
Runtime Software Adaptation:
Framework, Approaches, and Styles

Peyman Oreizy
Launch21

+1-425-442-9692

peymano@launch21.com

Nenad Medvidovic
University of Southern California
 Computer Science Department
Los Angeles, CA 90089-0781

+1-213-740-5579

neno@usc.edu

Richard N. Taylor
University of California, Irvine

Institute for Software Research
Irvine, CA 92697-3455

+1-949-824-6429

taylor@ics.uci.edu

ABSTRACT

Our ICSE 1998 paper showed how an application can be adapted
at runtime by manipulating its architectural model. In particular,
our paper demonstrated the beneficial role of (1) software
connectors in aiding runtime change, (2) an explicit architectural
model fielded with the system and used as the basis for runtime
change, and (3) architectural style in providing both structural and
behavioral constraints over runtime change. This paper examines
runtime evolution in the decade hence. A broad framework for
studying and describing evolution is introduced that serves to

unify the wide range of work now found in the field of dynamic
software adaptation. This paper also looks to the future,
identifying what we believe to be highly promising directions.

Categories and Subject Descriptors

D.2.11 [Software Architectures]; D.2.7 [Distribution,

Maintenance, and Enhancement]

General Terms

Design

Keywords

Software adaptation; software evolution; software architecture;
architectural styles; autonomic computing

1. INTRODUCTION
Runtime software adaptation and evolution concern changing a
software system during its execution. Our work in runtime
evolution (RE) was and is motivated by our society's increasing
dependence on software-intensive systems and the real risks,
costs, and inconvenience that their downtime presents. As we
noted in our 1998 paper, “continuous availability is a critical
requirement for an important class of software systems” [26].
Recently, it has become evident that this extends beyond the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05...$5.00.

software that runs national power grids, global banking and
financial systems, etc., and into commonplace systems such as:

• hosted email services (e.g., Google Gmail, Yahoo Mail,
and Microsoft Hotmail), on which millions of people

and businesses depend for communication, as updates
are deployed to fix bugs, increase capacity, and provide
new functionality;

• operating systems, where security patches that require a
system reboot to install are not just inconvenient for
end-users, but disruptive to mission-critical systems
built atop these operating systems;

• consumer online banking systems, where a competitive
analysis recently revealed that while many major U.S.

banks had less than one hour of downtime over a two-
month period, one of the nation's leading banks had over
two days of downtime during the same period [28];

• cellular networks, as a recent outage of a popular
network was traced to an issue with a “routine upgrade”
[30].

Change is unavoidable in most systems: intensive use breeds

change. Thus we need approaches that reduce, even eliminate, the

costs and risks of evolving these systems without incurring
downtime.

Our original paper and its follow-on journal version [27] were
novel in their espousal of an architecture-based approach to RE.
In particular, they demonstrated the beneficial role of: (1)
software connectors in aiding runtime change; (2) an explicit
architectural model fielded with the system and used as the basis
for runtime change; and (3) architectural style in providing both
structural and behavioral constraints over runtime change.

When we wrote our paper, research on the subject was scattered
across a handful of workshop and conference tracks that broadly

covered “software evolution”, “configurable distributed systems”,
“programming languages”, “operating systems”, etc. At these
venues, runtime evolution was one of many interesting aspects of
a software system. In recent years however, interest in RE has
grown substantially, especially in the area of architecture-based
approaches at venues such as the International Conference on

Autonomic Computing (ICAC) and the workshop series on
Software Engineering for Adaptive and Self-Managing Systems

(SEAMS).

Much progress has been made in the years since we wrote our
paper. Research results and real-world experience demonstrate
that software architecture can play a valuable role in achieving
RE. In particular, the beneficial role of connectors, architectural
style, and explicit architectural models come up repeatedly in this

work (see sections 3 and 4). But research and experience also
indicate that software architecture alone is insufficient in many
situations. In real-world systems, it is common to see a variety of
approaches used in concert:

• redundant or fault-tolerant hardware to cope with
hardware failures;

• “hot pluggable” devices, in particular disk drives and
memory chips, to add capacity or replace faulty units
without power cycling a machine;

• the facilities of programming languages and their
runtimes (e.g., Java’s Virtual Machine and C#’s

Common Language Runtime) to dynamically load,
verify, and invoke code updates;

• system virtualization (e.g., VMware [1] and Xen [2]) to
attain hardware fault isolation and improve resource
utilization;

• tuning of operating system parameters to achieve
optimal memory, CPU, and device utilization among
application components.

It is evident that no single approach can encompass the others, and
that no one system model can capture the diverse set of concerns
necessary to effectively reason about and implement RE.

In our attempt to compare various approaches, we realized that no
framework existed for effectively comparing approaches that
operate at different levels of abstraction and utilize different
system models, and that this was the crucial missing piece that
prevented a holistic view of the problem. As a result, we
developed a simple framework for making such comparisons,
which we present in section 2. In section 3, we review progress to
date (in both academia and practice), highlighting approaches that

operate at different levels of abstraction that appear particularly
effective at addressing aspects of RE. We conclude the paper in
section 4 with some promising directions for future work gleaned
from our study of the state-of-the-art and the state-of-the-practice.

2. A UNIFYING FRAMEWORK
To describe and illustrate our framework, we use a simple,
contrived example in this section. Assume that we have a system
that analyzes an infinite stream of images arriving from a deep
space probe. The system continuously reads an image, applies
several image processing algorithms to the image, and saves the
images that are deemed “interesting”.

A software model uses the principle of abstraction to hide certain
details in order to highlight others. A system can be modeled in
numerous ways, such as its structural architecture (Figure 2), its
programming-language statements (Figure 4), the relationships
between its data types (Figure 3), as data-flows through its

subsystems (Figure 1), as the mapping between its virtual- and
physical machines, etc. Note that we regard source code as a kind

of system model. As we noted in Section 1, various models are
useful for reasoning about and implementing runtime evolution.

One can imagine manipulating any one of these models to effect
changes to a running system. Irrespective of the system model that
is changed, an approach must address five aspects of change:

1. Changes to the model’s behavior: How are such model
changes represented, deployed, and applied? What

aspects of the model’s behavior can be changed? Can
new behavior be added, can existing behaviors be
replaced, or are we restricted to recombining existing
behaviors? What assurances, if any, are provided that
changes haven't been tampered with? In our example,
the data flow model (Figure 1) could be altered to add
new image processing algorithms, or the source code
(Figure 4) can be “patched” to rewrite the
implementation logic of one of the algorithms.

2. Changes to the model’s state: How are state changes
described? If the definition of a type changes, are

existing instances altered? Are all instances updated
simultaneously or lazily as they are accessed? Is the
execution of the system stalled while state changes are
made? In our example, the type inheritance hierarchy
(Figure 3) could be altered to interpose a new type
between the ‘Bitmap’ and ‘Image’ types.

3. Changes to the execution context of the machine

running our model: A model is interpreted by a
machine, e.g., an x86 processor, a Java virtual machine
(JVM), a type inference engine, or a data flow engine.

image
analysis

#1

image
analysis

#2

image
analysis

#3

Figure 1. Example data-flow model for image processing

satelite
receiver

image
analysis

#1

image
analysis

#2

image
analysis

#3

image
processing
controller

image
repository

image bus I/O bus

Figure 2. Example structural architecture model

sampleDate
Image

inBoundingBox()
ArtifactCollection

s i z e
colormap

Bitmap
l eng th
getAt()

Collection

Figure 3. Example inheritance type hierarchy model

ArtifactCollection trackingArtifacts; // global state

void process_image(Image* image) {
 bool result1, result2, result3;
 result1 = analysis1(image, trackingArtifacts);
 result2 = analysis2(image);
 result3 = analysis3(image, trackingArtifacts);
 return result1 || result2 || result3;
}

image_processor() {
 ...
 do {
 event = wait_for_event();
 if (event.type == NewImageArrivedEvent) {
 bool shouldSave;
 Image* image = event.get_image();
 shouldSave = process_image(image);
 if (shouldSave) {
 ...
 }
 }
 } while (event.type != AbortEvent);
}

Figure 4. Pseudo-code for image processor

As we make runtime changes to our model, we must be
careful to not adversely affect the machine interpreting
it. In our example, if we rewrite the x86 instructions of
the process_image() function, the state of the x86
processor (registers, call stack, caches) and internal data

structures of the operating system (process and thread
state) may need to be updated as well.

4. Asynchrony of change: Applying a change at runtime is
not instantaneous. It can take anywhere from several
milliseconds to apply a patch to a small program’s
machine code to minutes or hours to change a large
distributed system (e.g., due to communication latency
or nodes being unavailable). Is the model’s execution
suspended during a change or does it continue to run in
some capacity? If the latter, how does the approach deal
with partially applied changes?

5. Implementation probes: Often, a change can only be
applied when the running system satisfies a particular

set of conditions. In our example, if we are patching the
implementation of the analysis1() function and cannot
do it correctly while the function is being executed, we
would need a probe to tell us if the function is on the
execution stack.

When we change a system model, the corresponding change must
be made to any realization of the model, which (ultimately)
includes the implementation. Any adjunct system models are
likewise updated. Figure 5 depicts the processes involved. 1

The lower half of the diagram, labeled “evolution management,”
focuses on the mechanisms used to change the application.
System models are used as the basis for formulating and reasoning
over runtime changes. Changes to these system models are
reflected in modifications to the application’s realization (at a

lower level of abstraction), while ensuring that the model and the
realization (which ultimately includes the implementation) are

1 Figure 5 is adapted from [27].

consistent with one another. Monitoring and evaluation services
observe the application and its operating environment and feed
information back to the diagram’s upper half. The upper half of
the diagram, labeled “adaptation management,” describes the life-
cycle of adaptation. The life-cycle can have humans in the loop or

be fully autonomous. “Evaluate and monitor observations” refers
to all forms of evaluating and observing an application’s
execution, including, at a minimum, performance monitoring,
safety inspections, and constraint verification. “Plan changes”
refers to the task of accepting the evaluations, defining an
appropriate adaptation, and constructing a blueprint for executing
that adaptation. “Deploy change descriptions” is the coordinated
conveyance of change descriptions, components, and possibly

new observers or evaluators to the implementation platform in the
field. Conversely, deployment might also extract data, and
possibly components, from the running application and convey
them to some other point for analysis and optimization.

The system models of Figure 5 are related to one another,
potentially in complex ways. In our example, when we change the
data flow model, we are inducing changes in the system’s source
code and structural architecture. In the situation where a system
model is realized in terms of another system model (e.g., a type
hierarchy realized as source code), a change “trickles down” to
the lower-level model. This can occur multiple times as a change

trickles down to, say, the machine code. Likewise, changes to a
system model can “percolate” up to higher-level models.

Figure 5. Processes involved in runtime adaptation

As a demonstration of the utility of our framework, assume that
we have several important improvements that we would like to
reason about and apply to the running system.

• Changes to the model’s behavior: The technologies
used by the deployed system would limit our options
here, but assume that the deployed system offers both a
binary-patching facility provided by the operating

system that allows patching on a function-by-function
basis (e.g., akin to Windows hotpatching [24]) and a
software architecture-based adaptation infrastructure
(akin to that describes in our original paper) that allows
replacement of components. The consequences of this
will be discussed shortly.

• Changes to the program’s state: In our hypothetical
case, data-flow analysis reveals that our changes only
reference the “Image” and “ArtifactCollection” data
types, and type analysis reveals that these two types
have not been altered. Hence, these changes do not

require updates to program state. If they did, we would
need to look to approaches that support updates to state
as well as behavior.

As a result of this, we may prefer the binary patching
facility since our changes can be applied in-place,
avoiding the need to migrate state that would likely
result if we used the component replacement approach.

• Changes to the execution context of the machine

running our program: In our case, since this system
uses an event-based implicit-invocation architectural
style for triggering image analysis, we can deduce that it
is safe to patch our code while the program is waiting
for an event to arrive (at that point, we know that our
code is not executing and that only the

image_processor() function is on the program stack).
We assume that waiting for this condition to occur is
acceptable; if it is not, we would need to look to
approaches that did not have this limitation.

• Asynchrony of change: Although we have identified a
suitable condition that must be met for us to initiate our
change (i.e., blocked on the arrival of an event), we
must ensure that the condition isn't violated during the
change. Hence, we decide to use an operating system
mechanism that temporarily suspends the process while
our binary patch is applied.

In spite of its simplicity, our example demonstrates the utility of
our framework in two ways. (1) It allows us to reason about our
change by combining observations gleaned from multiple levels

of abstraction: data-flow and type analysis of the program's source
code combined with observations about its architectural style
guided us in choosing and applying the technique of binary
patching to effect a safe runtime change. (2) It allowed us to
compare two approaches for making changes (at the function-
level versus structural software architecture-level) and choose the
one that was best suited to the specific change we wanted to
make. Of course, it is easy to reason about this trivial example in

one's mind; a complex system would require tools that guided this
effort and possibly automated some of its steps.

3. A LOOK BACK ON THE PAST DECADE
Several dynamic adaptation models have emerged in the past ten
years. These models have tended to have an architectural focus

and, as we will elaborate below, have had a number of shared
characteristics. Additionally, a large number of research projects
as well as several open source and commercial systems have taken
on the different challenges of dynamic software evolution. These
transcend not just software architecture, but also software

engineering, confirming that software dynamism is a multi-
faceted problem that can, and must, be approached from many
directions. Finally, a number of conferences, symposia, and
workshops have been initiated with software dynamism as a focal
point. In this section, we will provide a brief overview of the
accomplishments from the past decade. The ensuing discussion
should not be viewed as a definitive survey of the state-of-the
practice, but rather a collection of notable highlights.

3.1 Dynamic Adaptation Models
Several models of dynamic adaptation preceded our ICSE 1998
paper. These can be categorized into architectural style-based
models, such as CHAM [18] and graph grammars [23], and
architecture description language (ADL) based models, such as

Rapide [21], Darwin [22], and Dynamic Wright [4]. However,
these models failed to gain wide adoption. There are two likely
reasons: (1) the models were not accompanied by actual system-
level facilities for dynamic evolution and (2) the type of
dynamism they supported was in some ways overly constrained,
such as only allowing an existing component to be replicated a
certain number of times.

Our ICSE 1998 paper proposed an approach to runtime evolution
intended to remedy these shortcomings. This approach was
subsequently explicitly codified in the “Figure 8” model [27], a
variation of which is depicted in Figure 5. The Figure 8 argued

that dynamic system evolution must be properly planned and
carefully executed. Furthermore, it appropriately identified the
ultimate target of dynamic evolution to be the system rather than
one of the system’s models (in Figure 5 this corresponds to the
realization of models as the target of dynamic evolution). System
models still play a critical role in that they are the drivers of
evolution. This alleviated both of the above shortcomings of
earlier dynamic adaptation models, while in the process also

addressing the common problem of architectural erosion, where a
system’s architectural model and its implementation begin to
diverge in significant ways.

A few years after this, another very similar architecture-based
dynamic adaptation model emerged from the Rainbow project
[16]. Rainbow also acknowledged the importance of maintaining
the relationship between a system’s architectural model and its
implementation, performing on-the-fly analysis after the proposed
modification to the model but before the system has been updated,
and providing a style-based architecture implementation platform
suitable for dynamic adaptation.

Recently, Kramer and Magee proposed a layered reference
architecture for autonomous or self-managed systems [19].
Although it has been inspired by a particular class of autonomous

systems—robots—this architecture is intended to be broadly
applicable. The architecture’s three layers are Component
Control, Change Management, and Goal Management.
Component Control contains the system’s application-level
functionality and supports the ability to add, remove, and
reconnect components. This layer reports any events it is unable
to process to the Change Management layer above, which in turn
executes one of the pre-compiled plans to deal with a variety of

situations the system may encounter. If none of the existing plans

can address the current situation, or a new system goal is
introduced, then the top-most Goal Management layer is engaged
to generate new plans.

A number of challenges are associated with this proposed
reference architecture, some of which were recognized by Kramer
and Magee [19]. Some of the challenges follow recurring themes
in architecture-driven dynamic system adaptation. Those include

maintaining the correspondence between architectural models and
system implementations in order to ensure that architecture-based
adaptations are properly effected, as well as providing the
necessary runtime evolution facilities in the implementation
infrastructure. Other challenges are specific to this particular
reference architecture. A critical issue inherent in the architecture
is efficiency: dynamic generation of plans can be a significant
performance concern, especially when dealing with a system’s
(e.g., robot’s) time-critical needs; this is further magnified if

changes to the system’s state cannot be treated in isolation and
instead plans must be re-generated wholesale every time.

3.2 Research Projects
A large number of research projects have emerged over the past
decade with some facet of dynamic adaptation at their core. Here

we will briefly overview several such projects. We reiterate that
the examples in this and the following subsection were selected
because they facilitate interesting aspects of dynamism, and that
the sections are not intended as definitive surveys.

Aura [15] is an architectural style and supporting middleware
platform for dynamic pervasive systems, with a particular focus
on context awareness and context switching. Aura supports
software component mobility with the goal of ensuring required
quality of service (QoS) levels. Its implementation infrastructure
provides hooks for system self-monitoring, allowing the system to
detect when requirements (e.g., response time) are not being met

and, as a result, to deploy alternative configurations to support the
task at hand.

MobiPads [9] is an example of a class of mobile middleware

platforms. MobiPads support active deployment of middleware-
level services for mobile computing. It monitors usage of
middleware resources for specific QoS targets, and dynamically
reconfigures them as required to optimize the QoS. On the other
hand, MobiPads does not provide any application-level dynamic
adaptation capabilities.

Siena [8] is a platform for deploying publish-subscribe systems
across Internet-scale networks. Siena allows publishers (i.e.,
servers) to advertise their services, and subscribers (i.e., clients) to
register for them. It then uses content-based routing to optimize

the delivery of events from the servers to the appropriate clients.
Siena supports dynamism inherently in that it allows clients and
servers to enter and leave the system arbitrarily: the underlying
infrastructure simply keeps track of the necessary routing
information. Siena is also resilient to network failures, in that data
can be re-routed dynamically. Given its focus, Siena’s underlying
publish-subscribe style, while explicit in the infrastructure,
provides no additional guidance to application-level system
designers.

Finally, recently a class of systems has emerged to support grid

computing [14]. The term “grid application” refers to applications

that have been adapted to use a distributed infrastructure (e.g.,
Globus [3]) and to run on “borrowed” hosts across a wide area
network. Such applications are typically parallelized and written

to accommodate the dynamic addition and removal of physical

resources (e.g., PCs participating in the different @home [5, 20]
networks). Since the underlying foundation is inherently unstable,
software-level dynamism must be a top concern. At the same
time, current grid systems are still very much script-driven,

requiring system restarts for many types of adaptation. The focus
of grid research has been on the infrastructure, with very little
guidance given to grid application developers.

3.3 Commercial Solutions
A number of commercial solutions have also emerged over the

past decade with varying degrees of dynamic adaptation
capabilities. In this section, we select three of them as illustrative:
a consumer electronics product family, a peer-to-peer voice-over-
IP system, and an infrastructure for parallel processing of large
data sets.

Koala [25] is an architecture-based technology for developing
consumer electronics applications. Engineers at Philips developed
Koala based on the Darwin ADL [22] and applied it initially to
their large family of television sets. Koala allows an engineer to
model and implement the software for, say, a TV set by
composing existing components with pre-defined interfaces.

Koala supports adaptation via two types of facilities: switches and
options. Switches operate at the source code level (in the form of
C #ifdefs), and require recompilation when setting values
differently. On the other hand, options are stored in pre-
programmed non-volatile memory. Options allow the use of a
single ROM for multiple product types, but can handle only
predefined runtime adaptations.

Skype [6] is a popular Internet telephony application built on a
modified peer-to-peer (p2p) architecture. A new client logs onto
the network via the Skype login server. After logging in, the client

node is given the information about one of the supernodes. A
Skype supernode handles all communication in a given portion of
the network. Depending on network and usage characteristics, any
node may be dynamically designated a supernode, or demoted
from a supernode to a regular node, which results in a
modification of the system’s current topology. Furthermore,
Skype inherits from the underlying architectural style, p2p, the
ability to support runtime addition, removal, and even physical
movement of hosts.

MapReduce [10] is Google’s infrastructure for processing and
generating large data sets. MapReduce users specify a map

function which essentially divides a large data set into a number
of subsets that can be processed in parallel. Users also specify a
reduce function, which merges the intermediate data values as
appropriate. Therefore, programs written in this style are
amenable to automatic parallelization and processing on a large
cluster of computers. MapReduce’s runtime system handles the
details of partitioning the input data, scheduling the program’s
execution across a set of machines, and managing the required

inter-machine communication. MapReduce supports a limited
(though critical to the intended domain) notion of dynamic
adaptation, targeted at handling node failures: the runtime system
automatically reroutes the data that was processed on a failed
node to a live node.

3.4 Conference, Symposia, Workshops
Over the past decade, a number of conference, symposia, and
workshops have cropped up that deal with different facets of
software dynamism. These can be categorized into events whose

primary purpose is dissemination of ideas pertaining to
dynamism, and those that embrace dynamism as a means of
addressing other problems. We will discuss some examples of
each category. We will conclude the section with a brief view to
the role dynamism has played in the mainstream software
engineering conferences, including ICSE.

3.4.1 Dynamism as a Primary Focus
The International Conference on Autonomic Computing (ICAC)

has assumed the leading role in dealing with software dynamism
across several computer science disciplines: AI, software
engineering, programming languages, databases, HCI, mobile and
pervasive computing, robotics, operating systems, networking,
distributed systems, embedded systems, and even biology. The
conference emerged several years ago as a direct outcome of
IBM’s autonomic computing initiative. The motivation behind it
was the recognition that the increasing complexity of

constructing, integrating, and managing software systems has
frequently overwhelmed the capabilities of not just software
engineers, but also system administrators. It is argued that the
only viable long-term alternative to the current state-of-the-
practice is to advance the field of autonomic computing, i.e., to
create computer systems that manage themselves in accordance
with high-level guidance from humans. The ICAC manifesto
states that “meeting the grand challenge of autonomic computing
requires scientific and technological advances in a wide variety of

fields, and new architectures that support effective integration of
the constituent technologies”.2 Over the past four years, ICAC has
gathered researchers from many traditional computer science
areas. It is still early to judge whether a unified, cross-disciplinary
vision of autonomic computing has begun to emerge, but the
amount of interest and research activity (also reflected in the
recent formation of the Autonomic Computing Workshop and the
Conference on Human Impact and Application of Autonomic

Computing Systems) is heartening.

The workshop series on Software Engineering for Adaptive and

Self-Managing Systems (SEAMS) has been the software-

engineering community’s “answer” to ICAC. SEAMS has tried to
consolidate a number of software engineering workshops that
have emerged over the past decade to deal with various aspects of
dynamic software adaptation, including the Workshop on Self-

Healing Systems (WOSS), Workshop on Design and Evolution of

Autonomic Application Software (DEAS), as well as the more
broadly scoped Workshop on Architecting Dependable Systems

(WADS) and International Workshop on Principles of Software

Evolution (IWPSE). The SEAMS organizers explicitly state that
they are “attempting to consolidate interest in the ICSE and FSE
software engineering communities on autonomic, self-managing,
self-healing, self-optimizing, self-configuring, and self-adaptive
systems”.3 While the stated goal of SEAMS is to bring together
researchers and practitioners from diverse computer science areas
to discuss the fundamental principles, state of the art, and critical
challenges of self-adaptive and self-managing systems, its specific

focus is on the software engineering aspects of self-adaptation and
self-management: methods, architectures, algorithms, techniques,
and tools that can be used to support software development in
such systems.

2 http://www.caip.rutgers.edu/~parashar/ac2004/organization.html
3 http://www.seams2007.cs.uvic.ca/

The growing research activity in this area recently resulted in a
Dagstuhl Seminar on Software Engineering for Self-Adaptive

Systems. The motivating observation for organizing the seminar
was that, while self-adaptation has been studied across many
disciplines of computer science, software engineering is uniquely

positioned to provide a platform for consolidating these results in
that the common element that enables the provision of self-
adaptation across all these areas is software. The objective,
therefore, is to try and energize the software engineering
community to devise a comprehensive, broadly applicable
solution to self-adaptation.

3.4.2 Dynamism as a Means or By-Product
A number of additional conferences and symposia have dealt with
dynamic software adaptation as either a means or by-product of
achieving a related objective. For example, MobiCom is a
conference dedicated to addressing research challenges in the

areas of mobile computing as well as wireless and mobile
networking. While many of the problems MobiCom tries to
address are very low level and, on the surface, have little to do
with software engineering (e.g., protocols for software radios or
techniques for dynamic spectrum use), certain aspects of mobility
will inherently involve the dynamic adaptation of the software,
both at the system level and at the application level.

PerCom is a conference dedicated to the emerging area of
pervasive computing and communications. It is explicitly aimed at
providing a “platform and paradigm for all the time, everywhere
services”.4 The conference is seen as a natural outcome of the

advances in wireless networks, mobile computing, sensor
networks, distributed computing, and agent technologies. Several
of its areas of interest (e.g., wearable computers, pervasive
computing architectures, context-aware computing, and
autonomic computing) will inherently have to deal with on-the-fly
adaptation of the underlying software.

The Working Conference on Component Deployment (CD) is an
event targeted specifically at the issues dealing with software
system deployment in distributed (possibly pervasive and mobile)
environments. Software deployment is a dynamic activity in that
software is relocated from a source host to a set of target hosts,

although the system’s initial deployment usually involves the
transfer of inactive, stateless modules. If, however, deployment
takes place during system runtime (in which case, this is, in fact,
redeployment), then it is an instance of dynamic system
adaptation. A number of approaches have been proposed at CD
for dealing with this variation on dynamic adaptation.

Another specialized, long-running conference series that deals
with issues pertaining to dynamic software adaptation is
Middleware. Middleware is scoped much more broadly and deals
with the provision of all types of enabling services for effective
distributed computing. However, a predominant number of

middleware platforms support at least some form of dynamism
(e.g., dynamic discovery, insertion, and/or invocation of
components in CORBA). While usually highly specialized, these
techniques can and do inform software engineers interested in
studying software system dynamism.

3.4.3 Dynamism in Our Flagship Conferences
The above discussion, while partial, provides ample evidence of
the growing interest in dynamic adaptation, not just within

4 http://www4.comp.polyu.edu.hk/~percom08/

software engineering, but also across many other areas. Yet, even
a cursory look at the proceedings of the major software
engineering conferences (ICSE, FSE, ASE) paints a curious
picture: since 1998, there has been a smattering of papers dealing
with dynamic adaptation; there are no technical paper sessions or

panels dedicated to dynamism. A similar trend can be seen if we
look at the major software architecture venues (e.g., WICSA).
Given the proliferation of ICSE and FSE workshops dealing with
this subject during this same period, this would seem to suggest
that, as far as the software engineering research community is
concerned, the problem of dynamic software evolution is a
fascinating topic for discussion, but not (yet) worthy of concerted
focus in our flagship conferences. This is disappointing. We hope

that our paper being awarded the Most Influential Paper of ICSE
’98 is a harbinger of change.

4. PROMISING DIRECTIONS FOR

FUTURE WORK: ARCHITECTURAL

STYLES
The framework introduced in Section 2 presented a general model
for characterizing and achieving dynamic adaptation. It discussed

the range of issues that must be addressed when a system is
modified. Progress over the past decade, presented in the
preceding section, covered approaches that span a gamut of
techniques within that general framework. Here we focus on a
particular but broad approach that we believe holds the greatest
promise for achieving highly adaptable systems in the future. The
premise is quite simple: build systems in a manner that makes
adaptation easier than otherwise. The guidelines that characterize

the design of such systems – indeed, the constraints that such
systems obey – constitute architectural styles.

Architectural styles are named collections of architectural design

decisions that (1) are applicable in a given development context,
(2) constrain architectural design decisions that are specific to a
particular system within that context, and (3) elicit beneficial
qualities in each resulting system [32]. Here, the beneficial
quality sought is dynamic adaptability.

4.1 Leverage Points: Making Adaptation

Easier
The central notions of architectural styles that have been
successful in facilitating adaptation, and which are essential in
new styles that are designed to support adaptation, are:

• Making the parts subject to change identifiable and
manipulable

• Controlling interaction with parts subject to change
• Managing state

Not surprisingly, these stylistic notions encompass key elements
of the adaptation framework from Section 2. We describe these
notions briefly, then discuss how they can be realized concretely
and are exemplified in some specific and well-known architectural
styles.

4.1.1 Identifying the elements subject to change
Obviously for an element of a system to be subject to replacement
that element must be identifiable. More usefully, the lowest level

at which an entity can be (potentially) manipulated is the lowest
level at which it can be specifically identified. If a model element
x is identifiable at abstraction level n, but is “translated away” to
anonymously become part of a larger realization y at level n-1,
then only at level n (or possibly, higher) can manipulation of x be

discussed. This, of course, is the essence of interpreted systems:
an entity which is named at level n may be manipulated by an
interpretive scheme at level n-1. If however, the entity is
translated to another representation level n-1 such that it loses its
identity, specific manipulation of that entity is no longer possible
at level n-1 or below.

While identifying the element to be changed is necessary,

supporting change is greatly aided by promoting its
“encapsulation”. We use the word in its broadest sense here; the
degree to which an entity can be severed from its surroundings
determines how easy the element is, for instance, to replace.
Consider, for example, a function performed by a few lines of
code. If all the code is nameable, contiguous, has a single point of
entry and a single point of exit, obtains its values from a single
defined location and leaves it results in a single defined location,
then excising that function and replacing it with another is

straightforward. If however the lines of code are scattered
through other code, has multiple entry points, communicates with
other portions of code through dynamic storage, and so forth,
manipulation of the function becomes more difficult.

From the standpoint of an architectural style, to the extent that a
style fosters encapsulation of systems elements – such as by
requiring all computation to be located in named components and
all communication between components to occur through explicit
connectors – and those encapsulations are preserved through the
levels of abstraction down to executable code, then that style
promotes adaptation.

4.1.2 Controlling interaction
Just as identifying and encapsulating a computational element is
an aid in promoting adaptation, so is the identification and

encapsulation of how an element communicates with other
elements. If connections between elements are explicit and
maintained as explicit entities across the levels of abstraction
down to code, then adaptation is promoted, for the same reasons
as described immediately above.

For example, if two components communicate only by
exchanging explicit messages – identifiable bags of bits – then
changing out one of those components is facilitated since the
protocol of interaction is more readily identified across the layers
of abstraction. Conversely, if two components communicate
through shared memory (e.g., global variables), then identifying
the precise means of communication is much more difficult.

4.1.3 Managing state
When a computational element or a communication element is

changed out of an application, the state of that element must also
be addressed. Components may have internal state; connectors
may have buffers full of messages. Successful runtime adaptation
may well require that the new, replacement part be initialized with
part or all of the state held by the now-replaced element. One
simple strategy is to require (as a stylistic constraint) that all
components present an interface that forces the component to
checkpoint its state externally, and another interface that causes
the component to initialize itself from that external store [34]. A

more interesting strategy is to require components to always
maintain “their” state externally – a strategy brilliantly exploited
by the REST style [13] and discussed below.

Managing state also includes establishing or identifying times of
quiescence, times at which the execution state is meaningfully
subject to change. A style could be imposed, for instance, which

guarantees a useful state of quiescence upon completion of a call
to a designated interface.

4.2 Supporting the Leverage Points
The styles discussed below use a variety of techniques to promote
adaptation, but two general strategies are apparent: delay
bindings and use explicit events/messages in communication.

In its most common usage, delayed binding means that an entity is
not linked, or “bound”, to its usage context until the time during
execution when the computation cannot proceed further in
absence of a specific linkage. The concept can be applied at
higher levels in the abstraction hierarchy than execution, however.
The essence is that entities retain their identification and as
needed become associated with a usage context. A plug-in

component, for instance, may remain unbound to a master
application until, e.g. application initialization, or even until the
point at which the plug-in would be called to perform some
service. More generally, components potentially may not be
loaded into memory until the time they are needed. Clients may
only be bound to a particular server once a load balancer
determines which server out of some equivalence class has the
best chance of quickly attending to the client. Messages may be

delayed in binding to a specific destination, as they are routed
across intermediaries. Delaying of bindings means that before
bindings are wired in, adaptation can come “for free”, with respect
to that binding context.

Use of explicit, or “first-class” events/messages in communication
facilitates adaptation in two main ways. First, such
communication implies a strong decoupling of the components
engaged in the communication: no direct procedure calls are
involved, no shared memory, no tight bindings. Second, first-
class events are encapsulated entities, so they may be examined,
logged, or manipulated by third-parties to serve various adaptation

needs. They may have associated meta-data (as occurs in
HTTP/1.1 for example) that enable reasoning about what kinds of
processing services they may require upon reaching their
destination.

4.3 Styles That Make Adaptation Easier:

Past, Present, and Future
Making life easier for oneself through use of architectural styles is
a long-established practice of developers. We describe here
several styles that have been used to support adaptation, and
highlight a few styles that show great promise for the future. A

summary of these styles’ characteristics that particularly facilitate
dynamic adaptation is provided in Table 1.

Proto-runtime evolution: Pipe and Filter. The pipe and filter

style exemplifies explicit, severable components, explicit
connectors, the use of common interfaces, and standardization on
the root type of all messages (viz., ASCII streams). Creating a
new pipe and filter application from an existing collection of
filters is trivial. What pipe and filter lacks for supporting
adaptation, however, is a mechanism for evolution management
(the run-time change process) – for example the dynamic
rerouting of a pipe from feeding one filter to feeding another.

Dynamic pipe and filter: Weaves. The Weaves system [17]
exploited the strengths of pipe and filter and supplied the key
missing elements for supporting run-time adaptation. Weaves

provided for the dynamic rewiring of pipes through a combination
of explicit buffering of messages and flow control mechanisms.

In particular, when a pipe was detached from a consuming filter,
the buffer within the pipe would accommodate messages up to its
limit, but as the buffer’s limit was approached the pipe would
invoke a standard interface on the producing filter to retard or
inhibit the production of more messages until the rewiring was

complete and the buffer regained capacity for handling additional
messages.

Events and notifications: Field and Publish-Subscribe. The
Field software development environment [29] was created with
the express intent of supporting dynamism: independent
components (Unix tools) were invoked in response to receipt of
explicit events routed through a centralized message connector.
The set of tools that would respond to a particular event were not
pre-specified and tools could be added to deleted to the set
dynamically. Efficiencies in the process could be introduced
through declaration of the types of events a tool would wish to

hear about. This mechanism is conceptually that of publish-
subscribe. Pub-sub, however, can be applied within a single
application and need not involve explicit discreet events, but can
be implemented by procedure calls. The degree of adaptivity
achieved in such a choice is limited, however, to encompass the
set of procedures for which a referent can be made available.
Numerous pub-sub mechanisms have appeared over the past
fifteen years (such as Siena [8], mentioned earlier in Section 3.2),

enabling the technique to be effectively applied in a wide variety
of circumstances [12].

Event-based components and connectors: C2. The architectural

style used within our original paper was C2 [31]. C2 employed
the event notification mechanism in a disciplined manner and
combined it with other techniques designed to facilitate
adaptation: components are readily severable from their usage
context since the only way they may communicate with each other
is through explicit messages routed by first-class connectors. C2’s
layering and visibility rules further promoted adaptivity, since
they limited the latent or implicit dependencies that arise from

knowing which component is going to service a particular event.
The C2 style, however, makes no particular provision for
managing state as a component is replaced.

Dynamism through replication: Tile Style. A radically different
approach to adaptivity is found in the tile style. The tile style [7]
provides a software architecture-based solution for computing
NP-complete problems non-deterministically by harnessing the
power of many networked computers simultaneously. The style is
based on an underlying model of molecular self-assembly, which
results in solutions known as tile systems [33]. Since the objective
of the tile style is to produce software systems that can compute

on public networks, the key intended properties of the style are
privacy of data and computation, robustness in the face of
adversary attacks and node failures, as well as scalability to very
large problems and networks. The tile style achieves this by
leveraging the property that all NP-complete problems can be
transformed into one another. Therefore, a tile system that has
been proven to solve a known NP-complete problem is used as a
starting point. For each tile in this system, the corresponding tile-

style architecture dynamically (1) deploys a simple tile component
on a single machine in a network of willing participants, (2)
connects that component with other components on the network
as appropriate to effect the desired architectural configuration, and
then (3) replicates this component two additional times in order to
parallelize the computation. This three-step process is repeated for
each of the replicas (thus resulting in 2n dynamically generated

copies of the architecture), until either a solution is found or a pre-
determined probability threshold that no solution exists for the
given problem is reached. As a result of such massive replication,
failures or security breaches of even large portions of a network
(e.g., 10%) are withstood relatively easily.

Externalization of state: REpresentational State Transfer

(REST). Arguably the most demonstrably successful

architectural style in supporting runtime evolution of large-scale
applications is REST [13]. REST is the underlying style of the
modern World Wide Web, an application so dynamic that no
representation of the architecture “now” is possible. The Web is
continually changing as clients, servers, proxies, and gateways
come and go with staggering rapidity. Designed to support the
network exchange of hypermedia documents while preserving
component independence (integration scaling in the face of
agency borders) and minimizing latency (performance scaling),
REST can be summarized as six simple principles:

1. The key abstraction of information is a resource, named
by an URL

2. The representation of a resource is a sequence of bytes
plus metadata to describe those bytes

3. All interactions are context-free

4. Only a few primitive operations are available
5. Idempotent operations and representation metadata are

encouraged in support of caching
6. The presence of intermediaries is promoted

Each of the six principles contributes to the scaling, diversity, and
ease of adaptation within the Web. URLs are an anarchic,
decoupled namespace with no central authority and each Web
server may support whatever URLs it chooses and assign

whatever meaning it deems appropriate to each URL (resource).
The freedom to introduce server-specific namespaces (URLs) and
resources is partially responsible for the outpouring of innovative
Web services and applications.

Analyzed in terms of principles of adaptation, REST principle #3,
“all interactions are context-free” is the most critical. Sometimes

 Change
 Aspect
 Arch.
 Style

Update

behavior

Update

state

Update

execution

context

Asynchrony

of change

Implementation

probes

MapReduce

data from failed nodes

can be dynamically

resubmitted to live spares
for processing

execution contexts of

failed nodes are

reassigned to other
nodes

status updates for

displaying progress;

server logs

Pub-Sub
publishers and subscribers

can join and depart

varies; pub-sub bus can

buffer events, etc.

subscribers can act as

probes; pub-sub bus
can provide probes

Weaves

changes to dataflow

model mapped to
implementation; can

add/remove components

and connectors; can

change flow of data

flow control in

connectors (buffering,
rate mgmt, etc.)

probe infrastructure for

displaying behavioral
and performance data

C2

changes to architectural

model mapped to
implementation; can

add/remove components

and connectors; can

change topology

various techniques

resting on explicit
connectors (e.g.,

multi-versioning

connectors)

all communication is

asynchronous, so can
exploit control in

connectors

message probes on

connectors

Tile Style

discovery and recruitment

of new hardware nodes on

which components type
are to be replicated

exchange (partial) maps

of local neighborhoods

across neighbor
hardware nodes

systems are intended

to “borrow” cycles

from host machines

apply random graph

walk to ensure load

balancing

nodes checked

regularly for liveness

during recruiting and
replication

REST

stateless http servers can
be restarted for updates;

database servers updated

using vendor-specific

techniques

state is externalized: all
messages carry state and

may be inspected; http

server is stateless;

application state stored
in database servers

before update, “drain”
in-process requests

and refuse new

requests

various techniques,
e.g., shift load to

nodes, update idle

nodes, shift load to

updated nodes, update
remaining nodes

server logs; query state
in database

CREST

stateless servers (peers)

may offer URL-specific
interpreters; nominal

behavior encapsulated in

computations that are
transmitted

all aspects of a

computation’s state
made explicit and

externalized

fully included within

the computations (i.e.,
continuations)

exchanged between

peers

Same as REST

server logs;

computations are
explicit and

transmitted, hence may

be examined by
intermediaries

Table 1: Summary of dynamic adaptation features of several architectural styles discussed in the paper.

phrased rather misleadingly as “the protocol is stateless”, the
principle demands that all state be externalized. A message (to a
server, for example) must carry whatever state with it is necessary
for that server to be able to process it, without recourse to any
prior history of interaction. Principle #2, which includes the use of

meta-data to describe the content in a message, further promotes
adaptation as components may inspect a message and determine
how to handle it based upon that meta-data. Principle #4 keeps
the barrier for introducing new processing components low.

In all, REST represents a remarkably insightful blend of
architectural principles to support dynamism within the domain of
distributed hypermedia.

One look to the future: CREST. The one aspect of adaptation
identified in the framework presented earlier that is poorly
addressed by all of the above styles – if addressed at all – is
execution context. The concept of application quiescence is
important as it recognizes that a component may be “part way”
through some computation, and delay in adaptation may be

warranted to allow that computation to finish. REST externalizes
state in communication, but makes a fairly sharp distinction
between clients and servers, wherein computation is confined to
servers; clients (browsers) just present data. Of course recent
experience with JavaScript and AJAX reveals an increasing
presence of computation on clients – but in a way not predicted or
leveraged by REST. The opportunity is to take a bold step
forward, supplanting REST with what may represent the ultimate
in adaptivity: make the fundamental unit of exchange on the Web

computations, not simply representations [11]. The resulting
style, Computational REST, or CREST, affords the prospect of
bringing the degree of adaptivity seen in the current Web to all
manner of multi-party distributed computation.

In CREST, the key abstraction of computation is a resource,
named by a URL. Any computation that can be named can be a
resource: e.g., word processing, image manipulation, a temporal
service (such as “tomorrow’s weather in Boston”), a generated
collection of other resources, a simulation of an object. The
representation of a resource is a program to be executed plus
descriptive metadata describing the program. Analogously to

REST, in CREST all computations are context-free. This is not to
imply that applications are without state, but that each interaction
contains all of the information necessary to understand the
request, independent of any requests that may have preceded it.
Prior representations can be used to transfer state between
computations; for example, a continuation (representation)
provided earlier by a resource can be used to resume a
computation at a later time merely by presenting that continuation.

In this manner all aspects of application state are externalized,
yielding adaptivity.

5. CONCLUSION: A CALL TO ACTION
Dynamic adaptation of software systems is becoming recognized
as a critical capability in many application domains, research

projects, commercial systems, as well as across a large number of
computer science disciplines. It is also becoming increasingly
clear that software engineering is uniquely positioned as the

discipline that can provide the needed know-how for addressing
the many significant challenges associated with dynamic
adaptation. This is an opportunity our community must embrace!
Doing so will, however, require an expansion of our collective
focus, and perhaps even a change in our collective mindset.

The authors of this paper certainly acknowledge that applying
formalisms to analyze software systems’ models or their particular
phenomena, analyzing and testing already built systems, studying
programmer productivity and program quality, measuring and
improving development processes, and so on are all important

aspects of our discipline and require continued careful study. We
refer to these areas loosely as sciences of software analysis. Our
community’s work in this arena continues to have a broad and
lasting influence.

At the same time, we argue that a much more concerted effort
than has been made thus far is needed to develop the
corresponding sciences of software synthesis. This will include
providing better methods, techniques, and tools for

• designing large and complex software systems – a
science of design;

• implementing those systems in a manner that
encourages preservation of the principal design
decisions (as opposed to encouraging their violation as
is frequently the case today) – a science of realization;

• enabling their dynamic adaptability in a variety of
situations, especially those that are not foreseeable at
design time – a science of dynamic adaptation; and

• taking advantage of the domain characteristics that are
particularly amenable to effective design, realization,
and dynamic adaptation – a science of domain-specific
software engineering.

What we are advocating is a huge undertaking to be sure.
However, it is not one we can afford to shy away from. Our
community must find a way of encouraging our best and brightest

to consider the problems of software synthesis at least as worthy
of their attention as those of software analysis. We believe that
only with such a focused community-wide effort will software
engineering be able to realize its potential for leadership and
critical impact in the area of dynamic adaptation.

6. ACKNOWLEDGMENTS
This work sponsored in part by NSF Grants CNS-0438996 and
ITR-0312780 for which the authors are deeply grateful. The
authors wish to thank Kokichi Futatsugi and members of the ICSE
2008 Program Committee for recognizing the impact of the work
behind our ICSE 1998 paper and giving us the opportunity of
presenting this paper.

7. REFERENCES
[1] VMware. <http://www.vmware.com/>.
[2] Xen. <http://xen.org/>.
[3] The Globus Alliance. <http://www.globus.org/>.

[4] Allen, R.J., Douence, R., and Garlan, D. Specifying and
Analyzing Dynamic Software Architectures. In Proceedings

of the 1998 Conference on Fundamental Approaches to

Software Engineering. Lisbon, Portugal, March 1998, 1998.
[5] Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., and

Werthimer, D. SETI@home: an experiment in public-
resource computing. Communications of the ACM. 45(11), p.
56-61, November, 2002.

[6] Baset, S.A. and Schulzrinne, H. An Analysis of the Skype

Peer-to-Peer Internet Telephony Protocol. Columbia
University, Report CUCS-039-04, 2004.

[7] Brun, Y. and Medvidovic, N. An Architectural Style for
Solving Computationally Intensive Problems on Large

Networks. In Proceedings of the SEAMS '07: Proceedings of

the 2007 International Workshop on Software Engineering

for Adaptive and Self-Managing Systems. p. 2-9, IEEE
Computer Society. 2007.

 <http://dx.doi.org/10.1109/SEAMS.2007.4>.

[8] Carzaniga, A., Rosenblum, D.S., and Wolf, A.L. Design and
Evaluation of a Wide-Area Event Notification Service. ACM

Transactions on Computer Systems. 9(3), p. 332-383,
August, 2001.

[9] Chan, A.T.S. and Chuang, S.-N. MobiPADS: A Reflective
Middleware for Context-Aware Mobile Computing. IEEE

Transactions on Software Engineering. 29(12), p. 1072-
1085, December, 2003.

[10] Dean, J. and Ghernawat, S. MapReduce: Simplified Data
Processing on Large Clusters In Proceedings of the OSDI'04:

Sixth Symposium on Operating System Design and

Implementation. San Francisco, CA, December, 2004.
[11] Erenkrantz, J.R., Gorlick, M., Suryanarayana, G., and Taylor,

R.N. From Representations to Computations: The Evolution
of Web Architectures. In Proceedings of the 6th Joint

Meeting of the European Software Engineering Conference

and the ACM SIGSOFT Int'l Symposium on the Foundations

of Software Engineering (ESEC/FSE). Dubrovnik, Croatia,
September, 2007.

[12] Eugster, P.T., Felber, P.A., Guerraoui, R., and Kermarrec,
A.-M. The many faces of publish/subscribe. ACM Computing

Surveys. 35(2), p. 114-131, 2003.
[13] Fielding, R.T. and Taylor, R.N. Principled Design of the

Modern Web Architecture. ACM Transactions on Internet

Technology (TOIT). 2(2), p. 115-150, May, 2002.
[14] Foster, I., Kesselman, C., Nick, J.M., and Tuecke, S. Grid

Services for Distributed System Integration. IEEE Computer.
35(6), p. 37-46, June, 2002.

[15] Garlan, D., Siewiorek, D., Smailagic, A., and Steenkiste, P.
Project Aura: Toward distraction-free pervasive computing.

IEEE Pervasive computing. 4(2), p. 22-31, April, 2002.
[16] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and

Steenkiste, P. Rainbow: Architecture-Based Self-Adaptation

with Reusable Infrastructure. Computer. p. 46-54, October,
2004.

[17] Gorlick, M.M. and Razouk, R.R. Using Weaves for Software
Construction and Analysis. In Proceedings of the 13th

International Conference on Software Engineering. p. 23-34,
May, 1991.

[18] Inverardi, P. and Wolf, A.L. Formal Specification and
Analysis of Software Architectures Using the Chemical

Abstract Machine Model. IEEE Transactions on Software

Engineering. 21(4), p. 373-386, April, 1995.
[19] Kramer, J. and Magee, J. Self-Managed Systems: An

Architectural Challenge In Future of Software Engineering

2007 Briand, L. and Wolf, A. eds. IEEE-CS Press, 2007.
[20] Larson, S.M., Snow, C.D., Shirts, M.R., and Pande, V.S.

Folding@Home and Genome@Home: Using distributed
computing to tackle previously intractable problems in

computational biology. In Computational Genomics.
Horizon Press, 2002.

[21] Luckham, D.C. and Vera, J. An Event-Based Architecture
Definition Language. IEEE Transactions on Software

Engineering. 21(9), p. 717-734, September, 1995.
[22] Magee, J. and Kramer, J. Dynamic Structure in Software

Architectures. In Proceedings of the 4th ACM SIGSOFT

Symposium on Foundations of Software Engineering. p. 3-
14, ACM SIGSOFT. San Francisco, CA, October 16-18,
1996.

[23] Metayer, D.L. Describing software architecture styles using
graph grammars. Transactions on Software Engineering.
24(7), p. 521-553, July, 1998.
<http://www.computer.org/tse/ts1998/e0521abs.htm?SMSES
SION=NO>.

[24] MicrosoftTechNet. Introduction to Hotpatching.
<http://technet2.microsoft.com/windowsserver/en/library/8bf
7c6e4-3175-43bd-a67a-827ff3a586011033.mspx?mfr=true>,
Microsoft Corporation, 2008.

[25] Ommering, R.v., Linden, F.v.d., Kramer, J., and Magee, J.
The Koala Component Model for Consumer Electronics
Software. IEEE Computer. 33(3), p. 78-85, March, 2000.

[26] Oreizy, P. and Taylor, R.N. On the Role of Software

Architectures in Runtime System Reconfiguration. IEE

Proceedings - Software Engineering. 145(5), p. 137-145,
October, 1998.

[27] Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D.,
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D.S.,
and Wolf, A.L. An Architecture-based Approach to Self-
Adaptive Software. IEEE Intelligent Systems. 14(3), p. 54-
62, May-June, 1999.

[28] Pingdom. Best and worst US online banks revealed.
<http://www.pingdom.com/_img/press/best_and_worst_us_o
nline_banks_revealed.pdf>, 2006.

[29] Reiss, S.P. Connecting Tools Using Message Passing in the
Field Environment. IEEE Software. 7(4), p. 57-66, July,
1990.

[30] Reuters. Routine Upgrade Blamed for BlackBerry Outage.
New York Times. 12 February, 2008.
<http://www.nytimes.com/2008/02/12/technology/12cnd-

rim.html?ex=1360558800&en=eceb00610baba273&ei=5124
&partner=permalink&exprod=permalink>.

[31] Taylor, R.N., Medvidovic, N., Anderson, K.M., E. James
Whitehead, J., Robbins, J.E., Nies, K.A., Oreizy, P., and
Dubrow, D.L. A Component- and Message-Based
Architectural Style for GUI Software. IEEE Transactions on

Software Engineering. 22(6), p. 390-406, June, 1996.
[32] Taylor, R.N., Medvidovic, N., and Dashofy, E.M. Software

Architecture: Foundations, Theory, and Practice. John
Wiley & Sons, 2008. In press.

[33] Winfree, E. Simulations of computing by self-assembly of

DNA. California Institute of Technology, Report CS-
TR:1998:22, 1998.

[34] C. R. Hofmeister. Dynamic Reconfiguration of Distributed
Applications. Ph.D. Thesis. University of Maryland,
Computer Science Department, 1993.

