
C2Rust
Migrating Legacy Code to Rust

Acknowledgements & Disclaimer
This research was developed with funding from the Defense Advanced Research
Projects Agency (DARPA).

The views, opinions and/or findings expressed are those of the author and should not
be interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

2

Who am I?
● Per Larsen

● Co-Founder at Immunant, Inc.

● From Denmark / Located in Irvine, CA

● Background in C/C++ exploit mitigation

3

Who?

Eric Mertens
Galois

Alec Theriault
Galois

Andrei Homescu
Immunant

Daniel Kolsoi
Immunant

Ryan Wright
Galois

Stephen Crane
Immunant

4

Why?

Source: NIST National Vulnerability Database
5

Why?
C/C++ mitigations are far from perfect.

Rust is an attractive migration target. Can we make migration easier?

1. reduce the tedium of initial translation
2. help catch errors during refactoring

6

7

Transpiling
Design Goals:

● Robust C and C++ parsing
● Preserve functionality of input code
● Generate output fit for human consumption
● Write back end in Rust; reuse Rust internals

8

Other efforts
● Corrode

○ uses Haskell C parsing library
○ https://github.com/jameysharp/corrode

● Citrus-rs
○ uses clang for parsing
○ “transforms C syntax to Rust syntax,

but ignores C semantics”
○ https://gitlab.com/citrus-rs/citrus

9

Transpiler

10

Transpiler

11

AST importer

12

Preprocessor directives
● Translating after preprocessing

13

Preprocessor directives
● Translating after preprocessing
● How was compiler invoked?

○ compile_commands.json

● Recording compile commands
○ Use cmake 2.8.5 or later
○ Use intercept-build for makefile projects
○ … or bear (Linux only)

https://github.com/rizsotto/bear
14

[

 {

 "arguments": [

 "cc",

 "-c",

 "-std=c99",

 "-o",

 "test",

 "test.c"

],

 "directory": "/tmp/buffer",

 "file": "test.c"

 }

]

Simple loops

15

Simple loops

16

int x = 0;

while (x < 42) { x++; }

for (x = 0; x < 42; x++)

{ }

let mut x: libc::c_int = 0i32;

while x < 42i32 { x += 1 }

x = 0i32;

while x < 42i32 { x += 1 };

17

int sum(int count) {
 goto a;

 b:
 --count;
 goto d;

 a:;
 int x = 0;
 goto d;

 c:
 return x;

 d:
 if(count <= 0)
 goto c;
 goto e;

 e:
 x += count;
 goto b;
}

pub unsafe extern "C" fn sum(mut
count: libc::c_int)
 -> libc::c_int {
 let mut x: libc::c_int = 0i32;
 while !(count <= 0i32)
 { x += count; count -= 1 }
 return x;
}

 Relooping

https://github.com/kripken/emscripten

Translator limitations
Unimplemented

● variadic function definitions (Rust RFCs blocking issue #2137)
● bitfields (Rust RFCs blocking issue #314)
● long double and _Complex types (Rust libc blocking issue #355)
● macros

Likely won’t ever support

● longjmp and setjmp
● jumps in and out of GNU C statement expressions

18

Web
Demo

19

Running locally
$ git clone git@github.com:immunant/c2rust

$ c2rust/scripts/docker_build.sh

$ cd c2rust/vagrant && vagrant up

20

Building
$ c2rust/scripts/build_translator.py --with-clang

$ c2rust/scripts/build_cross_checks.py

$ cd c2rust/rust-refactor && cargo build

21

$ git clone git@github.com:immunant/buffer.git

$ cd buffer && bear make

 ✓ ok

$ path/to/transpile.py -m=test compile_commands.json

$ cd c2rust-build && RUSTFLAGS=-Awarnings cargo run

 ✓ ok

22

Transpiling

Example C input
/*
* Allocate a new buffer with `n` bytes.
*/
buffer_t *
buffer_new_with_size(size_t n) {
 buffer_t *self = malloc(sizeof(buffer_t));
 if (!self) return NULL;
 self->len = n;
 self->data = self->alloc = calloc(n + 1, 1);
 return self;
}

23

Example Rust output
#[no_mangle]
pub unsafe extern "C" fn buffer_new_with_size(mut n: size_t)
-> *mut buffer_t {
 let mut self_0: *mut buffer_t =
 malloc(::std::mem::size_of::<buffer_t>() as libc::c_ulong) as
 *mut buffer_t;
 if self_0.is_null() {
 return 0 as *mut buffer_t
 } else {
 (*self_0).len = n;
 (*self_0).alloc =
 calloc(n.wrapping_add(1i32 as libc::c_ulong),
 1i32 as libc::c_ulong) as *mut libc::c_char;
 (*self_0).data = (*self_0).alloc;
 return self_0
 };
}

24

Rewritten Rust
#[no_mangle]

pub extern "C" fn buffer_new_with_size(mut n: size_t)

 -> *mut buffer_t {

 let mut v = vec![0; n + 1];

 let mut b = Box::new(buffer_t {

 len: n,

 data: v.as_mut_ptr(),

 alloc: v,

 });

 Box::into_raw(b)

}

25

Cross checking

26

1. Instrument original C and translated Rust
2. Run programs with identical inputs
3. Optional: Configure cross checking

Cross checking

27

pub fn id(x: libc::c_int)
 -> libc::c_int {
 return x;
}

int id(int x) {

 return x;
}

1. Online
○ Using ReMon MVEE*
○ + no log files
○ + replicates program input
○ - limited compatibility

2. Offline
○ + broad compatibility
○ - user must ensure identical inputs
○ - log files grow quickly

Cross checking options

28

Multi-variant execution environment

29

https://github.com/stijn-volckaert/ReMon

1. clang plug-in for C code
2. rustc plug-in for Rust code
3. Cross-checking runtimes

a. MVEE-based
b. log-based

4. Zeroing malloc replacement
5. ptrace-based segfault handler

Cross checking instrumentation

30

$ cd buffer && bear make

 ✓ ok

$ path/to/transpile.py -x -u -m=test compile_commands.json

$ cd c2rust-build && RUSTFLAGS=-Awarnings cargo build

31

Cross-checking a library (1/2)

Cross-checking a library (2/2)

$ export LD_LIBRARY_PATH=path/to/libfakechecks.so

$ cargo run --quiet 2> ../buffer.rust.xchecks

$ cd .. && make test_xcheck 2> buffer.c.xchecks

$ diff buffer.rust.xchecks buffer.c.xchecks || echo “fail”

32

Refactoring

33

Reconstruct for range
fn main() {
 let mut i;

 i = 0;
 'a: while (i < 10) {
 println!("{}", i);
 i = i + 1;
 }

 i = 0;
 'a: while (i < 10) {
 println!("{}", i);
 i = i + 2;
 }
}

34

Reconstruct for range
fn main() {
 let mut i;

 'a: for i in 0..10 {
 println!("{}", i);
 }

 'a: for i in (0..10).step_by(2) {
 println!("{}", i);
 }
}

35

Major enhancements
● Automate safety transformations
● C++ subset support
● Translation of macros/preprocessor directives

37

Automate safety transformations
● 100% automation not possible
● Challenges

○ Lack of domain knowledge
○ Differences in type systems

■ Ownership
■ Mutability

○ Differences between C preprocessor
macros and Rust macros.

38

Refactoring quicksort (1/4)
pub unsafe extern "C" fn swap(mut a: *mut libc::c_int,
 mut b: *mut libc::c_int) -> () {
 let mut t: libc::c_int = *a;
 *a = *b;
 *b = t;
}

pub unsafe extern "C" fn partition(mut arr: *mut libc::c_int,
 mut low: libc::c_int,
 mut high: libc::c_int) -> libc::c_int {
 // elided
 swap(&mut *arr.offset(i as isize) as *mut libc::c_int,
 &mut *arr.offset(j as isize) as *mut libc::c_int);
 // elided
}

39

Refactoring quicksort (2/4)

40

pub extern "C" fn swap(mut a: &mut libc::c_int,
 mut b: &mut libc::c_int) -> () {
 let t: libc::c_int = *a;
 *a = *b;
 *b = t;
}

pub unsafe extern "C" fn partition(mut arr: &mut [libc::c_int],
 mut low: libc::c_int,
 mut high: libc::c_int) -> libc::c_int {
 // elided
 // requires two mutable borrows, won't compile
 swap(&mut arr[i as usize],
 &mut arr[j as usize]);
 // elided
}

Refactoring quicksort (3/4)

41

pub extern "C" fn swap(mut a: &mut libc::c_int,
 mut b: &mut libc::c_int) -> () {
 let t: libc::c_int = *a;
 *a = *b;
 *b = t;
}

pub unsafe extern "C" fn partition(mut arr: &mut [libc::c_int],
 mut low: libc::c_int,
 mut high: libc::c_int) -> libc::c_int {
 // elided
 // the idiomatic solution; requires human insight
 arr.swap(i as usize, j as usize);
 // elided
}

Refactoring quicksort (4/4)

42

pub extern "C" fn swap(mut a: &mut libc::c_int,
 mut b: &mut libc::c_int) -> () {
 let t: libc::c_int = *a;
 *a = *b;
 *b = t;
}

pub unsafe extern "C" fn partition(mut arr: &mut [libc::c_int],
 mut low: libc::c_int,
 mut high: libc::c_int) -> libc::c_int {
 // elided
 let mut a = mem::replace(&mut arr[i as usize], 0);
 let mut b = mem::replace(&mut arr[j as usize], 0);
 swap(&mut a, &mut b);
 mem::replace(&mut arr[i as usize], a);
 mem::replace(&mut arr[j as usize], b);
 // elided
}

43

Let’s translate
your code to Rust

www.c2rust.com

github.com/immunant/c2rust

