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1 Introduction

The proliferation of a new breed of data management applications that store
and process data at remote locations has led to the emergence of search over
encrypted data as an important research problem. In a typical setting of the
problem, data is stored at the remote location in an encrypted form. A query
generated at the client-side is transformed into a representation such that
it can be evaluated directly on encrypted data at the remote location. The
results might be processed by the client after decryption to determine the final
answers.

1.1 Motivation: Database as a Service

The primary interest in search over encrypted data has resulted from the
recently proposed database as a service (DAS) architecture [10, 26, 12, 7].
DAS architecture is motivated by the software as a service initiative of the
software industry, also referred to as the application service provider (ASP)
model. Today, efficient data processing is a fundamental need not just for aca-
demic and business organizations, but also for individuals and end customers.
With the advent of new technologies and multimedia devices, the amount
of data an average person produces in the form of emails, image and video
albums, personal records (e.g., health care, tax documents, financial transac-
tions, etc.) that they need to store and search is rapidly increasing. Effective
management of large amounts of diverse types of data requires powerful data
management tools. Unfortunately, expecting end-users to develop the ability
to install, administer, and manage sophisticated data management systems is
both impractical and infeasible. Likewise, in an organizational setting, expect-
ing small or medium size corporations to hire professional staff to manage and
run corporation’s databases is an expensive and, at times, a cost-prohibitive
alternative [12].

The “database as a service” (DAS) model, that offers variety of data man-
agement functionalities in the form of a service to clients, is an emerging
alternative that overcomes many of the above listed challenges of traditional
architectures. A DAS model consists of the following entities:

• Data Owner: This is the side that produces data and owns it. It is as-
sumed to have some limited computational resources and storage capabil-
ities but far less than the server.

• Server: The remote service provider, or the server stores and manages
the data generated by data owners. The service provider supports power-
ful and intuitive interfaces for data owners/users to create, store, access
and manipulate databases. The task of administering the database (e.g.,
installation, backups, reorganization, migration, software updates, etc.) is
entirely taken over by the service provider.
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• Data Clients: A data client could either be the same as the data owner or
if the owner is an organization, it could be its employees and/or its clients
(e.g., a bank is the data owner and individuals having accounts with the
bank are the data clients). The data clients can only access data according
to the access control policies set by the data owner, e.g., a data manager
might access all data, a bank-client may only access his personal account
data etc.

The DAS architecture offers numerous advantages including lower cost
due to the economy of scale, lower operating costs, etc. and enhanced services
(e.g., better reliability and availability, access to better hardware and software
systems, improved data sharing etc.). Today, DAS model is available in certain
vertical market segments – e.g., email service through Yahoo!, MSN, Google,
etc., as well as photo albums through companies such as Shutterfly. With
the advantages the model offers and the related commercial activities, it is
foreseeable that DAS architecture will permeate numerous other consumer as
well as business application domains in the near future.

The key technological challenge in DAS is that of data confidentiality. In
the DAS model, user data resides on the premises of the service provider.
Most corporations (and individuals) view their data as a valuable asset. The
service provider needs to provide sufficient security measures to guard the
data confidentiality. In designing mechanisms to support confidentiality and
privacy of user’s databases, a key aspect is that of trust, i.e., how much trust
is placed on the service provider by the data owner.

If servers could be completely trusted, the features are very similar to that
of a normal database management system which would have been deployed
within the organization of the data owner had the organization chosen to do
so. From the security perspective, the service provider has to enable traditional
access-control and other network security measures to prevent unauthorized
access and in general prevent malicious outsiders from launching any kind
of disruptive attacks. Furthermore, service providers may employ additional
security mechanisms to ensure safety even if data is stolen from organizations
by storing data on disks in an encrypted form [17, 12].

The nature of data processing starts to change when the level of trust in the
service-provider itself begins to decrease from complete to partial to (perhaps)
none at all! Such a varying trust scenario necessitates the usage of various se-
curity enhancing techniques in the context of DAS. The most popular trust
model studied is the passive adversary or curious intruder model. Here, the
server-side is considered truthful, in that model, the server implements var-
ious data storage and query processing functionalities correctly. The passive
adversary is one or more malicious individual(s) on the server-side who has
access to the data, e.g., a database administrator. A passive adversary only
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tries to learn sensitive information about the data without actively modifying
it or disrupting any other kind of services 5.

Almost all the proposed solution approaches in literature employ encryp-
tion to protect the customers’ data. The data is encrypted in a variety of
manner, i.e., at different granularity, using different encryption algorithms etc.
Since all customer data is encrypted while stored on the server, the key chal-
lenge becomes that of implementing the required data modification/querying
functionalities on this encrypted data – the topic of this chapter.

1.2 Overview of Problems Studied in Literature

Techniques to support search over the encrypted data depends upon the na-
ture of data as well as on the nature of search queries. The two data man-
agement scenarios that have motivated majority of the research in this area
are:

• Keyword-based search on encrypted text documents: The most
common setting is that of a remote (semi-trusted) email server which stores
encrypted emails of users and allows them to search and retrieve their
emails using keyword-based queries [7, 21, 6, 22].

• Query Evaluation on encrypted relational databases: The setting
of this problem is that of a remote (semi-trusted) relational database man-
agement system, which stores clients’ relational data and allows users to
search the database using SQL queries [10, 11, 12, 14, 3, 4].

In this chapter, we discuss advances in both of the problem settings. We
note that the solutions depend upon the particular instantiation of the DAS
model being studied. The general model allows for multiple data owners who
outsource their database management functionalities to the service provider.
Each such owner might have multiple clients who access various functional-
ities from these services. In cases where the client is a different entity from
the owner, different models of data access may be enforced, for instance a
session might require the client to connect via the data owner’s site onto the
service provider. Alternatively it might be a direct session with the service
provider, which does not involve the owner. Other models can be seen as the
simplifications of this general architecture. Different DAS models pose new
issues/challenges in ensuring data confidentiality.

For most of this chapter, as is the case with the current literature, we
will make a simplifying assumption that the data owner and client are the
same entity. We will discuss some of the challenges that arise in generaliz-
ing the model towards the end of the chapter. We begin by first discussing
approaches to support text search, which is then followed by techniques to
support relational/SQL queries.
5 Almost all the approaches we describe in this chapter address data confidentiality

and privacy issues for the passive adversarial model. We will refer to this model
interchangeably as the semi-trusted model.
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2 Keyword search on encrypted text data

In this section we discuss approaches proposed in the literature to support
keyword based retrieval of text documents. We begin by first setting up the
problem. Let Alice be the data owner who has a collection of text docu-
ments D = {D1, . . . , Dn}. A document Di is modelled a set of keywords
Di = {WDi

1 , . . . ,WDi
ni
}, each word w ∈ W, and (W ) is the set of all possible

keywords. Alice stores her document collection at a service provider. Since
the service provider is not trusted, documents are stored encrypted. Each
document is encrypted at the word level as follows: Each document is divided
up into equal length “Words”. Typically each such word corresponds to an
English language word where extra padding (with ‘0’ and ‘1’ bits) are added
to make all words equal in length. Periodically Alice may pose a query to
the server to retrieve a subset of documents. The query itself is a set of key-
words and the answer corresponds to the set of documents that contain all
the keywords in the query. More formally, the answer to a query q is given by:

Ans(q) = {Di ∈ D|∀kj ∈ q, kj ∈ Di}
The goal is to design techniques to retrieve answers while not revealing any

information beyond the presence (or absence) of the keywords (of the query)
in each document.

A few different variations of the basic keyword-search problem have been
studied over the past years [1, 6, 7, 21, 22, 2, 23]. The authors in [7, 21] study
the basic problem where a private-key based encryption scheme is used to
design a matching technique on encrypted data that can search for any word
in the document. Authors in [1] provide a safe public-key based scheme to
carry out “non-interactive” search on data encrypted using user’s public-key
for a select set of words. [6] proposes a document indexing approach using
bloom filters that allows the owner to carry out keyword searches efficiently
but could result in some false-positive retrievals. The work in [22, 2] propose
secure schemes for conjunctive keyword search where the search term might
contain the conjunction of two or more keywords. The goal here again is to
avoid any leakage of information over and above the fact that the retrieved
set of documents contain all the words specified in the query.

In this section, we describe a private-key based approach which is moti-
vated by [7] and was amongst the first published solutions to the problem of
searching over encrypted text data. The approach described incurs significant
overhead, requiring O(n) cryptographic operations per document where n is
the number of words in the document. We briefly discuss how such overhead
can be prevented using Bloom filters. The technique we discuss is a simplifi-
cation of [6] though it captures the essence of the idea.
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2.1 Private-Key based Search Scheme on Encrypted Text Data

Consider a data owner Alice who wishes to store a collection of documents with
Bob (the service provider). Alice encrypts each document D prior to storing
it with Bob. In addition, Alice creates a secure index, I(D), which is stored
at the service provider that will help her perform keyword search. The secure
index is such that it reveals no information about its content to the adversary.
However, it allows the adversary to test for presence or absence of keywords
using a trapdoor associated with the keyword where a trapdoor is generated
with a secret key that resides with the owner. A user wishing to search for
documents containing word w, generates a trapdoor for w which can then
be used by the adversary to retrieve relevant documents. We next describe
an approach to constructing secure index and the corresponding algorithm to
search the index for keywords.

The secure index is created over the keywords in D as follows. Let doc-
ument D consist of the sequence of words w1, . . . , wl. The index is created
by computing the bitwise XOR (denoted by the symbol ⊕) of the clear-text
with a sequence of pseudo-random bits that Alice generates using a stream
cipher. Alice first generates a sequence of pseudo-random values s1, . . . , sl us-
ing a stream cipher, where each si is n−m bit long. For each pseudo-random
sequence si, Alice computes a pseudo-random function Fkc(si) seeded on key
kc which generates a random m-bit sequence6. Using the result of Fk(si), Al-
ice computes a n-bit sequence ti :=< si, Fk(si) >, where < a, b > denotes
concatenation of the string a and b). Now to encrypt the n-bit word wi, Alice
computes the XOR of wi with ti, i.e., ciphertext ci := wi⊕ti. Since, only Alice
generates the pseudo-random stream t1, . . . , tl so no one else can decrypt ci.

Given the above representation of text document, the search mechanism
works as follows. When Alice needs to search for files that contain a word w,
she transmits w and the key k to the server. The server (Bob) searches for
w in the index files associated with documents by checking whether ci ⊕w is
of the form < s, Fk(s) >. The server returns to Alice documents that contain
the keyword w which can then be decrypted by Alice.

The scheme described above provides secrecy if the pseudo-random func-
tion F , the stream cipher used to generate si, and the encryption of the
document D are secure(that is, the value ti are indistinguishable from truly
random bits for any computationally bounded adversary). Essentially, the ad-
versary cannot learn content of the documents simply based on ciphertext
representation.

6 Pseudo-random functions: A pseudo-random function denoted as F : KF ×
X → Y , where KF is the set of keys, X denotes the set {0, 1}n and Y denotes
the set {0, 1}m. Intuitively, a pseudo-random function is computationally indistin-
guishable from a random function - given pairs (xi, f(x1, k)), . . . , (xm, f(xm, k)),
an adversary cannot predict f(xm+1, k) for any xm+1. In other words, F takes a
key k ∈ KF the set of keys, a n bit sequence x ∈ X where X is the set {0, 1}n

and returns a m bit sequence y ∈ Y where Y is the set {0, 1}m.
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While the approach described above is secure, it has a fundamental limi-
tation that the adversary learns the keyword wi that the client searches for.
The search strategy allows the adversary to learn which documents contain
which keywords over time using such query logs. Furthermore, the adversary
can launch attacks by searching for words on his own without explicit autho-
rization by the user thereby learning document content.

A simple strategy to prevent server from knowing the exact search word is
to pre-encrypt each word w of the clear text separately using a deterministic
encryption algorithm Ekp

, where the key kp is a private key which is kept
hidden from the adversary. After this pre-encryption phase, the user has a
sequence of E-encrypted words x1, . . . , xl. Now he post-encrypts that sequence
using the stream cipher construction as before to obtain ci := xi ⊕ ti, where
xi = Ekp(wi) and ti =< si, Fkc(xi) >. During search, the client, instead of
revealing the keyword to be searched, Computes Ekp

(wi) with the server.
The proposed scheme is secure and ensures that the adversary does not

learn document content from query logs. The scheme is formalized below.

• kp: Denotes the private-key of the user. kp ∈ {0, 1}s which is kept a secret
by the user.

• kc: Denotes a key called the collection key of the user. kc ∈ {0, 1}s and is
publicly known

• Pseudo-Random Function: F : {0, 1}s × {0, 1}n−m → {0, 1}m, is a
pseudo-random function that takes a n − m bit string, a s-bit key and
maps it to a random m-bit string. F is publicly known.

• Trapdoor function: Let T denote a trapdoor function which takes as
input, a private-key kp and a word w and outputs the trapdoor for the
word w, i.e., T (kp, w) = Ekp(w) where E is a deterministic encryption
function. For a given document, we denote the trapdoor for the ith word
by ti.

• BuildIndex(D,kp,kc): This function is used to build the index for doc-
ument D. It uses a pseudo-random generator G which outputs random
string of size s. The pseudo-code of the function is given below.

Algorithm 1 : BuildIndex

1: Input: D, kp, kc;
2: Output: ID /* The index for the document*/
3:
4: ID = φ;
5: for all wi ∈ D do
6: Generate a pseudo-random string si using G;
7: Compute trapdoor T (wi) = Ekp(wi);
8: Compute ciphertext ci = T (wi)⊕ 〈si, Fkc(si)〉;
9: ID = ID ∪ ci;

10: end for
11: Return ID;
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• SearchIndex(ID,T(w)): Given the document index and the trapdoor
for the word w being searched, the SearchIndex functionality returns the
document D if the word w is present in it. The pseudo-code is given below.

Algorithm 2 : SearchIndex

1: Input: ID, T (w);
2: Output: D or φ
3:
4: for all ci ∈ ID do
5: if ci ⊕ T (w) is of the form 〈s, Fkc(s)〉 then
6: Return D;
7: end if
8: end for
9: Return φ;

2.2 Speeding up search on encrypted data

The approach described above to search over encrypted text has a limitation.
Essentially, it requires O(n) comparisons (cryptographic operations) at the
server to test if the document contains a given keyword, where n is the num-
ber of keywords in the document. While such an overhead might be tolerable
for small documents and small document collections, the approach is inher-
ently not scalable. Authors in [6] overcome this limitation by exploiting bloom
filters for indexing documents. A Bloom filter for a text document is described
as follows.

Bloom Filters: A Bloom filter for a document D = {w1, . . . , wn} of n words
is a m-bit array constructed as follows. All array bits are initially set to 0.
The filter uses r independent hash functions h1, . . . , hr, where hi: {0, 1}∗ →
[1, m] for i ∈ [1, r]. For each word w ∈ D, the array bits at the positions
h1(w), . . . , hr(w) are set to 1. A location can be set to 1 multiple times. To
determine if a word a belongs is contained in the document D, we check
the bits at positions h1(a), . . . , hr(a). If all checked bits are 1’s, then a is
considered contained in the document D. There is however, some probability
of a false positive.

A simple Bloom filter can reveal information about the contents of the
document since the hash functions are publicly known. A straightforward
strategy to create secure index using Bloom filter is to instead index each
word w by its encrypted representation Ekp(w). Thus, the Bloom filter will be
constructed using the hash values hj(Ekp(w)), j = 1, . . . , r instead of applying
the hash functions on w directly. This strategy has a vulnerability though, the
“footprint” of a word (i.e., the bit-positions in the Bloom filter that are set to
‘1’ corresponding to w) is same for all documents containing the word w. This
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makes the scheme vulnerable to frequency-based attacks. One remedy is to use
the document-id while encoding the keywords. For instance, one can compute
the hash functions for the Bloom filter as follows: hj(Ekc(〈id(D), Ekp(w)〉)),
j = 1 . . . r and set the corresponding bits to 1 in the Bloom filter7. This
way representation of the same word is different across different documents.
As a result, unless a trapdoor is provided, the adversary cannot determine if
the same word appears across different documents. The pseudo-code for the
BuildIndexBF function is given below.

Algorithm 3 : BuildIndexBF

1: Input: D, kp, kc, h1, . . . , hr

2: Output: BFD /* The index for the document*/
3:
4: BFD = φ;
5: for all wi ∈ D do
6: Compute trapdoor T (wi) = Ekp(wi);
7: Compute string xi = Ekc(〈id(D), T (wi)〉)
8: for j = 1 to r do
9: compute bit-position bj = hj(xi);

10: set BFD[bj ] = 1;
11: end for
12: end for
13: Return BFD;

In the current scheme, the search needs to be performed in a slightly
different manner. If the user wants to search for a word w, he gives the
trapdoor T (w) = Ekp(w) to the server. The server executes the function
SearchIndexBF (given below) on each document D in the collection and
returns the appropriate ones.

Algorithm 4 : SearchIndexBF

1: Input: BFD, T (w), kc, h1, . . . , hr

2: Output: D or φ
3:
4: Compute x = Ekc(〈id(D), T (w)〉);
5: for j=1 to r do
6: if BFD[hj(x)] 6= 1 then
7: Return φ;
8: end if
9: end for

10: Return D;

7 The extra level of encryption with kc is not strictly required if the hash functions
hi’s are appropriately chosen to be one-way functions with collision resistance
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Above, we sketched an approach on how Bloom filters can be used to
do secure indices. The technique of using two levels of security (document-
id based encryption) to prevent frequency based attacks is similar to what is
proposed in [6]. The author in [6] develops a complete strategy for constructing
secure indices using Bloom filters and presents a detailed security analysis.

2.3 Secure Keyword Search using Public-Key Encryption

We now consider a variation to the basic encrypted text search problem where
the producer (owner) of the data and the data consumer (client) are different.
To motivate the problem, consider an (untrusted) email gateway that stores
incoming emails from multiple users. If emails are sensitive they will need
to be encrypted. So if Bob needs to send a sensitive email to Alice, he will
have to encrypt it using Alices public key. Now Alice may wish to have the
capability to search for such emails using keywords. Alice (or Alice’s mail
client) could, of course, download such email, decrypt it, create a secure index
using a secret key (as in the previous section) and store the index along
with the original encrypted email at the gateway. Such a secure index, if
integrated appropriately with the email server could provide Alice with the
requisite functionality. A more natural approach would be to instead exploit
a public-key encryption technique that directly supports keyword search over
encrypted representation. Such a public-key system is developed in [1] in the
limited context where Alice pre-specifies the set of keywords she might be
interested in searching the mail based on. Using the scheme developed in [1],
the mail sender (Bob) can send an email to Alice encrypted using her public
key. Alice can give the gateway a limited capability to detect some keywords
in her emails (encrypted using her public key) and have these mails routed
in a different manner, e.g. an email with keyword “lunch” should be routed
to her desktop and one with “urgent” should be routed to her pager etc. The
scheme prevents the gateway from learning anything beyond the fact that a
certain keyword (for which it has the “capability” to test) is present in the
set of keywords associated with the mail.

The approach works by requiring the sender of the mail, Bob, to append to
the ciphertext (email encrypted using Alices public key) additional codewords
referred to as Public-key Encryption with Keyword Search (PEKS), one for
each keyword. To send a message M with keywords W1, . . . ,Wm Bob sends

EApub
(M)||PEKS(Apub,W1)|| . . . ||PEKS(Apub,Wm)

where Apub is Alice’s public key. This allows Alice to give the gateway a certain
trapdoor TW that enables the gateway to test whether one of the keywords
associated with the message is equal to the word W of Alice’s choice. Given
PEKS(Apub,W

′) and TW the gateway can test whether W = W ′. If W 6= W ′

the gateway learns nothing more about W ′.
We next describe the main construction of the approach in [1] which is

based on using bilinear maps.



Search on Encrypted Data 11

Bilinear maps: Let G1 and G2 be two groups of order p for some large prime
p. A bilinear map e : G1 ×G1 → G2 satisfies the following properties:

1. Computable: given g, h ∈ G1 there is a polynomial time algorithm to
compute e(g, h) ∈ G2.

2. Bilinear: We say that a map e : G1×G1 → G2 is bilinear if for any integers
s, y ∈ [1, p] we have e(gx, gy) = e(g, g)xy.

3. Non-degenerate: The map does not send all pairs of G1×G1 to the identity
in G2. Since G1, G2 are groups of prime order this implies that if g is a
generator of G1 then e(g, g) is a generator of G2.

[1] builds a searchable encryption scheme using bilinear maps as described
below.

• KeyGen: The input security parameter, s, determines the size, p of the
groups G1 and G2. The algorithm picks a random α ∈ Z∗p and a generator
g of G1. It outputs the public/private key pair Apub = [g, h = gα] and
Apriv = α.

• PEKS(Apub,W ): for a public key Apub and a word W , produce a search-
able encryption of W . First compute t = e(H1(W ), hr) ∈ G2 for a random
r ∈ Z∗p. Output PEKS(Apub,W ) = [gr, H2(t)], where H1 : {0, 1}∗ → G1

and H2 : G2 → {0, 1}log p.
• Trapdoor(Apriv,W ): given a private key and a word W , produce a trap-

door TW as TW = H1(W )α ∈ G1.
• Test(Apub, S, TW ): given Alice’s public key, a searchable encryption S =

PEKS(Apub,W
′), and a trapdoor TW = Trapdoor(Apriv, W ), outputs

‘yes’ if W = W ′ and ‘no’ otherwise. The test is performed as follows: let
S = [C, D]. Check if H2(e(TW , C)) = D. If so, output ‘yes’; if not, output
‘no’.

To illustrate how the PEKS based matching takes place, we can see that
for a keyword W in an email sent by Bob to Alice, Bob would create a corre-
sponding codeword PEKS(Apub,W ) as follows and attach it to his mail.

PEKS(Apub,W ) = [gr,H2(e(H1(W ), hr))] = S = [C,D]

Now, if Alice wanted to search for the same word W in mails, she would
produce the trapdoor TW = H1(W )α ∈ G1 and give it to the mail server to
do encrypted matching. Now we have C = gr and D = H2(e(H1(W ), hr)).
Using the properties of bilinear maps, and the fact that h = gα, we have
D = H2(e(H1(W ), g)rα). In the Test function, the server would compute the
following:

H2(e(TW , C)) = H2(e(H1(W )α, gr)) = H2(e(H1(W ), g)rα) = D

which results in a match if the the trapdoor and PEKS both correspond to
the same word W .
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The above scheme allows the email gateway to determine if emails en-
crypted using Alices public key contain one of the keywords of interest to
Alice without revealing to the gateway any information about the word W
unless TW is available. The scheme provides security against an active attacker
who is able to distinguish an encryption of a keyword W0 from an encryption
of a keyword W1 for which he did not obtain the trapdoor (referred to as
adaptive chosen keyword attack).

2.4 Other Research

Another variation to the basic keyword search on encrypted data that has
recently been studied, is that of “conjunctive keyword search” [22, 2]. Most
keyword searches contain more than one keyword in general. The straight
forward way to support such queries is to carry out the search using single
keywords and then return the intersection of the retrieved documents as the
result set. The authors in [22, 2] claim that such a methodology reveals more
information than there is a need for and might make the documents more
vulnerable to statistical attacks. They develop special cryptographic protocols
that return a document if and only if all the search words are present in it.

There are some shortcomings of all the above cryptographic methods de-
scribed for keyword search on encrypted data. Once a capability is given to
the untrusted server (or once a search for a certain word has been carried out),
that capability can be continued to be used forever by the server to check if
these words are present in newly arriving (generated) mails (documents) even
though the owner might not want to give the server this capability. This can,
in turn, make the schemes vulnerable to a variety of statistical attacks.
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3 Search over Encrypted Relational Data

In this section, we describe techniques developed in the literature to support
queries over encrypted relational data. As in the previous section, we begin by
first setting the problem. Consider a user Alice who outsources the database
consisting of the following two relations:

EMP (eid, ename, salary, addr, did)
DEPARTMENT (did, dname, mgr)

The fields in the EMP table refer to the employee id, name of the employee,
salary, address and the id of the department the employee works for. The fields
in the DEPARTMENT table correspond to the department id, department
name, and name of the manager of the department. In the DAS model, the
above tables will be stored at the service provider. Since the service provider is
untrusted, the relations must be stored in an encrypted form. Relational data
could be encrypted at different granularity – e.g., at the table level, the row
level, or the attribute level. As will become clear, the choice of granularity
of encryption has significant repercussions on the scheme used to support
search and on the system performance. Unless specified otherwise, we will
assume that data is encrypted at the row level; that is, each row of each table
is encrypted as a single unit. Thus, an encrypted relational representation
consists of a set of encrypted records.

The client8 may wish to execute SQL queries over the database. For in-
stance, Alice may wish to pose following query to evaluate ”total salary for
employees who work for Bob”. Such a query is expressed in SQL as follows:

SELECT SUM(E.salary) FROM EMP as E, DEPARTMENT as D
WHERE E.did = D.did AND D.mgr = "Bob"

An approach Alice could use to evaluate such a query might be to request
the server for the encrypted form of the EMP and DEPARTMENT tables. The
client could then decrypt the tables and execute the query. Such an approach,
however, would defeat the purpose of database outsourcing, reducing it to
essentially a remote secure storage. Instead, the goal in DAS is to process the
queries directly at the server without the need to decrypt the data. Before we
discuss techniques proposed in the literature to process relational queries over
encrypted data, we note that processing such queries requires mechanisms to
support the following basic operators over encrypted data:

• Comparison operators such as =, 6=, <,≤,=,≥, > These operators may
compare attribute values of a given record with constants (e.g., DEPART-
MENT.sal > 45000 as in selection queries) or with other attributes (e.g.,
EMP.did = DEPARTMENT.did as in join conditions).

8 Alice in this case since we have assumed that the client and the owner is the same
entity.
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• Arithmetic operators such as addition, multiplication, division that
perform simple arithmetic operations on attribute values associated with
a set of records in one or more relations. Such operators are part of any
SQL query that involves aggregation.

The example query given above illustrates usage of both classes of oper-
ators. For instance, to execute the query, the mgr field of each record in the
DEPARTMENT table has to be compared with “Bob”. Furthermore, records
in the DEPARTMENT table whose mgr is “Bob” have to be matched with
records in EMP table based on the did attribute. Finally, the salary fields of
the corresponding record that match the query conditions have to be added
to result in the final answer.

The first challenge in supporting SQL queries over encrypted relational
representation is to develop mechanisms to support comparison and arithmetic
operations on encrypted data. The techniques developed in the literature can
be classified into the following two categories.
Approaches based on new encryption techniques: that can support
either arithmetic and/or comparison operators directly on encrypted rep-
resentation. Encryption techniques that support limited computation with-
out decryption have been explored in cryptographic literature in the past.
Amongst the first such technique is the privacy homomorphism (PH) devel-
oped in [24, 32] that supports basic arithmetic operations. While PH can be
exploited to support aggregation queries at the remote server (see [25] for de-
tails), it does not Support comparison and, as such, cannot be used as basis for
designing techniques for relational query processing over encrypted data. In
[19], the authors developed a data transformation technique that preserves the
order in the original data. Such a transformation serves as an order-preserving
encryption and can hence support comparison operators. Techniques to im-
plement relational operators such as selection, joins, sorting, grouping can be
built on top of the order preserving encryption. The encryption mechanism,
however, cannot support aggregation at the server. While new cryptographic
approaches are interesting, one of the limitation of such approaches has been
that they safe only under limited situations where the adversarys knowledge is
limited to the ciphertext representation of data. These techniques have either
been shown to break under more general attacks (e.g., PH is not secure under
chosen plaintext attack [33, 34]), or the security analysis under diverse types
of attacks has not been performed.
Information-hiding based Approaches: Unlike encryption-based approaches,
such techniques store additional auxiliary information along with encrypted
data to facilitate evaluation of comparison and/or arithmetic operations at
the server. Such auxiliary information, stored in the form of indices (which
we refer to as secure indices) may reveal partial information about the data
to the server. Secure indices are designed carefully exploiting information hid-
ing mechanisms (developed in the context of statistical disclosure control)
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[29, 30, 31] to limit the amount of information disclosure.The basic techniques
used for disclosure control are the following [30, 31]:

1. Perturbation: For a numeric attribute of a record, add a random value
(chosen from some distribution, like normal with mean 0 and standard
deviation σ) to the true value.

2. Generalization: Replace a numeric or categorical value by a more general
value. For numeric values, it could be a range of that covers the original
value and for categorical data, this may be a more generic class, e.g., an
ancestor node in a taxonomy tree.

3. Swapping: Take two different records in the data set and swap the values
of a specific attribute (say, the salary value is swapped between the records
corresponding to two individuals).

Of all the disclosure-control methods, the one that has been primarily uti-
lized to realize DAS functionalities is that of generalization. Though this is not
to say that DAS functionalities cannot be built using other techniques, e.g.,
hiding data values by noise-addition and developing techniques for querying
on the perturbed data. However, we are not aware of any complete proposal
based on such a mechanism.

The nature of disclosure in information hiding based schemes is different
from that in cryptographic schemes. In the latter, the disclosure risk is in-
versely proportional to the difficulty of breaking the encryption scheme and
if broken, it means there is complete disclosure of the plaintext values. In
contrast, the information disclosure in information hiding approaches could
be partial or probabilistic in nature. That is, there could be a non-negligible
probability of disclosure of a sensitive value given the transformed data, e.g.,
the bucket identity might give a clue regarding the actual value of the sensitive
attribute.

In this section, we will primarily concentrate on the information hiding
based approach and show how it has been utilized to support SQL queries. As
will be clear, information hiding approaches can be used to support compari-
son operators on the server and can hence be the basis for implementing SPJ
(select-project-join) queries. They can also support sorting and grouping op-
erators. Such techniques, however, cannot support aggregation at the server.
A few papers [25, 39] have combined an information hiding approach with
PH to support both server-side aggregation as well as SPJ queries. Of course,
with PH being used for aggregation, these techniques become vulnerable to
diverse types of attacks. In the remainder of the section, we will concentrate
on how information hiding techniques are used to support SPJ queries. We
will use the query processing architecture proposed in [12, 26] to explain the
approach.
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Fig. 1. Query Processing in DAS

Query Processing Architecture for DAS [26]

Figure 1 illustrates the control flow for queries in DAS where information hid-
ing technique is used to represent data at the server. The figure illustrates the
three primary entities of the DAS model: user, client and server. As stated
earlier, we will not distinguish between the user and the client and will refer
to them together as the client-side. The client stores the data at the server
which is hosted by the service provider and this is known as the server-side.
The data is stored in an encrypted format at the server-side at all times
for security purposes. The encrypted database is augmented with additional
information (which we call the secure index) that allows certain amount of
query processing to occur at the server without jeopardizing data privacy. The
client also maintains metadata for translating user queries to the appropriate
representation on the server, and performs post-processing on server-query
results. Based on the auxiliary information stored, the original query over
un-encrypted relations are broken into (1) a server-query over encrypted rela-
tions which run on the server, and (2) a client-query which runs on the client
and post-processes the results returned after executing the server-query. We
achieve this goal by developing an algebraic framework for query rewriting
over encrypted representation.

3.1 Relational Encryption and Storage Model

For each relation
R(A1, A2, . . . , An)

one stores on the server an encrypted relation:

RS(etuple, AS
1 , AS

2 , . . . , AS
n)
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where the attribute etuple (etuple is defined shortly) stores an encrypted
string that corresponds to a tuple in relation R9. Each attribute AS

i corre-
sponds to the index for the attribute Ai and is used for query processing at
the server. For example, consider a relation emp below that stores information
about employees.

eid ename salary addr did

23 Tom 70K Maple 40

860 Mary 60K Main 80

320 John 50K River 50

875 Jerry 55K Hopewell 110

The emp table is mapped to a corresponding table at the server:

empS(etuple, eidS , enameS , salaryS , addrS , didS)

It is only necessary to create an index for attributes involved in search and
join predicates. In the above example, if one knows that there would be no
query that involves attribute addr in either a selection or a join, then the
index on this attribute need not be created. Without loss of generality, one
can assume that an index is created over each attribute of the relation.

Partition Functions: To explain what is stored in attribute AS
i of RS for each

attribute Ai of R the following notations are useful. The domain of values
(Di) of attribute R.Ai are first mapped into partitions {p1, . . . , pk}, such that
(1) these partitions taken together cover the whole domain; and (2) any two
partitions do not overlap. The function partition is defined as follows:

partition(R.Ai) = {p1, p2, . . . , pk}

As an example, consider the attribute eid of the emp table above. Suppose
the values of domain of this attribute lie in the range [0, 1000]. Assume that
the whole range is divided into 5 partitions

: [0, 200], (200, 400], (400, 600], (600, 800], and (800, 1000]. That is:

partition(emp.eid) = {[0, 200], (200, 400], (400, 600], (600, 800], (800, 1000]}

Different attributes may be partitioned using different partition functions.
The partition of attribute Ai corresponds to a splitting of its domain into a
set of buckets. The strategy used to split the domain into a set of buckets has
profound implications on both the efficiency of the resulting query processing
as well as on the disclosure risk of sensitive information to the server. For
now, to explain the query processing strategy, we will make a simplifying
9 Note that one could alternatively choose to encrypt at the attribute level instead

of the row-level. Each alternative has its own pros and cons and for greater detail,
the interested reader is referred to [10].
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assumption that the bucketization of the domain is based on the equi-width10

partitioning (though the strategy developed will work for any partitioning of
domain). We will revisit the efficiency and disclosure risks in the following
subsections.

In the above example, an equi-width histogram was illustrated. Note that
when the domain of an attribute corresponds to a field over which ordering
is well defined (e.g., the eid attribute), we will assume that a partition pi is a
continuous range. We use pi.low and pi.high to denote the lower and upper
boundary of the partition, respectively.

Identification Functions: An identification function called ident assigns an
identifier identR.Ai

(pj) to each partition pj of attribute Ai. Figure 2 shows the
identifiers assigned to the 5 partitions of the attribute emp.eid. For instance,
identemp.eid([0, 200]) = 2, and identemp.eid((800, 1000]) = 4.

� ������� ��� ��� ���

� � � ��

Fig. 2. Partition and identification functions of emp.eid

The ident function value for a partition is unique, that is, identR.Ai(pj) 6=
identR.Ai(pl), if j 6= l. For this purpose, a collision-free hash function that
utilizes properties of the partition may be used as an ident function. For ex-
ample, in the case where a partition corresponds to a numeric range, the hash
function may use the start and/or end values of a range.

Mapping Functions: Given the above partition and identification functions, a
mapping function MapR.Ai maps a value v in the domain of attribute Ai to
the identifier of the partition to which v belongs: MapR.Ai(v) = identR.Ai(pj),
where pj is the partition that contains v.

For the example given above, the following table shows some values of the
mapping function for attribute emp.eid. For instance, Mapemp.eid(23) = 2,
Mapemp.eid(860) = 4, and Mapemp.eid(875) = 4.

eid value v 23 860 320 875

Mapemp.eid(v) 2 4 7 4

Three generic mapping functions are illustrated below. Let S be a subset
of values in the domain of attribute Ai, and v be a value in the domain. We
define the following mapping functions on the partitions associated with Ai:

MapR.Ai(S) = {identR.Ai(pj)|pj ∩ S 6= ∅}

Map>
R.Ai

(v) = {identR.Ai(pj)|pj .high > v}
10 where the domain of each bucket has the same width
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Map<
R.Ai

(v) = {identR.Ai(pj)|pj .low 6 v}
While the first function defined holds over any attribute, the latter two

hold for the attributes whose domain values exhibit total order. Application
of the mapping function to a value v, greater than the maximum value in the
domain, vmax, returns MapR.Ai(vmax). Similarly, application of the mapping
function to a value v, less than the minimum value in the domain, vmim, re-
turns MapR.Ai

(vmin). Essentially, MapR.Ai
(S) is the set of identifiers of parti-

tions whose ranges may overlap with the values in S. The result of Map>
R.Ai

(v)
is the set of identifiers corresponding to partitions whose ranges may contain
a value not less than v. Likewise, Map<

R.Ai
(v) is the set of identifiers corre-

sponding to partitions whose ranges may contain a value not greater than v.

Storing Encrypted Data: For each tuple t = 〈a1, a2, . . . , an〉 in R, the relation
RS stores a tuple:

〈encrypt({a1, a2, . . . , an}),MapR.A1(a1),MapR.A2(a2), . . . , MapR.An(an)〉

where encrypt is the function used to encrypt a tuple of the relation. For
instance, the following is the encrypted relation empS stored on the server:

etuple eidS enameS salaryS addrS didS

1100110011110010. . . 2 19 81 18 2

1000000000011101. . . 4 31 59 41 4

1111101000010001. . . 7 7 7 22 2

1010101010111110. . . 4 71 49 22 4

The first column etuple contains the string corresponding to the encrypted
tuples in emp. For instance, the first tuple is encrypted to “1100110011110010. . . ”
that is equal to encrypt(23, T om, 70K, Maple, 40). The second is encrypted
to “1000000000011101. . . ” equal to encrypt(860,
Mary, 60K, Main, 80). The encryption function is treated as a black box and
any block cipher technique such as AES, Blowfish, DES etc., can be used to
encrypt the tuples. The second column corresponds to the index on the em-
ployee ids. For example, value for attribute eid in the first tuple is 23, and its
corresponding partition is [0, 200]. Since this partition is identified to 2, we
store the value “2” as the identifier of the eid for this tuple. Similarly, we store
the identifier “4” for the second employee id 860. In the table above, we use
different mapping functions for different attributes. The mapping functions
for the ename, salary, addr, and did attributes are not shown, but they are
assumed to generate the identifiers listed in the table.

In general the notation “E” (“Encrypt”) is used to map a relation R to its
encrypted representation. That is, given relation R(A1, A2, . . . , An), relation
E(R) is RS(etuple, AS

1 , AS
2 , . . . , AS

n). In the above example, E(emp) is the
table empS .
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Decryption Functions: Given the operator E that maps a relation to its en-
crypted representation, its inverse operator D maps the encrypted represen-
tation to its corresponding decrypted representation. That is, D(RS) = R. In
the example above, D(empS) = emp. The D operator may also be applied on
query expressions. A query expression consists of multiple tables related by
arbitrary relational operators (e.g., joins, selections, etc).

As it will be clear later, the general schema of an encrypted relation or
the result of relational operators amongst encrypted relations, RS

i is:

〈RS
1 .etuple, RS

2 .etuple, . . . , RS
1 .AS

1 , RS
1 .AS

2 , . . . , RS
2 .AS

1 , RS
2 .AS

2 , . . .〉
When the decryption operator D is applied to RS

i , it strips off the in-
dex values (RS

1 .AS
1 , RS

1 .AS
2 , . . . , RS

2 .AS
1 , RS

2 .AS
2 , . . .) and decrypts (RS

1 .etuple,
RS

2 .etuple, . . .) to their un-encrypted attribute values.
As an example, assume that another table defined as mgr (mid, did)

was also stored in the database. The corresponding encrypted representa-
tion E(mgr) will be a table mgrS (etuple, midS , didS). Suppose we were
to compute a join between tables empS and mgrS on their didS attributes.
The resulting relation tempS will contain the attributes 〈empS .etuple, eidS ,
enameS , salaryS , addrS , empS . didS , mgrS .etuple, midS , mgrS .didS〉. If
we were to decrypt the tempS relation using the D operator to compute
D(tempS), the corresponding table will contain the attributes

(eid, ename, salary, addr, emp.did, mid, mgr.did)

That is, D(tempS) will decrypt all of the encrypted columns in tempS and
drop the auxiliary columns corresponding to the indices.

Mapping Conditions

To translate specific query conditions in operations (such as selections and
joins) to corresponding conditions over the server-side representation, a trans-
lation function called Mapcond is used. These conditions help translate re-
lational operators for server-side implementation, and how query trees are
translated.

For each relation, the server-side stores the encrypted tuples, along with
the attribute indices determined by their mapping functions. The client stores
the meta data about the specific indices, such as the information about the
partitioning of attributes, the mapping functions, etc. The client utilizes this
information to translate a given query Q to its server-side representation QS ,
which is then executed by the server. The query conditions are characterized
by the following grammar rules:
• Condition ← Attribute op Value;
• Condition ← Attribute op Attribute;
• Condition ← (Condition ∨ Condition) | (Condition ∧ Condition);.
Allowed operations for op include {=, <, >, 6,>}. Now consider the following
tables to illustrate the translation.
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emp(eid, ename, salary, addr, did, pid)
mgr(mid, did, mname)
proj(pid, pname, did, budget)

Attribute = Value: Such a condition arises in selection operations. The
mapping is defined as follows:

Mapcond(Ai = v) ≡ AS
i = MapAi

(v)

As defined above, function MapAi
maps v to the identifier of Ai’s partition

that contains the value v. For instance, consider the emp table above, we have:

Mapcond(eid = 860) ≡ eidS = 4

since eid = 860 is mapped to 4 by the mapping function of this attribute.

Attribute < Value: Such a condition arises in selection operations. The
attribute must have a well-defined ordering over which the “<” operator is
defined. The translation is a little complex. One needs to check if the attribute
value representation AS

i lies in any of the partitions that may contain a value
v′ where v′ < v. Formally, the translation is:

Mapcond(Ai < v) ≡ AS
i ∈ Map<

Ai
(v)

For instance, the following condition is translated:

Mapcond(eid < 280) ≡ eidS ∈ {2, 7}

since all employee ids less than 280 have two partitions [0, 200] and (200, 400],
whose identifiers are {2, 7}.

Attribute > Value: This condition is symmetric with the previous one. The
translation is as follows:

Mapcond(Ai > v) ≡ AS
i ∈ Map>

Ai
(v)

.
For instance, the following condition is translated:

Mapcond(eid > 650) ≡ eidS ∈ {1, 4}

since all employee ids greater than 650 are mapped to identifiers: {1, 4}.

Attribute1 = Attribute2: Such a condition might arise in a join. The two
attributes can be from two different tables, or from two instances of the same
table. The condition can also arise in a selection, and the two attributes can
be from the same table. The following is the translation:
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Mapcond(Ai = Aj) ≡
∨
ϕ

(
AS

i = identAi(pk) ∧AS
j = identAj (pl)

)

where ϕ is pk ∈ partition(Ai), pl ∈ partition(Aj), pk ∩pl 6= ∅. That is, one
needs to consider all possible pairs of partitions of Ai and Aj that overlap.
For each pair (pk, pl), one needs a condition on the identifiers of the two par-
titions: AS

i = identAi(pk)∧AS
j = identAj (pl). Finally the disjunction of these

conditions need to be taken. The intuition is that each pair of partitions may
provide some values of Ai and Aj that can satisfy the condition Ai = Aj .

For instance, the table below shows the partition and identification func-
tions of two attributes emp.did and mgr.did.

Partitions Identemp.did Partitions Identmgr.did

[0,100] 2 [0,200] 9

(100,200] 4 (200,400] 8

(200,300] 3

(300,400] 1

Then condition emp.did = mgr.did is translated to the following condition
C1:

C1: (empS .didS = 2 ∧mgrS .didS = 9)
∨ (empS .didS = 4 ∧mgrS .didS = 9)
∨ (empS .didS = 3 ∧mgrS .didS = 8)
∨ (empS .didS = 1 ∧mgrS .didS = 8).

Attribute1 < Attribute2: Again such a condition might arise in either a
join or in a selection. Let the condition be Ai < Aj , then the translation is
the following:

Mapcond(Ai < Aj) ≡
∨
ϕ

(
AS

i = identAi(pk) ∧AS
j = identAj (pl)

)

where ϕ is pk ∈ partition(Ai), pl ∈ partition(Aj), pl.high > pk.low. One
needs to consider all pairs of partitions of Ai and Aj that could satisfy the
condition. For each pair, there is a condition corresponding to the pair of their
identifiers and one needs to take the disjunction of all these conditions.

For example, condition C2 : emp.did < mgr.did is translated to:

C2: (empS .didS = 2 ∧mgrS .didS = 9)
∨ (empS .didS = 2 ∧mgrS .didS = 8)
∨ (empS .didS = 4 ∧mgrS .didS = 9)
∨ (empS .didS = 4 ∧mgrS .didS = 8)
∨ (empS .didS = 3 ∧mgrS .didS = 8)
∨ (empS .didS = 1 ∧mgrS .didS = 8).
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Condition empS .didS = 4 ∧ mgrS .didS = 9 is included, since partition
(100, 200] for attribute emp.did and partition (200, 400] for attribute mgr.did
can provide pairs of values that satisfy emp.did < mgr.did.

For condition Attribute1 > Attribute2, the Mapcond mapping is same as
the mapping of Attribute2 < Attribute1, as described above with the roles of
the attributes reversed.

Condition1 ∨ Condition2, Condition1 ∧ Condition2: The translation
of the two composite conditions is given as follows:

Mapcond(Condition1 ∨ Condition2) ≡
Mapcond(Condition1) ∨Mapcond(Condition2)
Mapcond(Condition1 ∧ Condition2) ≡
Mapcond(Condition1) ∧Mapcond(Condition2)

Operator 6 follows the same mapping as < and operator > follows the
same mapping as >.

Translating Relational Operators

In this section we describe how relational operators are implemented in [26].
We illustrate the implementation of the selection and join operators in the
proposed architecture. The strategy is to partition the computation of the
operators across the client and the server such that a superset of answers is
generated by the operator using the attribute indices stored at the server.
This set is then filtered at the client after decryption to generate the true re-
sults. The goal is to minimize the work done at the client as much as possible.
We use R and T to denote two relations, and use the operator notations in [8].

The Selection Operator (σ): Consider a selection operation σC(R) on a re-
lation R, where C is a condition specified on one or more of the attributes
A1, A2, . . . , An of R. A straightforward implementation of such an operator
is to transmit the relation RS from the server to the client. Then the client
decrypts the result using the D operator, and implements the selection. This
strategy, however, pushes the entire work of implementing the selection to
the client. In addition, the entire encrypted relation needs to be transmitted
from the server to the client. An alternative mechanism is to partially com-
pute the selection operator at the server using the indices associated with the
attributes in C, and push the results to the client. The client decrypts the
results and filters out tuples that do not satisfy C. Specifically, the operator
can be rewritten as follows:

σC(R) = σC

(
D(σS

Mapcond(C)

(
RS)

))

Note that the σ operator that executes at the server with a superscript
“S” to highlight the fact that the select operator executes at the server. All
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non-adorned operators execute at the client. The decryption operator D will
only keep the attribute etuple of RS , and drop all the other AS

i attributes. We
explain the above implementation using an example σeid<395∧did=140(emp).
Based on the definition of Mapcond(C) discussed in the previous section, the
above selection operation will be translated into

σC

(
D(σS

C′
(
empS)

))

where the condition C ′ on the server is:

C ′ = Mapcond(C) =
(
eidS ∈ [2, 7] ∧ didS = 4

)

The Join Operator (1): Consider a join operation R
1
C S. The join condition

C could be either an equality condition (in which case the join corresponds to
an equijoin), or could be a more general condition (resulting in theta-joins).
The above join operation can be implemented as follows:

R
1
C T = σC

(
D

(
RS 1S

Mapcond(C) TS
))

As before, the S adornment on the join operator denotes the fact that the
join is to be executed at the server. For instance, join operation

emp
1

emp.did=mgr.did mgr

is translated to:
σC

(
D

(
empS 1S

C′ mgrS
))

where the condition C ′ on the server is condition C1 defined in Section 3.1.
Now we show how the above operators are used to rewrite SQL queries

for the purpose of splitting the query computation across the client and the
server.

Query Execution

Given a query Q, the goal is to split the computation of Q across the server
and the client. The server will use the implementation of the relational oper-
ators discussed in the previous subsection to compute “as much of the query
as possible”, relegating the remainder of the computation to the client. Query
processing and optimization have been extensively studied in database re-
search [9, 5, 20]. The objective is to come up with the “best” query plan for
Q that minimizes the amount of work to be done at the client site. In our
setting, the cost of a query consists of many components – the I/O and CPU
cost of evaluating the query at the server, the network transmission cost, and
the I/O and CPU cost at the client. As an example, consider the following
query over the emp table than retrieves employees whose salary is greater that
the average salary of employees in the department identified by did = 1.
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(d) Multiple interactions between client and server
Fig. 3. Query plans for employees who make more than average salary of employees
who are in did=1

SELECT emp.name FROM emp
WHERE emp.salary > (SELECT AVG(salary)
FROM emp WHERE did = 1);

The corresponding query tree and some of the evaluation strategies are
illustrated in Figures 3(a) to (d). The first strategy (Figure 3(b)) is to simply
transmit the emp table to the client, which evaluates the query. An alterna-
tive strategy (Figure 3(c)) is to compute part of the inner query at the server,
which selects (as many as possible) tuples corresponding to Mapcond(did = 1).
The server sends to the client the encrypted version of the emp table, i.e.,
empS , along with the encrypted representation of the set of tuples that sat-
isfy the inner query. The client decrypts the tuples to evaluate the remainder
of the query. Yet another possibility (Figure 3(d)) is to evaluate the inner
query at the server. That is, select the tuples corresponding to the employ-
ees that work in department did = 1. The results are shipped to the client,
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which decrypts the tuples and computes average salary. The average salary is
encrypted by the client and shipped back to the server, which then computes
the join at the server. Finally, the results are decrypted at the client.

Supporting Aggregation Operators in Queries: The query translation techniques
discussed above are designed explicitly for relational operators that perform
comparisons. While information hiding techniques work for relational opera-
tors, they do not work for arithmetic operators such as aggregation. Notice
that in the previous query there is an aggregation but that aggregation is
done at the client side after decryption. If aggregation is to be performed at
the server side, the information hiding approach has to be augmented with an
encryption approach that supports arithmetic operations on encrypted rep-
resentation. [25] illustrates how privacy homomorphisms (PH) [24, 32] can
be combined with the basic approach described above for this purpose. Ad-
ditional complexities arise since the information hiding technique does not
exactly identify the target group to be aggregated (i.e., the server side results
typically contain false positives). The paper develops algebraic manipulation
techniques to separate an aggregation group into two subsets a set that cer-
tainly qualifies the conditions specified in the query, and a set that may or
may not satisfy the selection predicates of the query (i.e., could contain false
positives). The first set can be directly aggregated at the server using PH
while the tuples belonging to the second category will need to be transmitted
to the client side to determine if they indeed satisfy the query conditions.

Query Optimization in DAS: As in traditional relational query evaluation, in
DAS multiple equivalent realizations for a given query are possible. This nat-
urally raises the challenge of query optimization. In [39], query optimization
in DAS is formulated as a cost-based optimization problem by introducing
new query processing functions and defining new query transformation rules.
The intuition is to define transfer of tuples from server to the client and de-
cryption at the client as operators in the query tree. Given different hardware
constraints and software capabilities at the client and the server different cost
measures are applied to the client-side and server-side computations. A novel
query plan enumeration algorithm is developed that identifies the least cost
plan.
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3.2 Privacy Aware Bucketization

In the previous section we discussed how DAS functionality can be realized
when data is represented in the form of buckets. Such a bucketized represen-
tation can result in disclosure of sensitive attributes. For instance, given a
sensitive numeric attribute (e.g., salary) which has been bucketized, assume
that the adversary somehow comes to know the maximum and minimum val-
ues occurring in the bucket B. Now he can be sure that all data elements in
this bucket have a value that falls in the range [minB ,maxB ], thereby leading
to partial disclosure of sensitive values for data elements in B. If, the adver-
sary has knowledge of distribution of values in the bucket, he may also be
able to make further inference about the specific records. A natural question
is how much information does the generalized representation of data reveal
that is, given the bucket label, how well can the adversary predict/guess the
value of the sensitive attribute of a given entity? Intuitively, this depends upon
the granularity at which data is generalized. For instance, assigning all values
in the domain to a single bucket will make the bucket-label completely non-
informative. However, such a strategy will require the client to retrieve every
record from the server. On the other extreme, if each possible data value lies
has a corresponding bucket, the client will get no confidentiality, though the
records returned by the server will contain no false positives. There is a nat-
ural trade-off between the performance overhead and the degree of disclosure.
Such a tradeoff has been studied in [16] where authors develop a strategy to
minimize the disclosure with constraint on the performance degradation11.

In the rest of this section, we introduce the measures of disclosure-risk
arising from bucketization and then tackle the issue of optimal bucketization to
support range queries on a numeric data set. Finally, we present the algorithm
that allows one to tune the performance-privacy trade-off in this scheme.
The discussion is restricted to the case where bucket based generalization is
Performed over a single dimensional ordered data set, e.g., a numeric attribute
And the query class is that of 1-dimensional range queries.

Measures of Disclosure Risk

The authors in [14] propose entropy and variance of the value distributions
in the bucket as appropriate measure of (the inverse) disclosure risk. Entropy
captures the notion of uncertainty associated with a random element chosen
with a probability that follows a certain distribution. The higher the value
of entropy of a distribution (i.e., larger the number of distinct values and
more uniform the frequencies, larger is the value of the entropy), greater is
the uncertainty regarding the true value of the element. For example, given a
11 Notice the dual of the problem maximize performance with a constraint on

information disclosure would also be addressed once we agree on the metric for
information disclosure. However, such an articulation of the problem has not been
studied in the literature.
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domain having 5 distinct values and the data set having 20 data points, the
entropy is maximized if all 5 values appear equal number of time, i.e. each
value has a frequency of 4.

Now, the adversary sees only the bucket label B of a data element t.
Therefore if the adversary (somehow) knows the complete distribution of val-
ues within B, he can guess the true value (say v∗) of t with a probability equal
to the fractional proportion of elements with value v∗ within the bucket. The
notion of uncertainty regarding the true value can be captured in an aggre-
gate manner by the entropy of the value distribution within B. Entropy of
a discrete random variable X taking values xi = 1, . . . , n with corresponding
probabilities pi, i = 1, . . . , n is given by:

Entropy(X) = H(X) = −
n∑

i=1

pilog2(pi)

If the domain of the attribute has an order defined on it as in the case
of a numeric attribute, the above definition of entropy does not capture the
notion of distance between two values. In the worst case model, since the value
distribution is assumed to be known to the adversary, greater the spread of
each bucket distribution, better is the protection against disclosure. Therefore,
the authors propose variance of the bucket distribution as the second (inverse)
measure of disclosure risk associated with each bucket. That is, higher the
variance of the value distribution, lower is the disclosure risk.

V ariance(X) =
n∑

i=1

pi(xi − E(X))2, where E(X) =
1
n

n∑

i=1

pixi

For more discussion on the choice of these privacy measures refer to [14].
Next we present the criteria for optimal bucketization.

Optimal Buckets for Range Queries

¿From the point of view of security, the best case is to put all data into
one bucket, but this is obviously very bad from the performance perspective.
Assuming the query workload consists of only range queries, intuitively one
can see that more the number of buckets, better is the performance on an
average. That is, on an average the number of false positives retrieved will
be lesser per range query for a partition scheme that uses more number of
buckets. In section 3, we assumed that the bucketization was equiwidth, but
as we pointed out earlier, that might not be the best case from the point of
view of efficiency. Here we present the analysis (from [14]) that tells us how
to compute the optimal buckets given a numeric data set and the number of
required buckets.

Consider a relational table with single numeric attribute from a discrete
domain like Z (set of non-negative integers). So given such a data set, what
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is the optimal criteria for partitioning this set. The problem can be formally
posed as follows. (Refer to the table 1 for notations.)

Problem 1 Given an input relation R = (V, F ) (where V is the set of distinct
numeric values appearing at least once in the column and F is the set of
corresponding frequencies), a query distribution P (defined on the set of all
range queries, Q) and the maximum number of buckets M , partition R into at
most M buckets such that the total number of false positives over all possible
range queries (weighted by their respective probabilities) is minimized.

For an ordered domain with N distinct values, there are N(N + 1)/2 pos-
sible range queries in the query set Q. The problem of histogram construction
for summarizing large data, has similarities to the present problem. Optimal
histogram algorithms either optimize their buckets i) independent of the work-
load, by just looking at the data distribution or ii) with respect to a given
workload. The authors first address the following two cases:
1) Uniform: All queries are equi-probable. Therefore probability of any query
is = 2

N(N+1) .
2) Workload-induced: There is a probability distribution P induced over
the set of possible queries Q, where the probability of a query q is given by
the fraction of times it occurs in the workload W (W is a bag of queries from
Q).

The analysis of the uniform query-distribution is given fist and then a
discussion on how the general distribution (workload induced) case can be
tackled is presented.

Uniform query distribution: The total number of false positives (TFP), where
all queries are equiprobable can be expressed as:

TFP =
∑

∀q∈Q

( |RS
T (q)| − |Rq| )

The average query precision (AQP) can be expressed as (see notation in
table 1):

AQP =

∑
q∈Q |Rq|∑

q∈Q |RS
T (q)|

= 1− TFP∑
q′∈Q′ |RS

q′ |
where q′ = T (q).

Therefore minimizing the total number of false positives is equivalent to
maximizing average precision of all queries.

For a bucket B, there are NB = (HB − LB + 1) distinct values (for the
discrete numeric domain) where LB and HB denote the low and high bucket
boundary, respectively. Let VB denote the set of all values falling in range B
and let FB = {fB

1 , . . . , fB
NB
} denote the set of corresponding value frequencies.

Recall that Q is the set of all range queries over the given attribute. One needs
to consider all queries that involve at least one value in B and compute the
total overhead (false positives) as follows:
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Vmin minimum possible value for a given attribute
Vmax maximum possible value for a given attribute
N number of possible distinct attribute values;

N = Vmax − Vmin + 1
R relation (in cleartext), R = (V, F )
|R| number of tuples in R (i.e. size of table)
V ordered set (increasing order) of all values

from the interval [Vmin, Vmax] that occur
at least once in R; V = {vi | 1 ≤ i ≤ n}

F set of corresponding frequencies (non-zero);
F = {0 < fn ≤ |R| | 1 ≤ i ≤ n}
therefore we have |R| =Pn

i=1 fi

n n = |V | = |F | (Note: n ≤ N)
RS encrypted and bucketized relation, on server
M maximum number of buckets
Q set of all “legal” range queries over R
q a random range query drawn from Q;

q = [l, h] where l ≤ h and h, l ∈ [Vmin, Vmax]
Q′ set of all bucket-level queries
q′ random bucket-level query drawn from Q′;

basically q′ is a sequence of at least one
and at most M bucket identifiers.

T (q) translation function (on the client side) which,
on input of q ∈ Q, returns q′ ∈ Q′

Rq set of tuples in R satisfying query q
RS

q′ set of tuples in RS satisfying query q′

W query workload, induces probability dist on Q

Table 1. Notations for Buckets

Let the set of all queries of size k be denoted by Qk and qk = [l, h] denote a
random query from Qk where h− l+1 = k. Then, the total number of queries
from Qk that overlap with one or more points in bucket B can be expressed
as: NB + k − 1. Of these, the number of queries that overlap with a single
point vi within the bucket is equal to k. The case for k = 2 is illustrated in
figure 4. Therefore, for the remaining NB − 1 queries, vi contributes fi false
positives to the returned set (since the complete bucket needs to be returned).
Therefore, for all NB + k − 1 queries of size k that overlap with B, the total
number of false positives returned can be written as:

∑

vi∈B

(NB − 1) ∗ fi = (NB − 1) ∗
∑

vi∈B

fi

= (NB − 1) ∗ FB ≈ NB ∗ FB

where FB is the total number of elements that fall in the bucket (i.e., the
sum of the frequencies of the values that fall in B). We make the following
important observation here:-
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Observation 1 For the uniform query distribution, the total number of false
positives contributed by a bucket B, for set of all queries of size k, is indepen-
dent of k. In effect the total number of false positives contributed by a bucket
(over all query sizes) depends only on the width of the bucket (i.e. minimum
and maximum values) and sum of their frequencies.

From the above observation, it is clear that minimizing the expression
NB ∗FB for all buckets would minimize the total number of false-positives for
all values of k (over all the N(N+1)

2 range queries).

Fig. 4. Queries overlapping with bucket

The Query-Optimal-Bucketization Algorithm (uniform
distribution case)

The goal is to minimize the objective function :
∑

Bi
NBi∗FBi . Let QOB(1, n, M)

(Query Optimal Bucketization) refer to the problem of optimally bucketizing
the set of values V = {v1, . . . , vn}, using at most M buckets (Note that
v1 < . . . < vn, each occurring at least once in the table). We make the follow-
ing two key observations:

1) Optimal substructure property: The problem has the optimal sub-
structure property, therefore allowing one to express the optimum solution of
the original problem as the combination of optimum solutions of two smaller
sub-problems such that one contains the leftmost M − 1 buckets covering the
(n− i) smallest points from V and the other contains the extreme right single
bucket covering the remaining largest i points from V :

QOB(1, n,M) = Mini[QOB(1, n− i,M − 1)
+BC(n− i + 1, n)]

where BC(i, j) = (vj − vi + 1) ∗
∑

i≤t≤j

ft

(BC(i, j) is cost of a single bucket covering [vi, vj ])
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2) Bucket boundary property: It can be intuitively seen that for an op-
timal solution, the bucket boundaries will always coincide with some value
from the set V (i.e. values with non-zero frequency). Therefore in the solu-
tion space, one needs to consider only buckets whose end points coincide with
values in V , irrespective of the total size of the domain.

The algorithm solves the problem bottom-up by solving and storing so-
lutions to the smaller sub-problems first and using their optimal solutions
to solve the larger problems. All intermediate solutions are stored in the 2-
dimensional matrix H. The rows of H are indexed from 1, . . . , n denoting the
number of leftmost values from V that are covered by the buckets for the
given sub-problem and the columns are indexed by the number of maximum
allowed buckets (from 1, . . . , M). Also note that the cost of any single bucket
covering a consecutive set of values from V can be computed in constant time
by storing the cumulative sum of frequencies from the right end of the domain,
call them EndSum (i.e. EndSumn = fn, EndSumn−1 = fn−1 + fn . . .. Stor-
ing this information uses O(n) space. The algorithm also stores along with
the optimum cost of a bucketization, the lower end point of its last bucket
in the n × M matrix OPP (Optimal Partition Point) for each sub-problem
solved. It is easy to see that the matrix OPP can be used to reconstruct the
exact bucket boundaries of the optimal partition computed by the algorithm
in O(M) time. The dynamic programming algorithm is shown in figure 512

and an illustrative example is given below.
Example: Assume the input to QOB algorithm is the following set of (data-
value, frequency) pairs:
D = {(1, 4), (2, 4), (3, 4), (4, 10), (5, 10), (6, 4), (7, 6), (8, 2), (9, 4), (10, 2)} and
say the maximum number of buckets allowed is 4, then (figure 6) displays the
optimal histogram that minimizes the cost function. The resulting partition
is {1, 2, 3}, {4, 5}, {6, 7}, {8, 9, 10}. Note that this histogram is not equi-depth
(i.e all bucket need not have the same number of elements). The minimum
value of the cost function comes out to be = 120. In comparison the approxi-
mately equi-depth partition {1, 2, 3}, {4}, {5, 6}, {7, 8, 9, 10} has a cost = 130.
♦

Generic Query Workload: The same dynamic programming algorithm of fig-
ure 5 can be used for an arbitrary distribution induced by a given query
workload W . The workload is represented by W = {(q, wq)|q ∈ W ∩wq > 0},
where wq is the probability that a randomly selected query from W is same as
q. As in the case of uniform workload, the optimal substructure property holds
in this case as well. The only difference is in computation of the bucket costs
BC which translates into the computation of the array Endsum[1, . . . , n] in
the preprocessing step. The algorithm to compute the entries of the EndSum

12 in the workload-induced case, only the EndSum computation is done differently,
the rest of the algorithms remains the same
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Algorithm: QOB(D, M)
Input: Data set D = (V, F ) and max # buckets M

(where |V | = |F | = n)
Output: Cost of optimal bucketization & matrix H
Initialize

(i) matrix H[n][M ] to 0
(ii) matrix OPP [n][M ] to 0
(iii) compute EndSum(j) = EndSum(j + 1) + fj

for j = 1 . . . n
For k = 1 . . . n // For sub-problems with max 2 buckets

H[k][2] = Min2≤i≤k−1(BC(1, i) + BC(i + 1, K))
Store optimal-partition-point ibest in OPP [k][2]

For l = 3 . . . M // For the max of 3 up to M buckets
For k = l . . . n

H[k][l] = Minl−1≤i≤k−1(H[i][l − 1] + BC(i + 1, k))
Store optimal-partition-point ibest in OPP [k][l]

Output “Min Cost of Bucketization = H[n][M ]”
end

Fig. 5. Algorithm to compute query optimal buckets

Fig. 6. Optimum buckets for uniform query distribution

array for a generic workload W is given in figure 7. Any bucket B covering
range [i, j] will have the cost given by BC(i, j) = EndSum[i]− EndSum[j].

Next we address the issue how the security and performance tradeoff.

The Security-Performance Trade-off

The optimal buckets offer some base level of security due to the indistin-
guishability of elements within a bucket, but in many cases that might not be
good enough, i.e., a bucket’s value distributions might not have a large enough
variance and/or entropy. To address this problem, the authors in [14] propose
a re-bucketization of the data, starting with the optimal buckets and allowing
a bounded amount of performance degradation, in order to maximize the two
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Algorithm: Compute-EndSum(D, W, EndSum[1 . . . n])
Input: D = (V, F ), workload W & EndSum[1 . . . n]

(note: EndSum[1 . . . n] is initialized to 0′s)
Output: Array EndSum with entries filled in
For i = (n− 1) . . . 1

EndSum[i] = EndSum[i + 1]
For all q = [lq, hq] ∈ W such that hq ∈ [vi, vi+1)

EndSum[i] = EndSum[i] + (
Pn

j=i+1 fj) ∗ wq

For all q = [lq, hq] ∈ W such that lq ∈ (vi, vn]
EndSum[i] = EndSum[i] + fi ∗ wq

Output EndSum[1 . . . n]
end

Fig. 7. EndSum for generic query workload W

privacy measures (entropy and variance) simultaneously. The problem is
formally presented below:

Problem 2 Trade-off Problem: Given a dataset D = (V, F ) and an op-
timal set of M buckets on the data {B1, B2, . . . , BM}, re-bucketize the data
into M new buckets, {CB1, CB2, . . . , CBM} such that no more than a factor
K of performance degradation is introduced and the minimum variance and
minimum entropy amongst the M random variables X1, . . . , XM are simul-
taneously maximized, where the random variable Xi follows the distribution
of values within the ith bucket.

The above mentioned problem can be viewed as a multi-objective con-
strained optimization problem, where the entities minimum entropy and min-
imum variance amongst the set of buckets are the two objective functions
and the constraint is the maximum allowed performance degradation factor
K (called the Quality of Service(QoS) constraint). Such problems are com-
binatorial in nature and the most popular solution techniques seem to re-
volve around the Genetic Algorithm (GA) framework [27], [28]. GA’s are
iterative algorithms and cannot guarantee termination in polynomial time.
Further their efficiency degrades rapidly with the increasing size of the data
set. Therefore instead of trying to attain optimality at the cost of efficiency,
the authors propose a new algorithm called the controlled diffusion algorithm
(CDf -algorithm). The CDf -algorithm increases the privacy of buckets sub-
stantially while ensuring that the performance constraint is not violated.
Controlled Diffusion: The optimal bucketization for a given data set is
computed using the QOB-algorithm presented in figure 5. Let the resulting
optimal buckets be denoted by B′

is for i = 1, . . . , M . The controlled diffusion
process creates a new set of M approximately equi-depth buckets which are
called the composite buckets (denoted by CBj , j = 1, . . . ,M) by diffusing (i.e.
re-distributing) elements from the Bi’s into the CBj ’s. The diffusion process
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is carried out in a controlled manner by restricting the number of distinct
CB’s that the elements from a particular Bi get diffused into. This result-
ing set of composite buckets, the {CB1, . . . , CBM} form the final bucketized
representation of the client data. Note that, to retrieve the data elements in
response to a range query q, the client needs to first compute the query over-
lap with the optimal buckets Bi’s, say q(B) and then retrieve all the contents
of composite buckets CBj ’s that overlap with one or more of the buckets in
q(B). The retrieved data elements comprise the solution to query q.

The M composite buckets need to be approximately equal in size in order
to ensure the QoS constraint, as will become clear below. The equi-depth
constraint sets the target size of each CB to be a constant = fCB = |D|/M
where |D| is size of the data set (i.e. rows in the table). The QoS constraint is
enforced as follows: If the maximum allowed performance degradation = K,
then for an optimal bucket Bi of size |Bi| its elements are diffused into no more
than di = K∗|Bi|

fCB
composite buckets (as mentioned above fCB = |D|/M). The

diffusion factor di is rounded-off to the closest integer. Assume that in response
to a range query q, the server using the set of optimal buckets {B1, . . . , BM},
retrieves a total of t buckets containing T elements in all. Then in response
to the same query q this scheme guarantees that the server would extract no
more than K ∗ T elements at most, using the set {CB1, . . . , CBM} instead of
{B1, . . . , BM}. For example, if the optimal buckets retrieved in response to a
query q were B1 and B2 (here t = 2 and T = |B1|+ |B2|), then to evaluate q
using the CBj ’s, the server won’t retrieve any more than K ∗ |B1|+ K ∗ |B2|
elements, hence ensuring that precision of the retrieved set does not reduce
by a factor greater than K.

An added advantage of the diffusion method lies in the fact that it guaran-
tees the QoS lower bound is met not just for the average precision of queries
but for each and every individual query. The important point to note is that
the domains of the composite buckets overlap where as in the case of the op-
timal buckets, they do not. Elements with the same value can end up going to
multiple CB’s as a result of this diffusion procedure. This is the key charac-
teristic that allows one to vary the privacy measure while being able to control
the performance degradation. Therefore, this scheme allows one to explore the
“privacy-performance trade-off curve”. The controlled diffusion algorithm is
given in figure 8. The diffusion process is illustrated by an example below.

Example: Consider the optimal buckets of the example in figure 6 and say
a performance degradation of up to 2 times the optimal (K = 2) is allowed.
Figure 9 illustrates the procedure. In the figure, the vertical arrows show which
of the composite buckets, the elements of an optimal bucket gets assigned to
(i.e. diffused to). The final resulting buckets are shown in the bottom right
hand-side of the figure and we can see that all the 4 CB’s roughly have the
same number size (between 11 and 14). The average entropy of a bucket
increases from 1.264 to 2.052 and standard deviation increases from 0.628 to
1.875 as one goes from the B’s to CB’s. In this example the entropy increases
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Algorithm : Controlled-Diffusion(D, M, K)
Input : Data set D = (V, F ),

M = # of CB′s (usually same as # opt buckets)
K = maximum performance-degradation factor

Output : An M -Partition of the dataset (i.e. M buckets)

Compute optimal buckets {Bi, . . . , BM} using QOB algo
Initialize M empty composite buckets CB1 . . . , CBM

For each Bi

Select di = K∗|Bi|
fCB

distinct CB’s randomly, fCB = |D|
M

Assign elements of Bi equiprobably to the di CB′s
(roughly |Bi|/di elements of Bi go into each CB)

end For
Return the set buckets {CBj |j = 1, . . . , M}.
end

Fig. 8. Controlled diffusion algorithm

since the number of distinct elements in the CB′s are more than those in
the B’s. The variance of the CB’s is also higher on an average than that of
the B’s since the domain (or spread) of each bucket has increased. Note that
average precision of the queries (using the composite buckets) remains within
a factor of 2 of the optimal. For instance, take the range query q = [2, 4], it
would have retrieved the buckets B1 and B2 had we used the optimal buckets
resulting in a precision of 18/32 = 0.5625. Now evaluating the same query
using the composite buckets, we would end up retrieving all the buckets CB1

through CB4 with the reduced precision as 18/50 ≈ 0.36 > 1
2 ∗ 0.5625. (Note:

Due to the small error margin allowed in the size of the composite buckets
(i.e. they need not be exactly equal in size), the precision of few of the queries
might reduce by a factor slightly greater than K). ♦

Discussion

In this section, we considered only single dimensional data. Most real data sets
have multiple attributes with various kinds of dependencies and correlations
between the attributes. There may be some kinds of functional dependencies
(exact or partial) and correlations as in multidimensional relational data or
even structural dependencies as in XML data. Therefore, knowledge about
one attribute might disclose the value of another via the knowledge of such
associations. The security-cost analysis for such data becomes significantly
different as shown in [16, 35]. Also, in this section, the analysis that was pre-
sented, was carried out for the worst-case scenario where it was assumed that
the complete value distribution of the bucket is known to an adversary. In
reality it is unrealistic to assume that an adversary has exact knowledge of
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Fig. 9. controlled diffusion (adhoc version)

the complete distribution of a data set. Moreover, to learn the bucket-level
joint-distribution of data, the required size of the training set (in order to
approximate the distribution to a given level of accuracy) grows exponen-
tially with the number of attributes/dimensions. This makes the assumption
of “complete bucket-level” knowledge of distribution even more unrealistic for
multidimensional data. [16] proposes a new approach to analyze the disclosure
risk for multidimensional data and extends the work in [14] to the this case.
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3.3 Two Server Model for DAS

The authors in [4] propose an alternate model for DAS where they propose
a distributed approach to ensure data confidentiality. This scheme requires
the presence of two or more distinct servers. The individual servers can be
untrusted as before, the only constraint being, they should be mutually non-
colluding and non-communicating. Also deviating from the previous approach,
here the data owner is required to specify the privacy requirement in the form
of constraints as we describe below.

Privacy Requirements

Consider a relation R, the privacy requirements are specified as a set of con-
straints P expressed on the schema of relation R. Each constraint is denoted
by a subset, say P , of the attributes of R. The privacy constraints informally
mean the following: If R is decomposed into into R1 and R2, and let an ad-
versary have access to the entire contents of either R1 or R2. The privacy
requirement is that for every tuple in R, the value of at least one of the at-
tributes in P should be completely opaque to the adversary, i.e., the adversary
should be unable to infer anything about the value of that attribute.

For example, let relation R consist of the attributes Name, Date of Birth
(DoB), Gender, Zipcode, Position, Salary, Email, Telephone. The company
specifies that Telephone and Email are sensitive even on their own. Salary,
Position and DoB are considered private details of individuals and so cannot
be stored together. Similarly {DoB, Gender, Zipcode} might also be deemed
sensitive since they together can identify an individual. Other things that
might be protected are like sensitive rules, e.g., relation between position and
salary or between age and salary: {Position, Salary}, {Salary, DoB}.

The goal is therefore to ensure that each of the the privacy constraints
are met. For constraints containing single sensitive attributes, e.g., the “Tele-
phone Number” that needs to be hidden, one can XOR the number with a
random number r and store the resulting number in one server and the num-
ber r on another. To recover the original telephone number one simply needs
to XOR these two pieces of information and each of these by themselves re-
veal nothing. For the other kind of constraints that contain more than one
attribute, say {Salary, Position}, the client can vertically partition the at-
tribute sets of R so that the salary information is kept in one column and the
position information is kept in another. Since the two servers are assumed to
be non-colluding and non-communicating, distributing the attributes across
the servers provides an approach to implement such multi-attribute privacy
policies. The decomposition criteria is described more formally below.
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Relational Decomposition

The two requirements from the decomposition of a relational data set is that it
should be lossless and privacy preserving. Traditional relation decomposition
in distributed databases is of two types: Horizontal Fragmentation where each
tuple of a relation R is either stored in server S1 or server S2 and Vertical
Fragmentation where the attribute set is partitioned across S1 and S2 [40].
The vertical fragmentation of data is one that is investigated as a candidate
partitioning scheme and is investigated further in this work. Vertical parti-
tioning requires the rows in the two servers to have some unique tuple ID
associated with them. They also propose to use attribute encoding schemes
where can be built by combining the parts stored on the two servers. One-
time pad, deterministic encryption and random noise addition are explored as
alternative candidates for semantic partitioning of an attribute. The authors
propose using partitioning of the attribute set along with attribute encoding
to meet the privacy constraints. Remember that P ⊆ 2R. Consider a decom-
position of R as D(R) =< R1, R2, E >, where R1 and R2 are the sets of
attributes in the two fragments, and E refers to the set of attributes that are
encoded. E ⊆ R1 and E ⊆ R2 and R1 ∪R2 = R. Then the privacy constraint
need to satisfy the following requirements.

Condition 1 The decomposition D(R) is said to obey the privacy constraints
P if, for every P ∈ P, P * (R1 −E) and P ( (R2 − E)

Each constraint P ∈ P can be obeyed in two ways:

1. Ensure that P is not contained in either R1 or R2, using vertical frag-
mentation. For example, the privacy constraint {Name,Salary} may be
obeyed by placing Name in R1 and Salary in R2

2. Encode at least one of the attributes in P . For example, a different way
to obey the privacy constraint {Name, Salary} would be to encode Salary
across R1 and R2. For a more detailed discussion, we point the interested
reader to [4]

Query Reformulation, Optimization & Execution

The suggested query reformulation is straightforward and identical to that in
distributed databases. When a query refers to R, it is replaced by R1 ./ R2,
where all the encoded tuples (i.e., those that occur across both R1 and R2)
are assumed to be suitably decoded in the process. Consider the query with
selection condition c. If c is of the form < Attr >< op >< value >, and
< Attr > has not undergone fragmentation, condition c, may be pushed down
to R1 or R2, whichever contains < Attr >. Similarly if c is of the form <
Attr1 >< op >< Attr2 > and both attributes are un-fragmented and present
in either R1 or R2, the condition may be pushed down to the appropriate
relation. Similar ”push down” operations can also be applied to projection,
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Fig. 10. Example of Query Reformulation and Optimization)

Group-by and aggregation clauses. When the computation cannot be done
without decoding (or merging from the two servers) then the computation
shifts to the client. Notice that unlike in distributed database query processing
where semijoin approach (and shipping fields to other servers can be utilized)
such techniques cannot be used since that may result in violation of the privacy
constraint.

The small example in figure 10 illustrates the process of logical query
plan generation and execution in the proposed architecture. For some more
examples and discussions, the interested reader can refer to section 4 in the
paper [4].

Optimal Decomposition for Minimizing Query Cost

For a given workload W of queries, there is a cost associated with each distinct
partitioning of the set of attributes between the two databases. Since there
are exponentially many distinct partitioning schemes, a brute force evalua-
tion is not efficient. The authors use an approach from distributed comput-
ing based on affinity matrix M , where the entry Mij represents the “cost”
of placing the unencoded attributes i and j in different segments. The en-
try Mij represents the “cost” of encoding attribute i across both fragments.
The cost of decomposition is assumed to be simply represented by a lin-
ear combination of entries in the affinity matrix. Let R = {A1, A2, . . . , An}
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represents the original set of n attributes, and consider a decomposition of
D(R) =< R1, R2, E >. Then we assume the cost of this decomposition
C(D) =

∑
i∈(R1−E),j∈(R2−E) Mij +

∑
i∈E Mii. Now, the optimization prob-

lem is to minimize the above cost while partitioning the data in a way that
satisfies all the privacy constraints. The two issues to be addressed are: (i)
How can the affinity matrix M be generated from a knowledge of the query
workload? (ii) How can the optimization problem be solved?

The simplest scheme to populate the affinity matrix is to set Mij to be
the number of queries that refer to both attributes i and j. Similarly Mii is
set to the number of queries in the workload that refer to attribute i. Some
other heuristics to populate the entries of the affinity matrix are given in the
appendix of the paper [4] and the interested reader can refer to it. Now, we
summarize the solution outlined in the paper for the second problem.

The Optimization Problem

The optimization problem is modelled as a complete graph G(R), with both
vertex and edge weights defined by the affinity matrix M . (Diagonal entries
stand for vertex weights). Along with it, the set of privacy constraints are
also given, P ⊆ 2R, representing a hypergraph H(R,P) on the same vertices.
The requirement is then, to 2-color the set of vertices in R such that (a) no
hypergraph edge in H is monochromatic, and (b) the weight of bichromatic
graph edges in G is minimized. The difference is that an additional freedom
to delete any vertex in R (and all the hyperedges that contain it) by paying
a price equal to the vertex weight. The coloring of a vertex is equivalent to
placing the corresponding attribute in one of the two segments and deleting
it is equivalent to encoding the attribute; so all privacy constraints associated
with the attribute is satisfied by the vertex deletion. Some vertex deletions
might always be necessary since it might not be possible to always two color
a hypergraph.

The above problem is NP-hard and the authors go on to give three heuris-
tic solutions that use approximation algorithms for “Min-Cut” and “Weighted
Set Cover” problems in graphs. The former component is used to determine
two-colorings of the graph G(R) (say all cuts of the graph G(R) which are
within a small constant factor of the minimum cut) and is used to decide
which attributes are assigned to which segment. The weighted set cover al-
gorithm is used for detecting the least costly set of vertices to delete, these
correspond to attributes that need to be encoded across both the segments.
Good approximation solutions are there for both the algorithms and therefore
makes them practical to use. We summarize one of the heuristic approaches
mentioned in the paper, and refer the interested reader to the original paper
for the remaining ones.

1. Ignore fragmentation, and delete vertices to cover all the constraints using
Approximate Weighted Set Cover. Call the set of deleted vertices E.
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2. Consider the remaining vertices, and use Approximate Min-Cuts to
find different 2-colorings of the vertices, all of which approximately mini-
mize the weight of the bichromatic edges in G

3. For each of the 2-colorings obtained in step (2): Find all deleted vertices
that are present only in bichromatic hyperedges, and consider “rolling
back” their deletion, and coloring them instead, to obtain a better solu-
tion.

4. Choose the best of (a) the solution from step (3) for each of the 2-colorings,
and (b) the decomposition < R− E, E, E >.

In the first step, all the privacy constraints are covered by ensuring at least
one attribute in each constraint is encoded. This implies a simple solution D1,
where all the unencoded attributes are assigned to one segment. In steps
(2) and (3), one tries to improve upon this by avoiding encrypting all the
attributes, hoping to use fragmentation to cover some of the constraints. This
is done iteratively by computing various other small cuts and trying to roll
back some of the encodings. Finally the better solution (computed in step (3)
or D1) is returned.

Discussion

In this paper, the authors have proposed an alternative way of supporting
database functionalities in a secure manner in the outsourcing model. The
approach deviates from the usual DAS model in that it requires two or more
non-communicating service providers to be available to enable privacy. The
approach though novel and definitely interesting, does raise many questions
which would be interesting to investigate, e.g., what would be the performance
of such a system in a real deployment, how would more complicated queries be
split between the two servers, what would be the overhead of multiple-rounds
in which a query might have to be answered. Also, currently there is no direct
communication between the two servers, could some of the distributed query
processing overhead be reduced if some kind of secure, “two-party communi-
cations” were to be enabled between these two servers. Moreover, the nature
of privacy violation due to associations between multiple attributes (that are
kept on different servers or are encoded) could lead to privacy violations, how
to tackle these is not known. The paper does offer an interesting new approach
which could give rise to some new research.

3.4 Summary

In this section, we presented example approaches that have been developed
in the literature to support relational queries over encrypted relational data
in the DAS setting. Such approaches broadly fall under two categories: (1)
cryptographic approaches that attempt to develop encryption algorithms that
allow queries to be evaluated directly over encrypted representation, and (2)
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approaches based on exploiting information hiding techniques developed in
the disclosure control literature. While cryptographic approaches prevent leak-
age of any information (but are applicable only under limited scenarios), ap-
proaches based on information hiding may allow limited information disclosure
but are more widely applicable. Such approaches explore a natural tradeoff
between potential information loss and efficiency that can be achieved. We
discussed how data generalization into buckets can be performed such that
the information disclosure is minimized while constraining the performance
degradation.

We note that information disclosure in bucket-based approach has formally
only been studied for single dimensional data, under the worst case assump-
tion that the adversary knows the definition of the buckets and the complete
distribution of data within buckets. As we noted earlier, this assumption is
too strong in reality and cannot be expected to hold in general for multidi-
mensional data. Some recent work has been done in this area [16] to develop
a framework for security analysis for multidimensional bucketization.

There also exist some work in literature [19] that propose data transfor-
mation based schemes which allow a richer set of SQL functions to be com-
puted directly on the transformed numeric data like aggregation and sorting.
Though, the main shortcoming of this scheme is that it is only secure un-
der the “ciphertext-only attack” model and breaks down when the adversary
possesses background knowledge and/or a few plaintext-ciphertext pairs.

Finally, while our focus in this chapter has been on techniques developed
in the literature to support relational queries in the DAS model, we note that
limited systems that follow the DAS paradigm have also been built [3, 18].
Whereas [3] uses a smart card based safe storage to implement limited SQL
functionalities, [18] proposes a system which outsources user profile data (e.g.,
bookmarks, passwords, query logs, web data, cookies, etc) and supports simple
searching capabilities. The rationale is to use DAS approach for supporting
mobility across different software and machines. some limited work on schemes
such as [19]
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4 Conclusions

In this chapter, we summarized research on supporting search over encrypted
data representation that has been studied in the context of database as a
service model. Much of the existing work has studied the search problem in one
of the two contexts: keyword search over encrypted document representations,
and SQL search over encrypted relational data. Since the initial work [7, 26] in
these areas, many extensions to the problem have been considered. We briefly
mention these advances that we have not covered so far to provide interested
readers with references.

The problem of query evaluation over encrypted relational databases has
been generalized to XML data sources in [35, 36]. XML data, unlike relational
databases, is semi-structured which introduces certain additional complica-
tions in encrypting as well as translating queries. For instance, authors in
[35] propose XML-encryption schemes taking its structure into consideration,
develop techniques to evaluate SPJ queries and optimize the search process
during query processing.

Besides extending the data model, some researchers have considered relax-
ing assumptions made by the basic DAS model itself. The basic DAS model,
as discussed in this chapter, assumes that the service provider though un-
trusted, is honest. Such an assumption might not necessarily hold in certain
situations. In particular, the service provider may return erroneous data. An
error in the result to a query may manifest itself in two ways – the returned
answers may be tampered by the service provider, or alternatively, the results
returned by the service provider may not be the complete set of matching
records. The problem of integrity of the returned results was first studied in
[26] which used message authentication codes (MACs) to authenticate the re-
sult set. Any such authentication mechanism adds additional processing cost
at the client. Authentication mechanisms using Merkle Hash trees and group
signatures that attempt to reduce such an overhead have been studied in [37].
The authors have developed techniques for both the situation where the client
(i.e., the user who poses the query) is the same as well as different from the
data owner.

Another avenue of DAS research has been to exploit secure coprocessor
to maintain confidentiality of outsourced database [38]. Unlike the basic DAS
model in which the client is trusted and the service provider is entirely un-
trusted, in the model enhanced with a secure coprocessor, it is assumed that
the service provider has a tamper proof hardware – a secure coprocessor –
which is attached to the untrusted server and has (limited) amount of storage
and processing capabilities. Data while outside the secure processor must be
in the encrypted form, it could be in plaintext within the coprocessor without
jeopardizing data confidentiality. Exploiting a secure coprocessor significantly
simplifies the DAS model since now intermediate query results do not need
to be transmitted to the clients if further computation requires data to be
in plaintext. Instead, secure coprocessor can perform such a function, there-
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fore significantly reducing network overheads and optimizing performance.
Another additional advantage is that such a model can naturally support sit-
uations where the owner of the database is different from the user who poses
the query.

While much progress in research has been made over the past few years
on DAS, we believe that many further challenges remain before the vision
outlined in [26] of a secure data management service that simultaneously
meets the data confidentiality and efficiency requirements. A few of the many
practical challenges that still remain open are the following: (1) techniques to
support dynamic updates – some initial approaches to this problem have been
studied in [10], (2) mechanisms to support stored procedures and function ex-
ecution as part of SQL processing, and (3) support for a more complete SQL
- e.g., pattern matching queries. Furthermore, given multiple competing mod-
els for DAS (e.g., the basic model, the model with secure coprocessor, model
with two servers) as well as multiple competing approaches, there is a need
for a detailed comparative study that evaluates these approaches from differ-
ent perspectives: feasibility, applicability under diverse conditions, efficiency,
and achievable confidentiality. Finally, a detailed security analysis including
the nature of attacks as well as privacy guarantees supported by different
schemes needs to be studied.
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