
Runtime Software
Adaptation: Framework,

Approaches, Styles

Peyman Oreizy
Launch21

Richard N. Taylor
UC Irvine

Nenad Medvidovic
USC

What? Our paper got
the MIP award?!

What? Our paper got
the MIP award?!

• 1st thought: Someone read our paper!

What? Our paper got
the MIP award?!

• 1st thought: Someone read our paper!

• 2nd thought: Wow, lots of citations!

• Original paper: 315

• Follow-on journal paper: 375

• 690 papers over ~9 yrs ≈ 1.5pppw

What? Our paper got
the MIP award?!

• 1st thought: Someone read our paper!

• 2nd thought: Wow, lots of citations!

• Original paper: 315

• Follow-on journal paper: 375

• 690 papers over ~9 yrs ≈ 1.5pppw

• 3rd thought: Could one person be
responsible for all of them?

Change during runtime?

• Critical systems require “continuous
availability”

• Power grid, financial systems, ...

• Increasingly important in everyday systems

How did we get here?

How did we get here?

• Serendipity

How did we get here?

• Serendipity

• Key insights:

• connectors

• explicit arch-model
fielded with the
system and used to
govern change

• architectural style

State of the Practice

• redundant and fault-tolerant hardware

• “hot pluggable” drives and memory

• system virtualization (ala VMware and Xen)

• binary code patching

• programming language facilities for dynamic
loading, linking, and patching of code

• software designed for fault tolerance
(architectural styles and patterns)

• Each approach has its place

• No one approach encompasses the
others

• Clear benefits to enacting change at
multiple levels of abstraction

• Need a framework for comparing and
combining approaches

State of the Practice

Towards a Unifying
Framework

All approaches:

1. Use a “model” to highlight some system
details while hiding others

2. Grapple with 5 aspects of runtime change:

Towards a Unifying
Framework

a. evolve behavior
b. evolve state
c. adjust execution

context

d. asynchronous
change

e. probe running
system

A Look Back

• What has happened in the past decade?

• Dynamic adaptation models

• Research projects

• Open-source and commercial systems

• Conferences, symposia, and workshops

Dynamic Adaptation Models I

• Prior to our ICSE 1998 paper

• Style-based models: CHAM, graph-
grammars

• ADL-based models: Darwin, Dynamic
Wright, Rapide

• Did not gain wide adoption

• Lack of system-level facilities

• Constrained notion of dynamism

!

Dynamic Adaptation Models II

• Subsequent to our
ICSE 1998 paper

• “Figure 8” model:
system adaptation
driven by
architecture

Dynamic Adaptation Models III

• Rainbow: similar to “Figure 8”

• Self-managed systems: dynamic plan generation

Research Projects

• Aura: QoS-driven system reconfiguration

• MobiPads: QoS optimization via dynamic
reconfiguration

• Siena: Client-, server-, and network-level dynamism

• Grid computing: Dynamic addition and removal of
computing resources

Commercial Solutions

• Koala: predefined dynamic adaptations via
options

• Skype

• Promotion/demotion of nodes

• P2P-based adaptations

• MapReduce: automatic data rerouting from
failed to live nodes

Conferences/Symposia

• Dynamism as primary focus

• Dynamism as a means or by-product

• Dynamism in flagship SE conferences

Dynamism as Primary Focus

• ICAC

• ACW

• CHIAACS

• SEAMS

• WOSS

• DEAS

• WADS

• IWPSE

• Dagstuhl SESAS

Dynamism as By-Product

• MobiCom

• PerCom

• CD

• Middleware

Dynamism in SE Conferences

• What happened to dynamism at:

• ICSE

• FSE

• ASE

• What about software architecture venues:

• WICSA

• ECSA

• QoSA

• CBSE

Promising Directions
• A simple message: if you want or need

adaptable applications you can either:

• Make no constraints on developers

• ... and then work like crazy to try to
obtain adaptation

• Constrain development to make
adaptation easier and predictable

• This should not be news: the message is
styles

How Do You Make
Adaptation Easier?

• Make the elements subject to change
identifiable

• Make interaction controllable

• Provide for management of state

Lots of Successful
Examples

• Pipe-and-filter

• Dynamic pipe-and-filter: Weaves

• Event-based systems: Field & pub-sub

• Event-based components and connectors: C2

• REST

Arch Style
Update

Behavior
Update
State

Update
exec

context

Asynchrony
of change

Impl.
probes

Pub-Sub ✔ ✔ ✔

Weaves ✔ ✔ ✔

C2 ✔ ✔ ✔ ✔

REST ✔ Data-State
externalized ✔ ✔ ✔

CREST ✔
All computation

state
externalized

✔ ✔ ✔

Where Has Software
Engineering Been WRT

the Development of
Effective Styles?

Not just for adaptivity, but other qualities too

A Call to Action

• A science of design

• A science of realization

• A science of dynamic adaptation

• A science of domain-specific software
engineering

• (Discovery-based research)

Questions?

