Runtime Software Adaptation: Framework, Approaches, Styles

Peyman Oreizy Launch21

A launch2

Nenad Medvidovic USC

Richard N. Taylor UC Irvine

Ist thought: Someone read our paper!

- Ist thought: Someone read our paper!
- 2nd thought: Wow, lots of citations!
 - Original paper: 315
 - Follow-on journal paper: 375
 - 690 papers over ~9 yrs ≈ 1.5pppw

- Ist thought: Someone read our paper!
- 2nd thought: Wow, lots of citations!
 - Original paper: 315
 - Follow-on journal paper: 375
 - 690 papers over ~9 yrs ≈ 1.5pppw
- 3rd thought: Could one person be responsible for all of them?

Change during runtime?

- Critical systems require "continuous availability"
 - Power grid, financial systems, ...
- Increasingly important in everyday systems

State of the Practice

- redundant and fault-tolerant hardware
- "hot pluggable" drives and memory
- system virtualization (ala VMware and Xen)
- binary code patching
- programming language facilities for dynamic loading, linking, and patching of code
- software designed for fault tolerance (architectural styles and patterns)

State of the Practice

- Each approach has its place
 - No one approach encompasses the others
 - Clear benefits to enacting change at multiple levels of abstraction
- Need a framework for comparing and combining approaches

Towards a Unifying Framework

All approaches:

- I. Use a "model" to highlight some system details while hiding others
- 2. Grapple with 5 aspects of runtime change:
 - a. evolve behavior
 - b. evolve state
 - c. adjust execution context

- d. asynchronous change
- e. probe running system

A Look Back

- What has happened in the past decade?
 - Dynamic adaptation models
 - Research projects
 - Open-source and commercial systems
 - Conferences, symposia, and workshops

Dynamic Adaptation Models I

- Prior to our ICSE 1998 paper
 - Style-based models: CHAM, graphgrammars
 - ADL-based models: Darwin, Dynamic Wright, Rapide
- Did not gain wide adoption
 - Lack of system-level facilities
 - Constrained notion of dynamism

Dynamic Adaptation Models II

- Subsequent to our ICSE 1998 paper
 - "Figure 8" model: system adaptation driven by architecture

Dynamic Adaptation Models III

- Rainbow: similar to "Figure 8"
- Self-managed systems: dynamic plan generation

Research Projects

- Aura: QoS-driven system reconfiguration
- MobiPads: QoS optimization via dynamic reconfiguration
- Siena: Client-, server-, and network-level dynamism
- Grid computing: Dynamic addition and removal of computing resources

Commercial Solutions

- Koala: predefined dynamic adaptations via options
- Skype
 - Promotion/demotion of nodes
 - P2P-based adaptations
- MapReduce: automatic data rerouting from failed to live nodes

Conferences/Symposia

- Dynamism as primary focus
- Dynamism as a means or by-product
- Dynamism in flagship SE conferences

Dynamism as Primary Focus

- ICAC
 - ACW
 - CHIAACS
- SEAMS
 - WOSS
 - DEAS
 - WADS
 - IWPSE
- Dagstuhl SESAS

Dynamism as By-Product

- MobiCom
- PerCom
- CD
- Middleware

Dynamism in SE Conferences

- What happened to dynamism at:
 - ICSE
 - FSE
 - ASE
- What about software architecture venues:
 - WICSA
 - ECSA
 - QoSA
 - CBSE

Promising Directions

- A simple message: if you want or need adaptable applications you can either:
 - Make no constraints on developers
 - ... and then work like crazy to try to obtain adaptation
 - Constrain development to make adaptation easier and predictable
- This should not be news: the message is styles

How Do You Make Adaptation Easier?

- Make the elements subject to change identifiable
- Make interaction controllable
- Provide for management of state

Lots of Successful Examples

- Pipe-and-filter
- Dynamic pipe-and-filter: Weaves
- Event-based systems: Field & pub-sub
- Event-based components and connectors: C2
- REST

Arch Style	Update Behavior	Update State	Update exec context	Asynchrony of change	Impl. probes
Pub-Sub					
Weaves					
C2					
REST		Data-State externalized			
CREST		All computation state externalized			

Where Has Software Engineering Been WRT the Development of Effective Styles?

Not just for adaptivity, but other qualities too

A Call to Action

- A science of design
- A science of realization
- A science of dynamic adaptation
- A science of domain-specific software engineering
- (Discovery-based research)

