB2 versus NetDB2 with encryption
(Query #1 excluded)

we used all the queries in the TPC-H benchmark for soft-
ware level encryption in the way described above.

We found software field level encryption to be particu-
larly CPU intensive. When we encrypted all fields of all
tables of the TPC-H workload, the encryption penalty was
extremely large. An observation according to recent studies
is that, different fields have different sensitivity [16]. It is
possible for NetDB2 to support encryption only on selected
fields of selected tables. To illustrate this, we picked one
field for the TPC-H schema and encrypted it. In particu-
lar we picked a field from the largest table in the database,
l discount from the lineitem table, and encrypted it.
As described in an earlier section, encryption was defined
as a foreign function. We used the Blowfish algorithm. Ex-
cept for one query, Query #1, the overheads, although still
large, show that it is possible to selectively support encryp-
tion. The performance results for running all the queries in
the TPC-H benchmark, except Query #1, is given in Fig-
ure 5. Query #1, which first showed a dramatic increase in
response time, is studied in more detail.

Query #1 from the TPC-H suite is given in Figure 6.
The query refers to the majority of rows of a single table,
lineitem, and computes multiple aggregates. Three of
the aggregate computations require the decryption of the
encrypted field l discount. Decryption took place three
times for each row of the table that passes the selection con-
dition. Since the same field that is decrypted thrice; we
looked for a way to eliminate the two redundant decryp-
tions. We were able to rewrite the query using a feature of
DB2 that temporarily materializes a specific part of a query.
We used the feature in a way to reduce to only one decryp-
tion function execution per row selected by the query. The
rewritten query is given in Figure 7.

Rewriting the query improves the response time of
Query #1 by a factor of 3.8 approximately. We measured
the improvement for TPC-H database sizes of 0.1, 1 and
10. The improvement ratios are given in Figure 8. Improve-
ments are due to a factor of 3 reduction in decryption calls

select
l returnflag, l linestatus, sum(l quantity) as sum qty, sum(l extendedprice) as sum base price,
sum(l extendedprice * (1 - decrypt(l discount,key))) as sum disc price,
sum(l extendedprice * (1 - decrypt(l discount,key)) * (1 + l tax)) as sum charge, avg(l quantity) as avg qty,
avg(l extendedprice) as avg price, avg(decrypt(l discount,key)) as avg disc, count(*) as count order

from lineitem
where

l shipdate
���

date (’1998-12-01’) - 90 day
group by l returnflag, l linestatus
order by l returnflag, l linestatus

Figure 6. First version of Query #1 with encryption

declare global temporary table session.dd (lr char(1),ll char(1), lq float, le float, d discount float, lt float, ls date)
on commit preserve rows not logged;

insert into session.dd
select l returnflag, l linestatus, l quantity, l extendedprice, decrypt(l discount,key), l tax, l shipdate
from lineitem
where l shipdate

���
date (’1998-12-01’) - 90 day;

select
lr, ll, sum(lq) as sum qty, sum(le) as sum base price, sum(le * (1 - d discount)) as sum disc price,
sum(le * (1 - d discount) * (1 + lt)) as sum charge, avg(lq) as avg qty, avg(le) as avg price, avg(d discount) as avg disc,
count(*) as count order
from session.dd
group by lr,ll
order by lr,ll;

Figure 7. Modified version of Query #1 with encryption

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.1 1 10

Size of Database expressed in TPC-H scale factors

R
e
s
p

o
n

s
e

ti
m

e
im

p
ro

v
e
m

e
n

t

ra
ti

o

Figure 8. Query #1 response time improve-
ment ratio due to rewrite

and changes in the query plan. A formal method for this
process is given in Section 5.6.

Since Query #1 shows a large increase in the first form
of software encryption, we applied our hardware level en-
cryption techniques on this query to measure and compare
the performance of the alternatives. We followed the sys-
tem setup described above and created TPC-H data on IBM
OS/390 environment. Figure 9 shows the comparison be-
tween software level encryption and hardware level encryp-

0
0 100000 200000 300000 400000 500000 600000

Q
u
e
ry

E
x
e
c
u
ti
o
n

T
im

e

Number of Rows

'SW'
'HW'

Figure 9. Comparison between software and
hardware encryption for Query #1

tion. Figure 9 shows that as the number of rows increases,
query execution time grows very sharply in software level
encryption. (It is even hard to observe the curve for soft-
ware encryption in the graph.) On the other hand, hardware
level encryption shows almost perfectly linear increase, en-
abling to process all of the rows stored in the input table,
which has more than 600.000 rows. Another very impor-
tant point to note here is, all of the fields are encrypted in
the hardware level encryption case, whereas only one field

(l discount) is encrypted in software encryption case.
Therefore the difference would be far larger if we had ex-
perimented the software level encryption by encrypting all
of the fields in the table.

5.5. Page Level Encryption

As it was shown in the previous section, we obtained
significant improvement in query response time by ap-
plying hardware level encryption techniques. The cost
of encryption/decryption consists of start up cost, which
involves function and hardware invocation, and encryp-
tion/decryption algorithm execution cost, which is de-
pended on the size of the input data. This implies that the
start up cost is paid every time a row is processed by en-
cryption, since we use row level encryption. To eliminate
the affect of start up cost, we investigated another tech-
nique, page level encryption. In this case the granularity
of the data is a page. Whenever a page is accessed, it is en-
crypted/decrypted as it is performed for row level encryp-
tion.

Since there was no straightforward way to implement
page level encryption, we evaluate the performance of
page level encryption using an estimation model. To
simulate page level encryption, we make each record of
the lineitem table one page long by expanding the
l comment field and fixed the number of rows in the
new table to number of pages occupied by the original
lineitem table.

Hence, whenever a row is accessed in the new table,
one page amount of data is processed. Since we keep the
schema of the table same, except l comment field, which
is not used in the query, we are able to run the same query
on the new table to compare the query response times. Fig-
ure 10 shows relative comparison among the original (non
encrypted) query response time, row level hardware en-
crypted query, and estimate for page level hardware en-
crypted query. It is shown that, page level encryption in-
troduces even more improvement on row level hardware
encryption. The relative difference between non-encrypted
query and page level encrypted query response time is 38%.

5.6. Query rewriting to improve software encryp-
tion

It is possible to automate the rewrite of a query to
use temporary materialized views. A method for common
subexpression elimination (CSE) needs to be applied to ex-
pensive user defined functions for a query. Common subex-
pression detection and elimination are well known in com-
piler optimization [1] [9]. An occurrence of an expression is
a common subexpression (CS) if there is another occurrence

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

No encryption Row level encryption Page level encryption

R
e
la

ti
v
e

C
P

U
T

im
e

Figure 10. CPU time for no encryption, row
level encryption, and page level encryption
for Query #1

of the expression whose evaluation always precedes this one
in execution order and if the operands of the expression re-
main unchanged between the two evaluations [9].

Common UDF subexpressions may be detected during
query parsing. To illustrate, we give a simplified subset
of SQL grammar in Appendix. For simplicity, lets assume
that UDFs only take base columns as parameters, and not
other UDFs. To detect CSs, we use a two-dimensional ar-
ray, which stores UDF calls in the query text. Each row of
the array stores the name of the UDF, the operand, and the
number of times it is used. Whenever a new UDF is parsed
out, the array is looked up to determine if the same UDF has
been previously called with same operand. If it has, then the
use count is increased, else the UDF, its operand are inserted
as a new UDF into the array. At the end, if we detect some
UDFs were called more then once with the same parame-
ter, we treat them as a common subexpression and they are
subject to our query rewriting procedure described below.

To form the materialized view (�) and the rewritten
query (���), which replaces the original query (�), we
adapted the notation given in [14]. Here we give the no-
tation for a simple select query with user defined functions,
aggregate functions, GROUP BY, and ORDER BY clauses.�	�

denotes the tables in the database and
� �
denotes set

of attributes of relation
���

, where
���������������� . ����� �"!$#&%'��(
denotes the set of tables with their columns in FROM clause
where ����� �)!$#*%"�+(,�.- �0/ %�
� / (���������� �	1 %2
� 1 (3 . 465$�'#*%"��(
denotes
� /�7 ����� 7
� 1

. 89!:�;%"��(denotes the set of base
columns in SELECT clause. We define three groups of
columns mentioned in SELECT clause: 1) non-aggregation
columns are denoted by 465$�'8<!=��%'��(. 2) aggregation
columns are written as

�	>0> % � (, where
�	>0>

is one of
the aggregation functions of SQL. The set of aggregation
columns is denoted by

�@?*? 8<!=��%"�+(. 3) UDF columns are in
the form of A6BDCE% � (, where A0BFC is the name of any valid
user defined function. The set of UDF columns is denoted
by A0GIHJ89!:�;%"��(.

Similarly
>6K 5=L*MN#*%"��(denotes the set of the columns in

GROUP BY clause of the query � , and O K G*! K #*%"�+(denotes
the set of the columns in ORDER BY clause of the query � ,
where

>6K 5=L&MP#&%'��(, O K G*! K #&%'��(�QR465$�"#*%'��(.
The conditions in WHERE clause of query � is denoted

by 465=�SGT#&%'��(.
We define three different types of column mapping from

query � to definition of view � . Each of these will
correspond to mapping for 465$�"8<!=�;%"��(, �@?*? 8<!=�;%"��(, and
A6GUHJ8<!=��%"�+(. We assume that, all user defined functions are
expensive functions in terms of system resources, therefore
they are subject to CSE. We use same set of column map-
pings to form query ��� .

1. Mapping VPW is defined as;
�YX[Z

,
�]\ 8<!=��%"�+(andZ^\ 8<!=��%'��(; i.e., each element of non-aggregation

columns of the query � will directly be mapped.

2. Mapping VN_ is defined as;
�	>0> _@% � (X Z

,
�[\

�@?*? 89!:�;%"��(and
Z`\ 465$�"89!:�;%"��(, where

�
is the

operand of aggregate function
��>0> _ ; i.e., aggrega-

tion functions are removed in mapping.

3. Mapping VSa is defined as; A6BFC2_b% � (X A0BFCdc	% Z (,�e\ A6GUHJ8<!=��%'��(and
Zf\ A6GUHJ8<!=�;%"��(, where

�
is

the operand of user defined function A6BFC _ ; i.e., user
defined functions are directly mapped.

The definition of the temporary materialized view will
contain all of the mappings from 465$�'8<!=��%'��(, �@?*? 89!:�;%"��(,
and A6GUHJ8<!=�;%"��(to view definition. We call this as maximal
coverage. An alternative approach would be defining some
subset of this mapping and defining a join block, which
joins the view and the necessary elements of ����� �"!$#&%'��(.
The algorithm steps are given in Figure 11. In the notation,Z _ ,

Z _ \ 465$�"#*%'�+(, denotes the corresponding mapping
for column

�
,
�g\ 465$�"#*%"�+(.

6. Conclusion

In this paper, we introduced NetDB2, an internet-based
database service built on top of DB2 that provides users
with tools for application development, creating and load-
ing tables, and performing queries and transactions.

Database as a service model introduces many signifi-
cant challenges primary of which are the additional over-
head of remote access to data (service delivery penalty),
an infrastructure to guarantee data privacy, and user inter-
face design for such a service. We have addressed these is-
sues. Our experiments using the TPC-H benchmark showed
that the network overhead is tolerable. Data privacy can
be achieved by using a suitable encryption algorithm. We
proposed, implemented, and evaluated different encryption
schemes. First, software level encryption techniques inves-
tigated. Field level encryption is implemented and evalu-
ated. In this scheme selected number of fields of the given

// Define the temporary materialized view
1 for each h2iPj�kmlonqpqr9s , t<uEvNuxw kyl;nzp{r9s�w

include |diN}�~*��p�h2i)s into definition of �
// Form insert statement
2 let ����n�kmlonqp{��sy}x� � , h�����kmlonqpq�9sy}�� � , �2�q��kmlonqpq��s�}�� �
3 for each hxj6����n�kmlonqp{r�s����n�kyl;nzp{��sy}�����n�kmlonqpqr9s���| , |�}�~&�yp�h�s
4 for each hxj�hd����kyl;nzp{r9s����n�kyl;nzp{��sy}�����n�kmlonqpqr9s���| , |�}�~��2p{h2s
5 for each hxj0�2�q��kyl;nzp{r9s�2�q��kyl;nzp{��s�}��2�q��kmlonqpqr9s&�	| , |,}�~��Sp{h2s
6 �2���Un�l���p{��s�}D�d���Un�lo��p{r9s
7 ���o�T����p{��s�}����;�T����p{r9s
// Form query r��
8 Replace each hxj0���on�kmlonqpqr9s����2� �; �¡�� pqr9s��	¢�� ��l;� ��p{r�s

by |��
9 Replace each hxj6h����:kmlonqp{r�s by h2�<�<�2p{|d��s
10 Replace each hxj��2�{��kmlonqp{r�s by |d�
11 �d���Un�l�� pqr � sy}x�����

Figure 11. Algorithm steps for query rewriting

table are encrypted. We showed that the query evaluation
time can significantly be reduced by rewriting the queries.
A formal method is also provided to make this process au-
tomatic. As a second step, we investigated hardware level
encryption techniques. At this level, row level encryption
scheme is implemented and evaluated. In row level encryp-
tion, all defined fields are encrypted as a whole. We showed
the drastic decrease in query execution times from software
level encryption. To obtain a more possible improvement,
another encryption scheme, page level hardware encryption
is suggested. We constructed an estimation model to eval-
uate the overheads of page level encryption. It was shown
that even more improvement is possible by using page level
encryption, which reduces the relative encryption overhead
to 38%. We believe, from our experience, database as a ser-
vice is a viable model and has a good chance of emerging
as a successful commercial offering for some applications.

Acknowledgements

We thank Dante Aubert, Girma Bizuneh, Thomas Burke,
Glen Deen, Joseph Demuth, Mohan Desouza, Linda Distel,
Nick Donofrio, Anne Gardner, Satish Gupta, Don Haderle,
Katharine Harris, Anant Jhingran, Kirk Jordan, Michael
Kelley, Gopal Krishnan, Charles Lickel, Bruce McAlister,
Diane Moebus, Inderpal Narang, Robert Pederslie, Tony
Rall, and Guraraj Rao for their generous support.

References

[1] A. Aho, S. Johnson, and J. Ullman. Code generation for ex-
pressions with subexpressions. Journal of ACM, Jan., 1977.

[2] G. Davida, D. Wells, and J. Kam. A database encryption sys-
tem with subkeys. ACM Transactions on Database Systems,
6(2), 1981.

[3] DES. Data encryption standard. FIPS PUB 46, Federal
Information Processing Standards Publication, 1977.

[4] T. Dierks and C. Allen. The TSL protocol. Internet Draft,
Nov., 1997.

[5] D. Gupta, P. Jalote, and G. Barua. A formal framework for
on-line software version change. IEEE Transactions on Soft-
ware Engineering, 22(2):120–131, 1996.

[6] G. Hamilton and R. Cattell. JDBC: A Java SQL API.
http://splash.javasoft.com/jdbc/.

[7] J. He and M. Wang. Encryption in relational database man-
agement systems. In Proc. Fourteenth Annual IFIP WG
11.3 Working Conference on Database Security (DBSec’00),
Schoorl, The Netherlands, 2000.

[8] P. Karlton, A. Freier, and P. Kocher. The SSL protocol v3.0.
Internet Draft, Nov., 1996.

[9] S. Muchnick. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann Publishers, 1997.

[10] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for
obtaining digital signatures and public key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

[11] B. Schneier. Description of a new variable-length key, block
cipher (blowfish), fast software encryption. In Cambridge
Security Workshop Proceedings, pages 191–204, 1994.

[12] B. Schneier. Applied Cryptography. John Wiley & Sons,
Inc., 1996.

[13] I. Sommerville. Software Engineering. Addison-Wesley, 6th
Edition, 2001.

[14] D. Srivastava, S. Dar, H. Jagadish, and A. Levy. Answering
queries with aggregation using views. In Proc. 22nd VLDB
Conference, India, 1996.

[15] TPC-H. Benchmark Specification. http://www.tpc.org.
[16] A. F. Westin. Freebies and privacy: What net users

think. Technical report, Opinion Research Corporation,
http://www.privacyexchange.org/iss/surveys/sr990714.html,
1999.

Appendix: Simplified Grammar for the SQL
Subset

<query> ::=
SELECT <select_list>
FROM <range_list>
WHERE <predicate>
[GROUP BY <attribute_list>]
[ORDER BY <attribute_list>]

<select_list> ::= <term>{"," <term>}
<range_list> ::= <relation_name>

{"," <relation_name>}
<attribute_list> ::=
<attribute_name>{","<attribute_name>}

<predicate> ::= <comparison_predicate>
<comparison_predicate> ::=
<term> <comp_op> <term>

<term> ::= <literal>|<attribute_name>|
<aggr_func>|<user_def_func>

<aggr_func> ::=
AVG|MAX|MIN|SUM|COUNT
"(" <attribute_name>
|{AVG|MAX|MIN|SUM|COUNT}|
{<user_def_func>} ")"

<user_def_func> ::=
<literal> "(" <attribute_name>|
{<user_def_func>} ")"

<relation name>,<attribute name>,<comp op>
are defined as in relational calculus.

