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● Per Larsen

● Co-Founder at Immunant, Inc.

● From Denmark / Located in Irvine, CA

● Background in C/C++ exploit mitigation

3



Who?

Eric Mertens
Galois

Alec Theriault
Galois

Andrei Homescu
Immunant

Daniel Kolsoi
Immunant

Ryan Wright
Galois

Stephen Crane
Immunant

4



Why?

Source: NIST National Vulnerability Database
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Why?
C/C++ mitigations are far from perfect.

Rust is an attractive migration target. Can we make migration easier?

1. reduce the tedium of initial translation
2. help catch errors during refactoring
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Transpiling
Design Goals:

● Robust C and C++ parsing
● Preserve functionality of input code
● Generate output fit for human consumption 
● Write back end in Rust; reuse Rust internals
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Other efforts
● Corrode

○ uses Haskell C parsing library
○ https://github.com/jameysharp/corrode

● Citrus-rs
○ uses clang for parsing
○ “transforms C syntax to Rust syntax, 

but ignores C semantics”
○ https://gitlab.com/citrus-rs/citrus
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Transpiler
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Transpiler
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AST importer
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Preprocessor directives
● Translating after preprocessing
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Preprocessor directives
● Translating after preprocessing
● How was compiler invoked?

○ compile_commands.json

● Recording compile commands
○ Use cmake 2.8.5 or later 
○ Use intercept-build for makefile projects
○ … or bear (Linux only)

https://github.com/rizsotto/bear
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[

   {

       "arguments": [

           "cc",

           "-c",

           "-std=c99",

           "-o",

           "test",

           "test.c"

       ],

       "directory": "/tmp/buffer",

       "file": "test.c"

   }

]



Simple loops
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Simple loops
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int x = 0;

while (x < 42) { x++; }

for (x = 0; x < 42; x++) 

{  }

let mut x: libc::c_int = 0i32;

while x < 42i32 { x += 1 }

x = 0i32;

while x < 42i32 { x += 1 };
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int sum(int count) {
   goto a;

   b:
   --count;
   goto d;

   a:;
   int x = 0;
   goto d;

   c:
   return x;

   d:
   if(count <= 0)
   goto c;
   goto e;

   e:
   x += count;
   goto b;
}

pub unsafe extern "C" fn sum(mut 
count: libc::c_int)
   -> libc::c_int {
   let mut x: libc::c_int = 0i32;
   while !(count <= 0i32)
   { x += count; count -= 1 }
   return x;
}

  Relooping

https://github.com/kripken/emscripten



Translator limitations
Unimplemented 

● variadic function definitions (Rust RFCs blocking issue #2137)
● bitfields (Rust RFCs blocking issue #314)
● long double and _Complex types (Rust libc blocking issue #355)
● macros

Likely won’t ever support

● longjmp and setjmp
● jumps in and out of GNU C statement expressions
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Web
Demo
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Running locally
$ git clone git@github.com:immunant/c2rust

$ c2rust/scripts/docker_build.sh

$ cd c2rust/vagrant && vagrant up
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Building
$ c2rust/scripts/build_translator.py --with-clang

$ c2rust/scripts/build_cross_checks.py

$ cd c2rust/rust-refactor && cargo build
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$ git clone git@github.com:immunant/buffer.git

$ cd buffer && bear make

  ✓ ok

$ path/to/transpile.py -m=test compile_commands.json

$ cd c2rust-build && RUSTFLAGS=-Awarnings cargo run 

  ✓ ok
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Transpiling



Example C input
/*
* Allocate a new buffer with `n` bytes.
*/
buffer_t *
buffer_new_with_size(size_t n) {
 buffer_t *self = malloc(sizeof(buffer_t));
 if (!self) return NULL;
 self->len = n;
 self->data = self->alloc = calloc(n + 1, 1);
 return self;
}
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Example Rust output
#[no_mangle]
pub unsafe extern "C" fn buffer_new_with_size(mut n: size_t)
-> *mut buffer_t {
   let mut self_0: *mut buffer_t =
       malloc(::std::mem::size_of::<buffer_t>() as libc::c_ulong) as
           *mut buffer_t;
   if self_0.is_null() {
       return 0 as *mut buffer_t
   } else {
       (*self_0).len = n;
       (*self_0).alloc =
           calloc(n.wrapping_add(1i32 as libc::c_ulong),
                  1i32 as libc::c_ulong) as *mut libc::c_char;
       (*self_0).data = (*self_0).alloc;
       return self_0
   };
}
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Rewritten Rust 
#[no_mangle]

pub extern "C" fn buffer_new_with_size(mut n: size_t)

                                     -> *mut buffer_t {

  let mut v = vec![0; n + 1];

  let mut b = Box::new(buffer_t {

      len: n,

      data: v.as_mut_ptr(),

      alloc: v,

  });

  Box::into_raw(b)

}
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Cross checking
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1. Instrument original C and translated Rust
2. Run programs with identical inputs
3. Optional: Configure cross checking

Cross checking
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pub fn id(x: libc::c_int)
    -> libc::c_int {
    return x;
}

int id(int x)  {
 
    return x;
}



1. Online
○ Using ReMon MVEE*
○ + no log files
○ + replicates program input
○ - limited compatibility

2. Offline
○ + broad compatibility
○ - user must ensure identical inputs
○ - log files grow quickly

Cross checking options
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Multi-variant execution environment
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https://github.com/stijn-volckaert/ReMon



1. clang plug-in for C code
2. rustc plug-in for Rust code
3. Cross-checking runtimes 

a. MVEE-based
b. log-based

4. Zeroing malloc replacement 
5. ptrace-based segfault handler

Cross checking instrumentation
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$ cd buffer && bear make

  ✓ ok

$ path/to/transpile.py -x -u -m=test compile_commands.json

$ cd c2rust-build && RUSTFLAGS=-Awarnings cargo build
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Cross-checking a library (1/2)



Cross-checking a library (2/2) 

$ export LD_LIBRARY_PATH=path/to/libfakechecks.so
 

$ cargo run --quiet 2> ../buffer.rust.xchecks

$ cd .. && make test_xcheck 2> buffer.c.xchecks

$ diff buffer.rust.xchecks buffer.c.xchecks || echo “fail”
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Refactoring
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Reconstruct for range
fn main() {
  let mut i;

  i = 0;
  'a: while (i < 10) {
      println!("{}", i);
      i = i + 1;
  }

  i = 0;
  'a: while (i < 10) {
      println!("{}", i);
      i = i + 2;
  }
}
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Reconstruct for range
fn main() {
  let mut i;

  'a: for i in 0..10 {
      println!("{}", i);
  }
  
  'a: for i in (0..10).step_by(2) {
      println!("{}", i);
  }
}
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Major enhancements
● Automate safety transformations
● C++ subset support
● Translation of macros/preprocessor directives
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Automate safety transformations
● 100% automation not possible
● Challenges

○ Lack of domain knowledge
○ Differences in type systems 

■ Ownership
■ Mutability

○ Differences between C preprocessor
macros and Rust macros.
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Refactoring quicksort (1/4)
pub unsafe extern "C" fn swap(mut a: *mut libc::c_int,
                             mut b: *mut libc::c_int) -> () {
    let mut t: libc::c_int = *a;
    *a = *b;
    *b = t;
}

pub unsafe extern "C" fn partition(mut arr: *mut libc::c_int,
                                   mut low: libc::c_int,
                                   mut high: libc::c_int) -> libc::c_int {
    // elided
    swap(&mut *arr.offset(i as isize) as *mut libc::c_int,
         &mut *arr.offset(j as isize) as *mut libc::c_int);
    // elided
}
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Refactoring quicksort (2/4)
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pub extern "C" fn swap(mut a: &mut libc::c_int,
                       mut b: &mut libc::c_int) -> () {
   let t: libc::c_int = *a;
   *a = *b;
   *b = t;
}

pub unsafe extern "C" fn partition(mut arr: &mut [libc::c_int],
                                   mut low: libc::c_int,
                                   mut high: libc::c_int) -> libc::c_int {
   // elided
   // requires two mutable borrows, won't compile
   swap(&mut arr[i as usize],
        &mut arr[j as usize]);
   // elided
}



Refactoring quicksort (3/4)
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pub extern "C" fn swap(mut a: &mut libc::c_int,
                       mut b: &mut libc::c_int) -> () {
    let t: libc::c_int = *a;
    *a = *b;
    *b = t;
}

pub unsafe extern "C" fn partition(mut arr: &mut [libc::c_int],
                                   mut low: libc::c_int,
                                   mut high: libc::c_int) -> libc::c_int {
    // elided
    // the idiomatic solution; requires human insight
    arr.swap(i as usize, j as usize);
    // elided
}



Refactoring quicksort (4/4)
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pub extern "C" fn swap(mut a: &mut libc::c_int,
                       mut b: &mut libc::c_int) -> () {
    let t: libc::c_int = *a;
    *a = *b;
    *b = t;
}

pub unsafe extern "C" fn partition(mut arr: &mut [libc::c_int],
                                   mut low: libc::c_int,
                                   mut high: libc::c_int) -> libc::c_int {
    // elided
    let mut a = mem::replace(&mut arr[i as usize], 0);
    let mut b = mem::replace(&mut arr[j as usize], 0);
    swap(&mut a, &mut b);
    mem::replace(&mut arr[i as usize], a);
    mem::replace(&mut arr[j as usize], b);
    // elided
}
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Let’s translate 
your code to Rust



www.c2rust.com

github.com/immunant/c2rust


