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ABSTRACT 

Our  ICSE 1998 paper showed how an application can be adapted 
at runtime by manipulating its architectural model. In particular, 
our paper demonstrated the beneficial role of (1) software 
connectors in aiding runtime change, (2) an explicit architectural 
model fielded with the system and used as the basis for runtime 
change, and (3) architectural style in providing both structural and 
behavioral constraints over runtime change. This paper examines 
runtime evolution in the decade hence. A broad framework for 
studying and describing evolution is introduced that serves to 

unify the wide range of work now found in the field of dynamic 
software adaptation. This paper also looks to the future, 
identifying what we believe to be highly promising directions. 

Categories and Subject Descriptors 

D.2.11 [Software Architectures]; D.2.7 [Distribution, 

Maintenance, and Enhancement] 

General Terms 

Design 

Keywords 

Software adaptation; software evolution; software architecture; 
architectural styles; autonomic computing 

1. INTRODUCTION 
Runtime software adaptation and evolution concern changing a 
software system during its execution. Our work in runtime 
evolution (RE) was and is motivated by our society's increasing 
dependence on software-intensive systems and the real risks, 
costs, and inconvenience that their downtime presents. As we 
noted in our 1998 paper, “continuous availability is a critical 
requirement for an important class of software systems” [26]. 
Recently, it has become evident that this extends beyond the 
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software that runs national power grids, global banking and 
financial systems, etc., and into commonplace systems such as: 

• hosted email services (e.g., Google Gmail, Yahoo Mail, 
and Microsoft Hotmail), on which millions of people 

and businesses depend for communication, as updates 
are deployed to fix bugs, increase capacity, and provide 
new functionality; 

• operating systems, where security patches that require a 
system reboot to install are not just inconvenient for 
end-users, but disruptive to mission-critical systems 
built atop these operating systems; 

• consumer online banking systems, where a competitive 
analysis recently revealed that while many major U.S. 

banks had less than one hour of downtime over a two-
month period, one of the nation's leading banks had over 
two days of downtime during the same period [28]; 

• cellular networks, as a recent outage of a popular 
network was traced to an issue with a “routine upgrade” 
[30]. 

Change is unavoidable in most systems: intensive use breeds 

change. Thus we need approaches that reduce, even eliminate, the 

costs and risks of evolving these systems without incurring 
downtime. 

Our original paper and its follow-on journal version [27] were 
novel in their espousal of an architecture-based approach to RE. 
In particular, they demonstrated the beneficial role of: (1) 
software connectors in aiding runtime change; (2) an explicit 
architectural model fielded with the system and used as the basis 
for runtime change; and (3) architectural style in providing both 
structural and behavioral constraints over runtime change.  

When we wrote our paper, research on the subject was scattered 
across a handful of workshop and conference tracks that broadly 

covered “software evolution”, “configurable distributed systems”, 
“programming languages”, “operating systems”, etc. At these 
venues, runtime evolution was one of many interesting aspects of 
a software system. In recent years however, interest in RE has 
grown substantially, especially in the area of architecture-based 
approaches at venues such as the International Conference on 

Autonomic Computing (ICAC) and the workshop series on 
Software Engineering for Adaptive and Self-Managing Systems 

(SEAMS). 



Much progress has been made in the years since we wrote our 
paper. Research results and real-world experience demonstrate 
that software architecture can play a valuable role in achieving 
RE. In particular, the beneficial role of connectors, architectural 
style, and explicit architectural models come up repeatedly in this 

work (see sections 3 and 4). But research and experience also 
indicate that software architecture alone is insufficient in many 
situations. In real-world systems, it is common to see a variety of 
approaches used in concert: 

• redundant or fault-tolerant hardware to cope with 
hardware failures; 

• “hot pluggable” devices, in particular disk drives and 
memory chips, to add capacity or replace faulty units 
without power cycling a machine; 

• the facilities of programming languages and their 
runtimes (e.g., Java’s Virtual Machine and C#’s 

Common Language Runtime) to dynamically load, 
verify, and invoke code updates; 

• system virtualization (e.g., VMware [1] and Xen [2]) to 
attain hardware fault isolation and improve resource 
utilization; 

• tuning of operating system parameters to achieve 
optimal memory, CPU, and device utilization among 
application components. 

It is evident that no single approach can encompass the others, and 
that no one system model can capture the diverse set of concerns 
necessary to effectively reason about and implement RE. 

In our attempt to compare various approaches, we realized that no 
framework existed for effectively comparing approaches that 
operate at different levels of abstraction and utilize different 
system models, and that this was the crucial missing piece that 
prevented a holistic view of the problem. As a result, we 
developed a simple framework for making such comparisons, 
which we present in section 2. In section 3, we review progress to 
date (in both academia and practice), highlighting approaches that 

operate at different levels of abstraction that appear particularly 
effective at addressing aspects of RE. We conclude the paper in 
section 4 with some promising directions for future work gleaned 
from our study of the state-of-the-art and the state-of-the-practice. 

2. A UNIFYING FRAMEWORK 
To describe and illustrate our framework, we use a simple, 
contrived example in this section. Assume that we have a system 
that analyzes an infinite stream of images arriving from a deep 
space probe. The system continuously reads an image, applies 
several image processing algorithms to the image, and saves the 
images that are deemed “interesting”.  

A software model uses the principle of abstraction to hide certain 
details in order to highlight others. A system can be modeled in 
numerous ways, such as its structural architecture (Figure 2), its 
programming-language statements (Figure 4), the relationships 
between its data types (Figure 3), as data-flows through its 

subsystems (Figure 1), as the mapping between its virtual- and 
physical machines, etc. Note that we regard source code as a kind 

of system model. As we noted in Section 1, various models are 
useful for reasoning about and implementing runtime evolution. 

One can imagine manipulating any one of these models to effect 
changes to a running system. Irrespective of the system model that 
is changed,  an approach must address five aspects of change: 

1. Changes to the model’s behavior: How are such model 
changes represented, deployed, and applied? What 

aspects of the model’s behavior can be changed? Can 
new behavior be added, can existing behaviors be 
replaced, or are we restricted to recombining existing 
behaviors? What assurances, if any, are provided that 
changes haven't been tampered with? In our example, 
the data flow model (Figure 1) could be altered to add 
new image processing algorithms, or the source code 
(Figure 4) can be “patched” to rewrite the 
implementation logic of one of the algorithms.  

2. Changes to the model’s state: How are state changes 
described? If the definition of a type changes, are 

existing instances altered? Are all instances updated 
simultaneously or lazily as they are accessed? Is the 
execution of the system stalled while state changes are 
made? In our example, the type inheritance hierarchy 
(Figure 3) could be altered to interpose a new type 
between the ‘Bitmap’ and ‘Image’ types. 

3. Changes to the execution context of the machine 

running our model: A model is interpreted by a 
machine, e.g., an x86 processor, a Java virtual machine 
(JVM), a type inference engine, or a data flow engine. 
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Figure 1.  Example data-flow model for image processing 
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Figure 2.  Example structural architecture model 
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Figure 3.  Example inheritance type hierarchy model 



ArtifactCollection trackingArtifacts; // global state 
 
void process_image(Image* image) { 
    bool result1, result2, result3; 
    result1 = analysis1(image, trackingArtifacts); 
    result2 = analysis2(image); 
    result3 = analysis3(image, trackingArtifacts); 
    return result1 || result2 || result3; 
} 
 
image_processor() { 
    ... 
    do { 
       event = wait_for_event(); 
       if (event.type == NewImageArrivedEvent) { 
          bool shouldSave; 
          Image* image = event.get_image(); 
          shouldSave = process_image(image); 
          if (shouldSave) { 
              ... 
          } 
       } 
    } while (event.type != AbortEvent); 
} 
 

Figure 4.  Pseudo-code for image processor 

As we make runtime changes to our model, we must be 
careful to not adversely affect the machine interpreting 
it. In our example, if we rewrite the x86 instructions of 
the process_image() function, the state of the x86 
processor (registers, call stack, caches) and internal data 

structures of the operating system (process and thread 
state) may need to be updated as well. 

4. Asynchrony of change: Applying a change at runtime is 
not instantaneous. It can take anywhere from several 
milliseconds to apply a patch to a small program’s 
machine code to minutes or hours to change a large 
distributed system (e.g., due to communication latency 
or nodes being unavailable). Is the model’s execution 
suspended during a change or does it continue to run in 
some capacity? If the latter, how does the approach deal 
with partially applied changes?  

5. Implementation probes: Often, a change can only be 
applied when the running system satisfies a particular 

set of conditions. In our example, if we are patching the 
implementation of the analysis1() function and cannot 
do it correctly while the function is being executed, we 
would need a probe to tell us if the function is on the 
execution stack.  

When we change a system model, the corresponding change must 
be made to any realization of the model, which (ultimately) 
includes the implementation. Any adjunct system models are 
likewise updated. Figure 5 depicts the processes involved. 1 

The lower half of the diagram, labeled “evolution management,” 
focuses on the mechanisms used to change the application. 
System models are used as the basis for formulating and reasoning 
over runtime changes. Changes to these system models are 
reflected in modifications to the application’s realization (at a 

lower level of abstraction), while ensuring that the model and the 
realization (which ultimately includes the implementation) are 

                                                                    
1 Figure 5 is adapted from [27]. 

consistent with one another. Monitoring and evaluation services 
observe the application and its operating environment and feed 
information back to the diagram’s upper half. The upper half of 
the diagram, labeled “adaptation management,” describes the life-
cycle of adaptation. The life-cycle can have humans in the loop or 

be fully autonomous. “Evaluate and monitor observations” refers 
to all forms of evaluating and observing an application’s 
execution, including, at a minimum, performance monitoring, 
safety inspections, and constraint verification. “Plan changes” 
refers to the task of accepting the evaluations, defining an 
appropriate adaptation, and constructing a blueprint for executing 
that adaptation. “Deploy change descriptions” is the coordinated 
conveyance of change descriptions, components, and possibly 

new observers or evaluators to the implementation platform in the 
field. Conversely, deployment might also extract data, and 
possibly components, from the running application and convey 
them to some other point for analysis and optimization.  

The system models of Figure 5 are related to one another, 
potentially in complex ways. In our example, when we change the 
data flow model, we are inducing changes in the system’s source 
code and structural architecture. In the situation where a system 
model is realized in terms of another system model (e.g., a type 
hierarchy realized as source code), a change “trickles down” to 
the lower-level model. This can occur multiple times as a change 

trickles down to, say, the machine code. Likewise, changes to a 
system model can “percolate” up to higher-level models. 

 

Figure 5.  Processes involved in runtime adaptation 



As a demonstration of the utility of our framework, assume that 
we have several important improvements that we would like to 
reason about and apply to the running system. 

• Changes to the model’s behavior: The technologies 
used by the deployed system would limit our options 
here, but assume that the deployed system offers both a 
binary-patching facility provided by the operating 

system that allows patching on a function-by-function 
basis (e.g., akin to Windows hotpatching [24]) and a 
software architecture-based adaptation infrastructure 
(akin to that describes in our original paper) that allows 
replacement of components. The consequences of this  
will be discussed shortly. 

• Changes to the program’s state: In our hypothetical 
case, data-flow analysis reveals that our changes only 
reference the “Image” and “ArtifactCollection” data 
types, and type analysis reveals that these two types 
have not been altered. Hence, these changes do not 

require updates to program state. If they did, we would 
need to look to approaches that support updates to state  
as well as behavior. 

As a result of this, we may prefer the binary patching 
facility since our changes can be applied in-place, 
avoiding the need to migrate state that would likely 
result if we used the component replacement approach. 

• Changes to the execution context of the machine 

running our program: In our case, since this system 
uses an event-based implicit-invocation architectural 
style for triggering image analysis, we can deduce that it 
is safe to patch our code while the program is waiting 
for an event to arrive (at that point, we know that our 
code is not executing and that only the 

image_processor() function is on the program stack). 
We assume that waiting for this condition to occur is 
acceptable; if it is not, we would need to look to 
approaches that did not have this limitation. 

• Asynchrony of change: Although we have identified a 
suitable condition that must be met for us to initiate our 
change (i.e., blocked on the arrival of an event), we 
must ensure that the condition isn't violated during the 
change. Hence, we decide to use an operating system  
mechanism that temporarily suspends the process while 
our binary patch is applied. 

In spite of its simplicity, our example demonstrates the utility of 
our framework in two ways. (1) It allows us to reason about our 
change by combining observations gleaned from multiple levels 

of abstraction: data-flow and type analysis of the program's source 
code combined with observations about its architectural style 
guided us in choosing and applying the technique of binary 
patching to effect a safe runtime change. (2) It allowed us to 
compare two approaches for making changes (at the function-
level versus structural software architecture-level) and choose the 
one that was best suited to the specific change we wanted to 
make. Of course, it is easy to reason about this trivial example in 

one's mind; a complex system would require tools that guided this 
effort and possibly automated some of its steps. 

3. A LOOK BACK ON THE PAST DECADE 
Several dynamic adaptation models have emerged in the past ten 
years. These models have tended to have an architectural focus 

and, as we will elaborate below, have had a number of shared 
characteristics. Additionally, a large number of research projects 
as well as several open source and commercial systems have taken 
on the different challenges of dynamic software evolution.  These 
transcend not just software architecture, but also software 

engineering, confirming that software dynamism is a multi-
faceted problem that can, and must, be approached from many 
directions. Finally, a number of conferences, symposia, and 
workshops have been initiated with software dynamism as a focal 
point. In this section, we will provide a brief overview of the 
accomplishments from the past decade. The ensuing discussion 
should not be viewed as a definitive survey of the state-of-the 
practice, but rather a collection of notable highlights. 

3.1 Dynamic Adaptation Models 
Several models of dynamic adaptation preceded our ICSE 1998 
paper. These can be categorized into architectural style-based 
models, such as CHAM [18] and graph grammars [23], and 
architecture description language (ADL) based models, such as 

Rapide [21], Darwin [22], and Dynamic Wright [4].  However, 
these models failed to gain wide adoption. There are two likely 
reasons: (1) the models were not accompanied by actual system-
level facilities for dynamic evolution and (2) the type of 
dynamism they supported was in some ways overly constrained, 
such as only allowing an existing component to be replicated a 
certain number of times. 

Our ICSE 1998 paper proposed an approach to runtime evolution 
intended to remedy these shortcomings. This approach was 
subsequently explicitly codified in the “Figure 8” model [27], a 
variation of which is depicted in Figure 5. The Figure 8 argued 

that dynamic system evolution must be properly planned and 
carefully executed. Furthermore, it appropriately identified the 
ultimate target of dynamic evolution to be the system rather than 
one of the system’s models (in Figure 5 this corresponds to the 
realization of models as the target of dynamic evolution). System 
models still play a critical role in that they are the drivers of 
evolution. This alleviated both of the above shortcomings of 
earlier dynamic adaptation models, while in the process also 

addressing the common problem of architectural erosion, where a 
system’s architectural model and its implementation begin to 
diverge in significant ways. 

A few years after this, another very similar architecture-based 
dynamic adaptation model emerged from the Rainbow project 
[16]. Rainbow also acknowledged the importance of maintaining 
the relationship between a system’s architectural model and  its 
implementation, performing on-the-fly analysis after the proposed 
modification to the model but before the system has been updated, 
and providing a style-based architecture implementation platform 
suitable for dynamic adaptation.  

Recently, Kramer and Magee proposed a layered reference 
architecture for autonomous or self-managed systems [19]. 
Although it has been inspired by a particular class of autonomous 

systems—robots—this architecture is intended to be broadly 
applicable. The architecture’s three layers are Component 
Control, Change Management, and Goal Management. 
Component Control contains the system’s application-level 
functionality and supports the ability to add, remove, and 
reconnect components. This layer reports any events it is unable 
to process to the Change Management layer above, which in turn 
executes one of the pre-compiled plans to deal with a variety of 

situations the system may encounter. If none of the existing plans 



can address the current situation, or a new system goal is 
introduced, then the top-most Goal Management layer is engaged 
to generate new plans.  

A number of challenges are associated with this proposed 
reference architecture, some of which were recognized by Kramer 
and Magee [19]. Some of the challenges follow recurring themes 
in architecture-driven dynamic system adaptation. Those include 

maintaining the correspondence between architectural models and 
system implementations in order to ensure that architecture-based 
adaptations are properly effected, as well as providing the 
necessary runtime evolution facilities in the implementation 
infrastructure. Other challenges are specific to this particular 
reference architecture. A critical issue inherent in the architecture 
is efficiency: dynamic generation of plans can be a significant 
performance concern, especially when dealing with a system’s 
(e.g., robot’s) time-critical needs; this is further magnified if 

changes to the system’s state cannot be treated in isolation and 
instead plans must be re-generated wholesale every time. 

3.2 Research Projects 
A large number of research projects have emerged over the past 
decade with some facet of dynamic adaptation at their core. Here 

we will briefly overview several such projects. We reiterate that 
the examples in this and the following subsection were selected 
because they facilitate interesting aspects of dynamism, and that 
the sections are not intended as definitive surveys. 

Aura [15] is an architectural style and supporting middleware 
platform for dynamic pervasive systems, with a particular focus 
on context awareness and context switching. Aura supports 
software component mobility with the goal of ensuring required 
quality of service (QoS) levels. Its implementation infrastructure 
provides hooks for system self-monitoring, allowing the system to 
detect when requirements (e.g., response time) are not being met 

and, as a result, to deploy alternative configurations to support the 
task at hand.  

MobiPads [9] is an example of a class of mobile middleware 

platforms.  MobiPads support active deployment of middleware-
level services for mobile computing. It monitors usage of 
middleware resources for specific QoS targets, and dynamically 
reconfigures them as required to optimize the QoS. On the other 
hand, MobiPads does not provide any application-level dynamic 
adaptation capabilities.  

Siena [8] is a platform for deploying publish-subscribe systems 
across Internet-scale networks. Siena allows publishers (i.e., 
servers) to advertise their services, and subscribers (i.e., clients) to 
register for them. It then uses content-based routing to optimize 

the delivery of events from the servers to the appropriate clients. 
Siena supports dynamism inherently in that it allows clients and 
servers to enter and leave the system arbitrarily: the underlying 
infrastructure simply keeps track of the necessary routing 
information. Siena is also resilient to network failures, in that data 
can be re-routed dynamically. Given its focus, Siena’s underlying 
publish-subscribe style, while explicit in the infrastructure, 
provides no additional guidance to application-level system 
designers. 

Finally, recently a class of systems has emerged to support grid 

computing [14]. The term “grid application” refers to applications 

that have been adapted to use a distributed infrastructure (e.g., 
Globus [3]) and to run on “borrowed” hosts across a wide area 
network. Such applications are typically parallelized and written 

to accommodate the dynamic addition and removal of physical 

resources (e.g., PCs participating in the different @home [5, 20] 
networks). Since the underlying foundation is inherently unstable, 
software-level dynamism must be a top concern. At the same 
time, current grid systems are still very much script-driven, 

requiring system restarts for many types of adaptation. The focus 
of grid research has been on the infrastructure, with very little 
guidance given to grid application developers. 

3.3 Commercial Solutions 
A number of commercial solutions have also emerged over the 

past decade with varying degrees of dynamic adaptation 
capabilities.  In this section, we select three of them as illustrative: 
a consumer electronics product family, a peer-to-peer voice-over-
IP system, and an infrastructure for parallel processing of large 
data sets. 

Koala [25] is an architecture-based technology for developing 
consumer electronics applications. Engineers at Philips developed 
Koala based on the Darwin ADL [22] and applied it initially to 
their large family of television sets. Koala allows an engineer to 
model and implement the software for, say, a TV set by 
composing existing components with pre-defined interfaces. 

Koala supports adaptation via two types of facilities: switches and 
options. Switches operate at the source code level (in the form of 
C #ifdefs), and require recompilation when setting values 
differently. On the other hand, options are stored in pre-
programmed non-volatile memory. Options allow the use of a 
single ROM for multiple product types, but can handle only 
predefined runtime adaptations.  

Skype [6] is a popular Internet telephony application built on a 
modified peer-to-peer (p2p) architecture. A new client logs onto 
the network via the Skype login server. After logging in, the client 

node is given the information about one of the supernodes. A 
Skype supernode handles all communication in a given portion of 
the network. Depending on network and usage characteristics, any 
node may be dynamically designated a supernode, or demoted 
from a supernode to a regular node, which results in a 
modification of the system’s current topology. Furthermore, 
Skype inherits from the underlying architectural style, p2p, the 
ability to support runtime addition, removal, and even physical 
movement of hosts. 

MapReduce [10] is Google’s infrastructure for processing and 
generating large data sets. MapReduce users specify a map 

function which essentially divides a large data set into a number 
of subsets that can be processed in parallel. Users also specify a 
reduce function, which merges the intermediate data values as 
appropriate. Therefore, programs written in this style are 
amenable to automatic parallelization and processing on a large 
cluster of computers. MapReduce’s runtime system handles the 
details of partitioning the input data, scheduling the program’s 
execution across a set of machines, and managing the required 

inter-machine communication. MapReduce supports a limited 
(though critical to the intended domain) notion of dynamic 
adaptation, targeted at handling node failures: the runtime system 
automatically reroutes the data that was processed on a failed 
node to a live node. 

3.4 Conference, Symposia, Workshops 
Over the past decade, a number of conference, symposia, and 
workshops have cropped up that deal with different facets of 
software dynamism.  These can be categorized into events whose 



primary purpose is dissemination of ideas pertaining to 
dynamism, and those that embrace dynamism as a means of 
addressing other problems. We will discuss some examples of 
each category. We will conclude the section with a brief view to 
the role dynamism has played in the mainstream software 
engineering conferences, including ICSE. 

3.4.1 Dynamism as a Primary Focus 
The International Conference on Autonomic Computing (ICAC) 

has assumed the leading role in dealing with software dynamism 
across several computer science disciplines: AI, software 
engineering, programming languages, databases, HCI, mobile and 
pervasive computing, robotics, operating systems, networking, 
distributed systems, embedded systems, and even biology. The 
conference emerged several years ago as a direct outcome of 
IBM’s autonomic computing initiative.  The motivation behind it 
was the recognition that the increasing complexity of 

constructing, integrating, and managing software systems has 
frequently overwhelmed the capabilities of not just software 
engineers, but also system administrators. It is argued that the 
only viable long-term alternative to the current state-of-the-
practice is to advance the field of autonomic computing, i.e., to 
create computer systems that manage themselves in accordance 
with high-level guidance from humans.  The ICAC manifesto 
states that “meeting the grand challenge of autonomic computing 
requires scientific and technological advances in a wide variety of 

fields, and new architectures that support effective integration of 
the constituent technologies”.2 Over the past four years, ICAC has 
gathered researchers from many traditional computer science 
areas. It is still early to judge whether a unified, cross-disciplinary 
vision of autonomic computing has begun to emerge, but the 
amount of interest and research activity (also reflected in the 
recent formation of the Autonomic Computing Workshop and the 
Conference on Human Impact and Application of Autonomic 

Computing Systems) is heartening. 

The workshop series on Software Engineering for Adaptive and 

Self-Managing Systems (SEAMS) has been the software-

engineering community’s “answer” to ICAC. SEAMS has tried to 
consolidate a number of software engineering workshops that 
have emerged over the past decade to deal with various aspects of 
dynamic software adaptation, including the Workshop on Self-

Healing Systems (WOSS), Workshop on Design and Evolution of 

Autonomic Application Software (DEAS), as well as the more 
broadly scoped Workshop on Architecting Dependable Systems 

(WADS) and International Workshop on Principles of Software 

Evolution (IWPSE). The SEAMS organizers explicitly state that 
they are “attempting to consolidate interest in the ICSE and FSE 
software engineering communities on autonomic, self-managing, 
self-healing, self-optimizing, self-configuring, and self-adaptive 
systems”.3 While the stated goal of SEAMS is to bring together 
researchers and practitioners from diverse computer science areas 
to discuss the fundamental principles, state of the art, and critical 
challenges of self-adaptive and self-managing systems, its specific 

focus is on the software engineering aspects of self-adaptation and 
self-management: methods, architectures, algorithms, techniques, 
and tools that can be used to support software development in 
such systems. 

                                                                    
2 http://www.caip.rutgers.edu/~parashar/ac2004/organization.html 
3 http://www.seams2007.cs.uvic.ca/ 

The growing research activity in this area recently resulted in a 
Dagstuhl Seminar on Software Engineering for Self-Adaptive 

Systems. The motivating observation for organizing the seminar 
was that, while self-adaptation has been studied across many 
disciplines of computer science, software engineering is uniquely 

positioned to provide a platform for consolidating these results in 
that the common element that enables the provision of self-
adaptation across all these areas is software. The objective, 
therefore, is to try and energize the software engineering 
community to devise a comprehensive, broadly applicable 
solution to self-adaptation. 

3.4.2 Dynamism as a Means or By-Product 
A number of additional conferences and symposia have dealt with 
dynamic software adaptation as either a means or by-product of 
achieving a related objective. For example, MobiCom is a 
conference dedicated to addressing research challenges in the 

areas of mobile computing as well as wireless and mobile 
networking. While many of the problems MobiCom tries to 
address are very low level and, on the surface, have little to do 
with software engineering (e.g., protocols for software radios or 
techniques for dynamic spectrum use), certain aspects of mobility 
will inherently involve the dynamic adaptation of the software, 
both at the system level and at the application level. 

PerCom is a conference dedicated to the emerging area of 
pervasive computing and communications. It is explicitly aimed at 
providing a “platform and paradigm for all the time, everywhere 
services”.4 The conference is seen as a natural outcome of the 

advances in wireless networks, mobile computing, sensor 
networks, distributed computing, and agent technologies. Several 
of its areas of interest (e.g., wearable computers, pervasive 
computing architectures, context-aware computing, and 
autonomic computing) will inherently have to deal with on-the-fly 
adaptation of the underlying software. 

The Working Conference on Component Deployment (CD) is an 
event targeted specifically at the issues dealing with software 
system deployment in distributed (possibly pervasive and mobile) 
environments. Software deployment is a dynamic activity in that 
software is relocated from a source host to a set of target hosts, 

although the system’s initial deployment usually involves the 
transfer of inactive, stateless modules. If, however, deployment 
takes place during system runtime (in which case, this is, in fact, 
redeployment), then it is an instance of dynamic system 
adaptation. A number of approaches have been proposed at CD 
for dealing with this variation on dynamic adaptation. 

Another specialized, long-running conference series that deals 
with issues pertaining to dynamic software adaptation is 
Middleware. Middleware is scoped much more broadly and deals 
with the provision of all types of enabling services for effective 
distributed computing. However, a predominant number of 

middleware platforms support at least some form of dynamism 
(e.g., dynamic discovery, insertion, and/or invocation of 
components in CORBA). While usually highly specialized, these 
techniques can and do inform software engineers interested in 
studying software system dynamism. 

3.4.3 Dynamism in Our Flagship Conferences 
The above discussion, while partial, provides ample evidence of 
the growing interest in dynamic adaptation, not just within 

                                                                    
4 http://www4.comp.polyu.edu.hk/~percom08/ 



software engineering, but also across many other areas.  Yet, even 
a cursory look at the proceedings of the major software 
engineering conferences (ICSE, FSE, ASE) paints a curious 
picture: since 1998, there has been a smattering of papers dealing 
with dynamic adaptation; there are no technical paper sessions or 

panels dedicated to dynamism. A similar trend can be seen if we 
look at the major software architecture venues (e.g., WICSA). 
Given the proliferation of ICSE and FSE workshops dealing with 
this subject during this same period, this would seem to suggest 
that, as far as the software engineering research community is 
concerned, the problem of dynamic software evolution is a 
fascinating topic for discussion, but not (yet) worthy of concerted 
focus in our flagship conferences. This is disappointing. We hope 

that our paper being awarded the Most Influential Paper of ICSE 
’98 is a harbinger of change. 

4. PROMISING DIRECTIONS FOR 

FUTURE WORK:  ARCHITECTURAL 

STYLES 
The framework introduced in Section 2 presented a general model 
for characterizing and achieving dynamic adaptation.  It discussed 

the range of issues that must be addressed when a system is 
modified.  Progress over the past decade, presented in the 
preceding section, covered approaches that span a gamut of 
techniques within that general framework. Here we focus on a 
particular but broad approach that we believe holds the greatest 
promise for achieving highly adaptable systems in the future.  The 
premise is quite simple:  build systems in a manner that makes 
adaptation easier than otherwise.  The guidelines that characterize 

the design of such systems – indeed, the constraints that such 
systems obey – constitute architectural styles. 

Architectural styles are named collections of architectural design 

decisions that (1) are applicable in a given development context, 
(2) constrain architectural design decisions that are specific to a 
particular system within that context, and (3) elicit beneficial 
qualities in each resulting system [32].  Here, the beneficial 
quality sought is dynamic adaptability. 

4.1 Leverage Points: Making Adaptation 

Easier 
The central notions of architectural styles that have been 
successful in facilitating adaptation, and which are essential in 
new styles that are designed to support adaptation, are: 

• Making the parts subject to change identifiable and 
manipulable 

• Controlling interaction with parts subject to change 
• Managing state 

Not surprisingly, these stylistic notions encompass key elements 
of the adaptation framework from Section 2.  We describe these 
notions briefly, then discuss how they can be realized concretely 
and are exemplified in some specific and well-known architectural 
styles. 

4.1.1 Identifying the elements subject to change 
Obviously for an element of a system to be subject to replacement 
that element must be identifiable.  More usefully, the lowest level 

at which an entity can be (potentially) manipulated is the lowest 
level at which it can be specifically identified.  If a model element 
x is identifiable at abstraction level n, but is “translated away” to 
anonymously become part of a larger realization y at level n-1, 
then only at level n (or possibly, higher) can manipulation of x be 

discussed.  This, of course, is the essence of interpreted systems:  
an entity which is named at level n may be manipulated by an 
interpretive scheme at level n-1.  If however, the entity is 
translated to another representation level n-1 such that it loses its 
identity, specific manipulation of that entity is no longer possible 
at level n-1 or below. 

While identifying the element to be changed is necessary, 

supporting change is greatly aided by promoting its 
“encapsulation”.  We use the word in its broadest sense here;  the 
degree to which an entity can be severed from its surroundings 
determines how easy the element is, for instance, to replace.  
Consider, for example, a function performed by a few lines of 
code.  If all the code is nameable, contiguous, has a single point of 
entry and a single point of exit, obtains its values from a single 
defined location and leaves it results in a single defined location, 
then excising that function and replacing it with another is 

straightforward.  If however the lines of code are scattered 
through other code, has multiple entry points, communicates with 
other portions of code through dynamic storage, and so forth, 
manipulation of the function becomes more difficult. 

From the standpoint of an architectural style, to the extent that a 
style fosters encapsulation of systems elements – such as by 
requiring all computation to be located in named components and 
all communication between components to occur through explicit 
connectors – and those encapsulations are preserved through the 
levels of abstraction down to executable code, then that style 
promotes adaptation. 

4.1.2 Controlling interaction 
Just as identifying and encapsulating a computational element is 
an aid in promoting adaptation, so is the identification and 

encapsulation of how an element communicates with other 
elements.  If connections between elements are explicit and 
maintained as explicit entities across the levels of abstraction 
down to code, then adaptation is promoted, for the same reasons 
as described immediately above. 

For example, if two components communicate only by 
exchanging explicit messages – identifiable bags of bits – then 
changing out one of those components is facilitated since the 
protocol of interaction is more readily identified across the layers 
of abstraction.  Conversely, if two components communicate 
through shared memory (e.g., global variables), then identifying 
the precise means of communication is much more difficult. 

4.1.3 Managing state 
When a computational element or a communication element is 

changed out of an application, the state of that element must also 
be addressed.  Components may have internal state;  connectors 
may have buffers full of messages.  Successful runtime adaptation 
may well require that the new, replacement part be initialized with 
part or all of the state held by the now-replaced element.  One 
simple strategy is to require (as a stylistic constraint) that all 
components present an interface that forces the component to 
checkpoint its state externally, and another interface that causes 
the component to initialize itself from that external store [34].  A 

more interesting strategy is to require components to always 
maintain “their” state externally – a strategy brilliantly exploited 
by the REST style [13] and discussed below. 

Managing state also includes establishing or identifying times of 
quiescence, times at which the execution state is meaningfully 
subject to change.  A style could be imposed, for instance, which 



guarantees a useful state of quiescence upon completion of a call 
to a designated interface. 

4.2 Supporting the Leverage Points 
The styles discussed below use a variety of techniques to promote 
adaptation, but two general strategies are apparent:  delay 
bindings and use explicit events/messages in communication.   

In its most common usage, delayed binding means that an entity is 
not linked, or “bound”, to its usage context until the time during 
execution when the computation cannot proceed further in 
absence of a specific linkage.  The concept can be applied at 
higher levels in the abstraction hierarchy than execution, however.  
The essence is that entities retain their identification and as 
needed become associated with a usage context. A plug-in 

component, for instance, may remain unbound to a master 
application until, e.g. application initialization, or even until the 
point at which the plug-in would be called to perform some 
service.  More generally, components potentially may not be 
loaded into memory until the time they are needed.  Clients may 
only be bound to a particular server once a load balancer 
determines which server out of some equivalence class has the 
best chance of quickly attending to the client.  Messages may be 

delayed in binding to a specific destination, as they are routed 
across intermediaries.  Delaying of bindings means that before 
bindings are wired in, adaptation can come “for free”, with respect 
to that binding context. 

Use of explicit, or “first-class” events/messages in communication 
facilitates adaptation in two main ways.   First, such 
communication implies a strong decoupling of the components 
engaged in the communication:  no direct procedure calls are 
involved, no shared memory, no tight bindings.  Second, first-
class events are encapsulated entities, so they may be examined, 
logged, or manipulated by third-parties to serve various adaptation 

needs. They may have associated meta-data (as occurs in 
HTTP/1.1 for example) that enable reasoning about what kinds of 
processing services they may require upon reaching their 
destination. 

4.3 Styles That Make Adaptation Easier:  

Past, Present, and Future 
Making life easier for oneself through use of architectural styles is 
a long-established practice of developers.  We describe here 
several styles that have been used to support adaptation, and 
highlight a few styles that show great promise for the future. A 

summary of these styles’ characteristics that particularly facilitate 
dynamic adaptation is provided in Table 1. 

Proto-runtime evolution:  Pipe and Filter.  The pipe and filter 

style exemplifies explicit, severable components, explicit 
connectors, the use of common interfaces, and standardization on 
the root type of all messages (viz., ASCII streams).  Creating a 
new pipe and filter application from an existing collection of 
filters is trivial.  What pipe and filter lacks for supporting 
adaptation, however, is a mechanism for evolution management 
(the run-time change process) – for example the dynamic 
rerouting of a pipe from feeding one filter to feeding another. 

Dynamic pipe and filter:  Weaves.  The Weaves system [17] 
exploited the strengths of pipe and filter and supplied the key 
missing elements for supporting run-time adaptation.  Weaves 

provided for the dynamic rewiring of pipes through a combination 
of explicit buffering of messages and flow control mechanisms.  

In particular, when a pipe was detached from a consuming filter, 
the buffer within the pipe would accommodate messages up to its 
limit, but as the buffer’s limit was approached the pipe would 
invoke a standard interface on the producing filter to retard or 
inhibit the production of more messages until the rewiring was 

complete and the buffer regained capacity for handling additional 
messages. 

Events and notifications: Field and Publish-Subscribe. The 
Field software development environment [29] was created with 
the express intent of supporting dynamism:  independent 
components (Unix tools) were invoked in response to receipt of 
explicit events routed through a centralized message connector.  
The set of tools that would respond to a particular event were not 
pre-specified and tools could be added to deleted to the set 
dynamically.  Efficiencies in the process could be introduced 
through declaration of the types of events a tool would wish to 

hear about.  This mechanism is conceptually that of publish-
subscribe.  Pub-sub, however, can be applied within a single 
application and need not involve explicit discreet events, but can 
be implemented by procedure calls.  The degree of adaptivity 
achieved in such a choice is limited, however, to encompass the 
set of procedures for which a referent can be made available. 
Numerous pub-sub mechanisms have appeared over the past 
fifteen years (such as Siena [8], mentioned earlier in Section 3.2), 

enabling the technique to be effectively applied in a wide variety 
of circumstances [12]. 

Event-based components and connectors: C2. The architectural 

style used within our original paper was C2 [31].  C2 employed 
the event notification mechanism in a disciplined manner and 
combined it with other techniques designed to facilitate 
adaptation:  components are readily severable from their usage 
context since the only way they may communicate with each other 
is through explicit messages routed by first-class connectors. C2’s 
layering and visibility rules further promoted adaptivity, since 
they limited the latent or implicit dependencies that arise from 

knowing which component is going to service a particular event. 
The C2 style, however, makes no particular provision for 
managing state as a component is replaced. 

Dynamism through replication: Tile Style. A radically different 
approach to adaptivity is found in the tile style. The tile style [7] 
provides a software architecture-based solution for computing 
NP-complete problems non-deterministically by harnessing the 
power of many networked computers simultaneously. The style is 
based on an underlying model of molecular self-assembly, which 
results in solutions known as tile systems [33]. Since the objective 
of the tile style is to produce software systems that can compute 

on public networks, the key intended properties of the style are 
privacy of data and computation, robustness in the face of 
adversary attacks and node failures, as well as scalability to very 
large problems and networks. The tile style achieves this by 
leveraging the property that all NP-complete problems can be 
transformed into one another.  Therefore, a tile system that has 
been proven to solve a known NP-complete problem is used as a 
starting point. For each tile in this system, the corresponding tile-

style architecture dynamically (1) deploys a simple tile component 
on a single machine in a network of willing participants, (2) 
connects that component with other components on the network 
as appropriate to effect the desired architectural configuration, and 
then (3) replicates this component two additional times in order to 
parallelize the computation. This three-step process is repeated for 
each of the replicas (thus resulting in 2n dynamically generated 



copies of the architecture), until either a solution is found or a pre-
determined probability threshold that no solution exists for the 
given problem is reached. As a result of such massive replication, 
failures or security breaches of even large portions of a network 
(e.g., 10%) are withstood relatively easily. 

Externalization of state: REpresentational State Transfer 

(REST).  Arguably the most demonstrably successful 

architectural style in supporting runtime evolution of large-scale 
applications is REST [13].  REST is the underlying style of the 
modern World Wide Web, an application so dynamic that no 
representation of the architecture “now” is possible.  The Web is 
continually changing as clients, servers, proxies, and gateways 
come and go with staggering rapidity. Designed to support the 
network exchange of hypermedia documents while preserving 
component independence (integration scaling in the face of 
agency borders) and minimizing latency (performance scaling), 
REST can be summarized as six simple principles: 

1. The key abstraction of information is a resource, named 
by an URL 

2. The representation of a resource is a sequence of bytes 
plus metadata to describe those bytes 

3. All interactions are context-free 

4. Only a few primitive operations are available 
5. Idempotent operations and representation metadata are 

encouraged in support of caching 
6. The presence of intermediaries is promoted 

Each of the six principles contributes to the scaling, diversity, and 
ease of adaptation within the Web. URLs are an anarchic, 
decoupled namespace with no central authority and each Web 
server may support whatever URLs it chooses and assign 

whatever meaning it deems appropriate to each URL (resource). 
The freedom to introduce server-specific namespaces (URLs) and 
resources is partially responsible for the outpouring of innovative 
Web services and applications.  

Analyzed in terms of principles of adaptation,  REST principle #3, 
“all interactions are context-free” is the most critical.  Sometimes 
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Table 1: Summary of dynamic adaptation features of several architectural styles discussed in the paper. 



phrased rather misleadingly as “the protocol is stateless”, the 
principle demands that all state be externalized. A message (to a 
server, for example) must carry whatever state with it is necessary 
for that server to be able to process it, without recourse to any 
prior history of interaction. Principle #2, which includes the use of 

meta-data to describe the content in a message, further promotes 
adaptation as components may inspect a message and determine 
how to handle it based upon that meta-data.  Principle #4 keeps 
the barrier for introducing new processing components low.  

In all, REST represents a remarkably insightful blend of 
architectural principles to support dynamism within the domain of 
distributed hypermedia. 

One look to the future:  CREST.  The one aspect of adaptation 
identified in the framework presented earlier that is poorly 
addressed by all of the above styles – if addressed at all – is 
execution context.  The concept of application quiescence is 
important as it recognizes that a component may be “part way” 
through some computation, and delay in adaptation may be 

warranted to allow that computation to finish.  REST externalizes 
state in communication, but makes a fairly sharp distinction 
between clients and servers, wherein computation is confined to 
servers; clients (browsers) just present data.  Of course recent 
experience with JavaScript and AJAX reveals an increasing 
presence of computation on clients – but in a way not predicted or 
leveraged by REST.  The opportunity is to take a bold step 
forward, supplanting REST with what may represent the ultimate 
in adaptivity:  make the fundamental unit of exchange on the Web 

computations, not simply representations [11].  The resulting 
style, Computational REST, or CREST, affords the prospect of 
bringing the degree of adaptivity seen in the current Web to all 
manner of multi-party distributed computation. 

In CREST, the key abstraction of computation is a resource, 
named by a URL. Any computation that can be named can be a 
resource: e.g., word processing, image manipulation, a temporal 
service (such as “tomorrow’s weather in Boston”), a generated 
collection of other resources, a simulation of an object. The 
representation of a resource is a program to be executed plus 
descriptive metadata describing the program.  Analogously to 

REST, in CREST all computations are context-free. This is not to 
imply that applications are without state, but that each interaction 
contains all of the information necessary to understand the 
request, independent of any requests that may have preceded it. 
Prior representations can be used to transfer state between 
computations; for example, a continuation (representation) 
provided earlier by a resource can be used to resume a 
computation at a later time merely by presenting that continuation.  

In this manner all aspects of application state are externalized, 
yielding adaptivity.  

5. CONCLUSION:  A CALL TO ACTION 
Dynamic adaptation of software systems is becoming recognized 
as a critical capability in many application domains, research 

projects, commercial systems, as well as across a large number of 
computer science disciplines. It is also becoming increasingly 
clear that software engineering is uniquely positioned as the 

discipline that can provide the needed know-how for addressing 
the many significant challenges associated with dynamic 
adaptation. This is an opportunity our community must embrace! 
Doing so will, however, require an expansion of our collective 
focus, and perhaps even a change in our collective mindset.  

The authors of this paper certainly acknowledge that applying 
formalisms to analyze software systems’ models or their particular 
phenomena, analyzing and testing already built systems, studying 
programmer productivity and program quality, measuring and 
improving development processes, and so on are all important 

aspects of our discipline and require continued careful study. We 
refer to these areas loosely as sciences of software analysis. Our 
community’s work in this arena continues to have a broad and 
lasting influence. 

At the same time, we argue that a much more concerted effort 
than has been made thus far is needed to develop the 
corresponding sciences of software synthesis. This will include 
providing better methods, techniques, and tools for  

• designing large and complex software systems – a 
science of design; 

• implementing those systems in a manner that 
encourages preservation of the principal design 
decisions (as opposed to encouraging their violation as 
is frequently the case today) – a science of realization; 

• enabling their dynamic adaptability in a variety of 
situations, especially those that are not foreseeable at 
design time – a science of dynamic adaptation; and 

• taking advantage of the domain characteristics that are 
particularly amenable to effective design, realization, 
and dynamic adaptation – a science of domain-specific 
software engineering. 

What we are advocating is a huge undertaking to be sure. 
However, it is not one we can afford to shy away from. Our 
community must find a way of encouraging our best and brightest 

to consider the problems of software synthesis at least as worthy 
of their attention as those of software analysis. We believe that 
only with such a focused community-wide effort will software 
engineering be able to realize its potential for leadership and 
critical impact in the area of dynamic adaptation. 
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