
Chapter 3

Defining Names in and
from Modules

A little inaccuracy sometimes saves tons of explanation.
Hector Hugh Munro

When certain concepts of TEX are introduced informally, general
rules will be stated; afterwards you will find that the rules aren’t
strictly true. In general, the later chapters contain more reliable
information than the earlier ones do. The author feels that this
technique of deliberate lying will actually make it easier for you to
learn the ideas. Once you understand a simple but false rule, it will
not be hard to supplement that rule with its exceptions.

Donald Knuth

You can’t handle the truth.
Colonel Nathan R. Jessep (from the movie “A Few Good Men”)

Chapter Objectives

� Learn basic information about the concepts of names, objects, and rules
� Learn about module objects, modules as files, and script modules
� Learn how to define and delete names, redefine names, and share objects
� Learn why Python raises exceptions when it cannot execute a statement
� Learn how to draw module and value objects, and names (in namespaces)
� Learn how to import modules and attribute names from other modules
� Learn how to run the Python interpreter and experiment with Python

3.1 Introduction

Python is both a programming language and a system that runs programs. Python (the language and sys-
tem) can be described in terms of
three general concepts: names,
objects, and rules

Understanding Python requires knowing the meanings and interrelationships of
just three general concepts: (attribute) names, objects, and rules. The more
we use these concepts when learning and discussing Python, and the more
we write, analyze, and describe Python code using them, the better we will
understand these concepts. For now, we quickly summarize these concepts at a
level suitable for use in this chapter; in later chapters, we explore these concepts
in more detail. Because these concepts are interrelated, read these descriptions
more than once and examine the pictures that illustrate them in Section 3.3.

35

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 36

Names refer/are–bound to objects. We can define a name and bind it to an Names refer to objects and in
this chapter are attributes in the
namespace of module objects

object, find the object a name refers/is–bound to, change what object a
name refers/is–bound to, and delete a name. A name in Python is an at-
tribute in some object’s namespace, so we also refer to names as attribute
names; in this chapter, the names we define and use are attributes in the
namespace of module objects.

Objects represent all aspects of Python programs. There are four major cat- Python has four categories for
objects, representing modules,
values/instances, functions, and
classes; they also provide names-
paces for attribute names

egories of objects: modules, values, functions, and classes. Many objects
provide namespaces in which to define (attribute) names. Value objects
store special data/values; they are also known as instance objects, be-
cause they are instances of a class object that specifies the type of the
value/instance object.

Rules describe the processes Python uses to execute1 programs. This chap- Rules describe the processes
Python uses to execute programster focuses on four important rules that operate on namespaces and the

bindings between names and objects. These rules specify how to
� define a name in a namespace and make–it–refer/bind–it to an object
� find the object to which a name refers/is–bound
� rebind a name (make it refer) to a different object
� remove a name from a namespace

This chapter explores how to manipulate (attribute) names in the namespaces Python uses the terms name and
attribute name similarly; likewise
we will say either “names refer to
objects” or “names are bound to
objects”

of module objects. We use the terms name and attribute name interchangeably:
every name is an attribute in the namespace of some object. Likewise, we might
say a name refers to an object or say a name is bound to an object, or even an
object is bound to a name: refers is an asymmetric term: a name refers to an
object, not vice–versa; but bounds is symmetric term: names and objects are
bound together.

Finally, the EBNF rules from Chapter 2 were the truth, the whole truth, and This book often uses a spiral ap-
proach: the simplest forms of
some Python language features
are covered first, and then more
options and details are gradually
exposed

nothing but the truth. But, starting in this chapter, we will sometimes present
EBNF rules that are correct, but missing some options governing complex parts
of Python. We need to learn the simple parts of the language easily, and apply
everything we learn concretely; so trying to learn all the details and options
now would cause information overload and confusion. Therefore, the EBNF
rules from now on will be correct, but not complete: the truth and nothing but
the truth; but we will spiral towards the whole truth. The incomplete EBNF
rules will use footnotes that briefly discuss their omissions, which later chapters
will supply.

3.2 Modules, Files, and Scripts

Module objects are fundamental in Python, because all Python code is written Python translates code from files
into module objectsin files that Python translates into module objects. For example, Python knows

that a module named math will reside in the file math.py, which comprises the
module/file name math followed by a dot, followed by the file extension py,
which is Python’s standard file extension for modules. Many modules and files
use names that are this simple, but module names can be more complex in
Python, according to the following EBNF rule.

1Python executes a program by executing the instructions/statements that comprise the
program. Execute in this context in a synonym of “do”, “perform”, or “carry out”.

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 37

EBNF Description: module name (Python module names)

name ⇐ identifier (name is now a synonym for identifier)
qualified name ⇐ name{.name}
module name ⇐ qualified name (module name is now a synonym for qualified name)

In qualified module names (multiple names separated by dots) Python uses Module names can be simple or
qualified: multiple names sepa-
rated by dots

the last name as the file name of the module; it uses all prior names as
the folder/directory path in which to find the file. For the module name
ics31.courselib.prompt Python will look for the file prompt.py inside the
folder/directory courselib, which itself is inside the folder/directory ics31.

Python programs typically comprise many modules, cooperating to imple- We start a task by telling Python
which module to execute; that
module is known as the script for
the task

ment some task: some modules work directly to solve the task; other modules
(i.e., software components or libraries) are more general and are used in the
implementation of many diverse tasks. When we tell Python to execute a task
starting with a specific module, that module is called the “script”: think of the
programmer as a playwright, and Python as the actor. When told to execute a
script, Python performs a sequence of four actions. It will

1. find the script’s file using the convention just discussed for modules
2. translate all the statements in the script’s file into Python’s bytecode2

3. create a module object for the script, initially with an empty namespace
4. execute its bytecode, updating the namespace of the script module object

Figure 3.1 illustrates a module object that has an empty namespace. In this We draw all objects as rounded–
edge rectangles, labeled on its
top by the type of value the ob-
ject represents

book, rounded–edge rectangles always represent objects, with the type/class of
the object appearing as a label on top. The object in Figure 3.1 is a module
object, whose label also includes the module’s file name. We will soon see other
objects, with many labeled by one of Python’s built in types (e.g., int, bool, str)
that we learned in Section 2.5 when studying literals.

Figure 3.1: The Parts of a Module Object with an Empty Namespace

Module objects show their namespaces inside their rectangles. This names- Namespaces of objects store
names and storage cells, which
refer to objects

pace is empty, but in Section 3.3 we will learn how to define names and their
values in the namespace of a module object, and how to illustrate such defini-
tions: as names and their storage cells, which store references (represented by
arrows) to the objects they refer to (more rounded–edged rectangles). At that

2Bytecode is a special language that is lower–level than Python, but is higher–level than
machine code. Python translates modules into bytecode and then its virtual machine exe-
cutes these modules by interpreting their bytecode. This chapter does not explore bytecode
further, pretending that Python executes modules directly, without having to translate them
into bytecode. But, if we studied bytecode, we would learn that Python stores the bytecode of
imported modules in special “cached” files, (with the same module name, but using the exten-
sion .pyc) in the pycache folder. When we tell Python to import a module, if it finds that
the module’s .py file remained unchanged after its .pyc file was stored, Python immediately
uses the .pyc bytecode file, avoiding retranslating the Python module into bytecode.

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 38

time we will also learn about the special sys module, and how it keeps track of
the script being run and any other modules that the script imports.

3.3 Defining Names in a Module

There are two ways to define names in modules; each adds attribute names to Both assignment statements and
import statements define names
in the namespace of a module
object

the namespace of a module object and binds these names to other objects. The
first is the assignment statement whose EBNF appears below3 The second is the
import statement, which is discussed in Section 3.4 and builds on the material
covered here. Note that before the expression EBNF rule, we define literal as
any form of literal from Python’s built in types. The assignment statement
itself features the = delimiter separating the name from the expression

EBNF Description: assignment statement (Defining a name and binding it to an object)

literal ⇐ int literal | float literal | imaginary literal | bool literal | str literal | bytes literal | none literal
expression ⇐ literal | name
assignment statement ⇐ name = expression

Semantically, Python executes an assignment statement according to the three Semantics of Assignment State-
mentsrules below. In the next section we will learn how to illustrate assignment

statements by producing pictures illustrating these semantics.

1. Find the object denoted by expression on the right side of the = delimiter.
A. If expression is a literal, check if a value object for that literal already

exists: if so, use it; otherwise, create a new value object storing that
literal value and use it

B. If expression is a name, check if that name is already in the namespace
for the module object; if so, find the object it refers to and use it;
otherwise, raise the NameError exception, reporting a problem. See
Section 3.3.3 for details about exceptions.

2. Find the name on the left side of the = delimiter. If it is not already in
the namespace for the module object, add it to the namespace.

3. Make the name in the namespace refer to the object found by expression.

Assignment statements in Python seem like statements of equality in Mathe- Assignment statements in
Python have a different meaning
from equality statements in
Mathematics

matics, but they are different. In mathematics = is symmetric: x = 1 and
1 = x have the same meaning. Assignment statements in Python are asymmet-
ric: the left side of the = delimiter must be a name while the right side must
be an expression, whose EBNF, at present, allows only a literal or name. In
Python, we read the assignment statement x = 1 as x gets (is assigned) 1. The
symbols 1 = x are illegal in Python because they do not match the EBNF.

In the two next chapters the expression EBNF rule will be updated and we will We will soon learn about more
complicated expressions, which
include functions and operators

learn how to perform complex calculations, using Python’s built in functions
and operators, So, the = here is like the ⇐ symbol in EBNF rules, whose left
side is just a rule name, but whose right right side can be a complex description.

Finally, note that once a name is defined, it will always refer to some object; A defined name will always refer
to some objectof course, we can always bind a name to the value object representing the literal

None, from the None Type class; e.g., x = None.

3Omitted from this EBNF description: using more complex name and expression rules.

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 39

3.3.1 Illustrating Names and their Bindings in Modules

To help us learn Python, this book will often present pictures that illustrate the Pictures help us understand the
Python and understand the code
we write in Python

concepts it is teaching. This is especially true for understanding the semantics
of Python statements, like the assignment statement and the import statement
covered in this chapter. Acquiring skill in reading, understanding, and drawing
such pictures on our own is an important step in learning general concepts and
being able to analyze specific code. It will help us predict what our code will do,
and give us an excellent analysis tool to understand our code if it is not doing
what we want —a too common occurrence for novice and expert programmers.

As we become skilled in understanding pictures and become more comfortable Our need to draw pictures may
diminish but it will not disappearwith Python, our need for pictures will decrease; but even then, being able to

draw pictures when we need them, in a novel, complex, or confusing situation,
will be an important skill to keep.

Figure 3.2 illustrates how to draw module objects, the (attribute) names How to draw a name in a names-
pace and its binding to an objectin their namespaces, and the bindings to the objects these names refer to.

In particular, this picture illustrates how Python executes the statement the
assignment statement x = 1 in an unnamed module.

Figure 3.2: Define a Name (in a Namespace) Referring/Bound-to a Value Object

Recall that a rounded-edge rectangle always represents an object encapsu- Simple value objects, like those
for Python’s built in types, store
a value but no namespace

lating its value and possibly its namespace. Objects of simplest built in types
(like the int object here) store only a value, and not any attribute names, so
we draw them more compactly.

Let us now take a complex (for Chapter 3!) scenario and illustrate it fully. A simple module comprising two
assignment statementsSuppose we direct Python to execute a script from the file named script.py,

and this file contains the following two assignment statements.

1 x = 1

2 y = 2

Figure 3.3 illustrates not only how we should picture modules, names, objects, Illustrating how a simple mod-
ule object executes two assign-
ment statements that update its
namespace

and bindings in Python, but also some Python infrastructure: the special mod-
ule sys and the built in type dict (dictionary) which implements a non-module
namespace.

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 40

Figure 3.3: Semantics of Running script.py as a Script

At the most basic level, this picture illustrates how we draw module objects, In an assignment statement, we
add a new name to the names-
pace of a module object and put
an arrow from its storage cell to
the object it refers to

names in their namespaces, and bindings between these names and value ob-
jects. Here Python executes the module from the script.py file. As described
in Section 3.2 Python creates a module object with an empty namespace; it
then executes the assignment statements in the the file, updating the names-
pace according to the semantics described in Section 3.3. Pictorially, each
literal is written as a value object, and each newly defined name is added into
the namespace of the module’s object; each name is made–to–refer/bound–to
its value object: the tail of an arrow is placed in the storage cell for the name
and the head is pointed to the value object.

This picture also illustrates some other aspects of running Python scripts, Some Python infrastructure:
how the sys module and a dict
object is updated when Python
runs a script

which are now briefly described at a level appropriate for this chapter. First,
the picture shows a special module from the file sys.py with the one attribute
name modules in its namespace; the ... at the bottom of this module’s object
signifies this module defines other names, but they are not of interest to us now.
The name modules refers to an object of type dict which is Python’s built in
dictionary type, which we will study later in great detail; the purpose of a dict

object is to act as a namespace.

For now, the namespace of the dict object contains just one name main When Python runs a script, the
sys.modules dictionary refers
to its module object by the name
main

which is the special name that Python binds to the module object that repre-
sents the script Python is executing. When we learn how to import modules
in Section 3.4, we will see that Python adds the names of those modules to
this dict and binds them to the imported module objects. Again ... in the
dict object signifies at present we are not interested in any other names in this
namespace.

3.3.2 How Names Share, are Redefined, and are Deleted

This section explores three aspects of names: how two different names can refer Three interesting observations
about namesto the same object (called “sharing” or “aliasing”); how we can redefine which

object a name refers to; and how to remove names from their namespace.

Sharing Objects: Every name defined in Python refers to one object; but an Every name refers to one object;
but an object can be referred to
by multiple names

object may be referred to by many names. Again an interesting asymmetry. We
will need to learn more Python before we can explain why such sharing is not
only useful, but critical to our ability to write code to implement complex tasks.
But we can easily explain how it works now. Figure 3.4 illustrates how we can

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 41

share/alias an object in our code by executing the simple script below. For the
next few illustrations, we will omit the the sys and dict objects, because we
don’t want to distract from the primary issues being explore here.

script module

1 x = 1

2 y = x

Notice that x is bound to an object of type int and then y is bound to the In sharing, the storage cells for
two different names show arrows
that point to the same object

same object x is bound to. Rules 1B and 3 for the semantics of the assign-
ment statement say that if the expression is a name, then use the object that
the name refers to. So the name on the left of the = delimiter is bound to same
object that is denoted by the expression on the right of the = delimiter. In
the picture, we put into the storage cell for y an arrow that refers to the same
object that the storage cell for x refers to. This is really not a complicated rule,
but students have a devil of a time learning it and applying it consistently.

Figure 3.4: Names Sharing/Aliasing an Object

Confused beginners sometimes show this picture with the arrow in the storage The arrows shown in storage cells
always point at objects, never at
other storage cells

cell for y pointing to the storage cell for x, instead of pointing to the same
object the storage cell for x points too. Fundamentally this is wrong because
arrows refer to object and the storage cell for x is not an objects; remember
that all objects appear as rounded-edge rectangles.

A much more interesting issue surrounds Rule 1A for the semantics of the Names share/alias the objects
created for literal values, mostlyassignment statement. It states, “If expression is a literal, check if a value

object for that literal already exists: if so, use it; otherwise, create a new value
object storing that literal value and use it.” Figure 3.4 illustrates how the
only mention of the literal 1 created a new object. But, Figure 3.5 illustrates
how one such value object is aliased as a result of executing the simple script
below. The picture below on the right is the one that follows the rules: the first
assignment statement creates a new value object storing 1; the second aliases
the same object created by the first, as a result of this rule.

script module

1 x = 1

2 y = 1

Figure 3.5: Two Interpretations of a Simple Script: The Right is Correct

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 42

But the picture similar to the one on the left would be correct if instead of 1 we Names sometimes do not
share/alias the objects created
for literal values

assigned both names 123456789101112. The problem is that the whole truth
is surprisingly complex here. For now we will leave this issue underspecified,
always using the interpretation on the right until we resolve it later.

Obviously we see two different pictures: can Python tell the difference? Yes Python can determine whether
two names refer to the same or
different objects

it can. Chapter ?? will explain an operator4 that allows us determine whether
x and y share an object (as on the right) or refer to two different value objects
that store the same value (as on the left).

Redefining: We can redefine a name, making it refer to a different object. In We can redefine a name: make a
name refer to a different objectSection 3.3 Rules 2–3 for the semantics of the assignment statement say that

if the name on the left of the = delimiter is already defined in the namespace,
make that name refer to the object denoted by expression, replacing the arrow
in the storage cell for the name by a new arrow pointing to a different object.

When we redefine a name, its previous reference/arrow is gone and forgotten A storage cell can store only one
reference, although we can write
dashed arrows in our pictures to
indicate a replaced reference

by Python, but sometimes in such cases —when we want to emphasize the
redefinition of a name— instead of erasing the arrow we will illustrate the
previous reference in a storage cell by a dashed arrow. Figure 3.6, which uses
a dashed arrow, illustrates how Python executes the simple script below.

script module

1 x = 1

2 x = ’TANSTAAFL ’

Figure 3.6: Redefining a Name

Notice that at first x is bound to an object of type int but then it is rebound Names can refer to different
types of objectsto an object of type str. When a name is redefined, it can refer to any type of

object, not just the type of the original object it was bound to.

Undefining: We can remove a name from the namespace of a module’s object We can delete a name, which re-
moves it from its namespaceby executing a delete statement, according to the following EBNF. By using the

repetition braces we can use one delete statement to specify the deletion of any
number of names.

EBNF Description: del statement (Removing a name from an object’s namespace)

delete statement ⇐ del name{,name}

Semantically, the specified names are removed from the namespace; in our Python raises an exception if
a delete statement specifies a
name that is not in a namespace

pictures, we erase or cross–out each name and its storage cell from the names-
pace, and if erasing, erase the arrow showing its binding. If any specified name
does not exist in this namespace, Python raises the same NameError excep-
tion that was briefly discussed in Section 3.3 in regards to the semantics of the
assignment statement; exceptions are discussed more fully in Section 3.3.3.
There is one more aspect of deletion that is not yet important to understand
fully, but this section is a convenient place to broach the subject.

4The is operator determines whether two references share the same object, while the ==

operator determines whether two references refer to objects that store the same value.

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 43

Every object occupies space in the computer’s memory: to store its value Objects occupy memory; if we
delete the only name that refers
to an object, Python recycles the
memory that object occupies

and/or namespace. If we delete a name that refers to some object, and no
other name shares/aliases/refers–to that object,5 Python recycles that object’s
storage, reclaiming its memory for possible reuse in the future, when creat-
ing/storing new objects Because this mechanism is automatic (a feature not
available in all programming languages) Python programmers generally don’t
worry much about recycling memory. There are a few subtleties to understand-
ing this mechanism, which this book will cover when appropriate.

3.3.3 Programming Errors and Raising Exceptions

Sometimes when Python executes a program, it discovers it cannot do what Python raises an exception when
it tries to execute code that it
cannot perform correctly

the code says to do. In such cases, Python reports the problem by “raising” an
exception, which is as if Python raises its hands in a shrug and says, “I cannot
do that”. We have already seen one example: Python raising the NameError

exception in the assignment statement, if the expression is a name that is not
defined. When we discuss the divide operator, we will learn that if we try to
divide a number by zero, Python raises the ZeroDivisionError exception.

Section ?? discusses the try/except statement in Python. By using this A try/except statement tells
Python how to handle excep-
tions; without an exception han-
dler, Python handles an excep-
tion by terminating the program
and printing the exception name
and a related message on the
user’s console

statement, programmers tell Python what code to try executing, and what to
do if that code raises an exception. The except part of this statement specifies
an exception handler; without an exception handler, Python handles raised
exceptions by terminating the program and printing the exception’s name and a
short error message describing it on the user’s console. Section 3.5 demonstrates
code that raises exceptions and shows exactly how Python reports such errors.

Exceptions are an important concept in modern programming languages, and Exceptions are an important but
many–faceted language feature;
as we learn more about Python,
we will learn more about using
exceptions in Python

we will explore many different aspects of exceptions throughout this book, using
a spiral approach: as we learn more about Python in general, we will learn more
about using exceptions in Python. For now, we can learn that exceptions are
represented by classes. In Section 3.4.2 we will learn that Python imports about
four dozen standard exception names from the special builtins module. Later
we will learn how to handle raised exceptions, raise exceptions when special
conditions occur, and define our own exception classes.

Section Review Exercises

1. Draw a picture to illustrate the semantics of executing code in the two
script modules below. The only difference in the code in these modules
is in the last assignment statement, which are mirror images. Remember
to write dashed arrows for removed references.
first script module

1 x = 1

2 y = 2

3 x = y

second script module

1 x = 1

2 y = 2

3 y = x

Answer: On the left, both names point to the bottom object; on the
right, both names point to the top object. Remember that assignment
statements are asymmetric, so x = y has a different meaning than y = x.

5How does Python know if an object’s memory is recyclable? Python stores a reference
count for each object, counting how many names refer to it: how much it is shared/aliased.
When an object’s count goes to 0, Python knows that it can recycle the object’s memory.

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 44

2. We can write a name on each side of the = delimiter in an assignment statement.
a. If the name on the left is not already defined in the namespace, what
does Python do? b. Same for the name on the right? Hint: asymmetrical.

Answer: a. Python defines the name in the namespace. b. Python raises
the NameError exception.

3.4 Importing Names of/from Modules

This section explores a second way to define names in a module: by importing Import statements define names
in the namespace of a module
object

them, using another module. For example, Python’s math module defines many
names: it binds some to value objects (mathematical constants) we can use and
others to function objects (mathematical functions) we can call. Specifically, it
defines the names pi and e and binds each to a float value approximating the
mathematical constants π and e; it defines the names sqrt, sin, factorial,
and others, and binds each to a function object that computes that function.

The EBNF of Python’s import statement specifies three different syntactic We can import the name of
a module, or selected attribute
names from a module, or all the
attributes names from a module

forms for importing, each having its own semantics. The import module rule
imports references to entire module objects; the import attribute rule imports
some or all references to objects bound to attribute names in modules.6 The
most important option in each form allows us to define a module or attribute
name that is the same as the one imported, or to define a new name of our
own choosing, which is bound to the same object as the imported name.

EBNF Description: import statement (Importing modules/attributes)

new name ⇐ name (not a qualified name)
module name as ⇐ module name [as new name]
name as ⇐ name [as new name]

import module ⇐ import module name as{,module name as}
import attribute ⇐ from module name import name as{,name as} | from module name import *

import statement ⇐ import module | import attribute

When we refer to a module for the first time (importing its name or an at- Semantics Common to all Import
Statementstribute name from it), Python performs the following three actions, and then

the semantics of the actual import (which are described afterwards).

1. Create a new module object with an empty namespace.

2. Define the module’s name in the dict object and bind it to the created
module object. Recall modules is a name the the namespace of sys mod-
ule object that refers to the dict object, which initially stores the name
main bound to the module object of the running script).

6Omitted from this EBNF description: using relative imports from modules in packages.

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 45

3. Execute all the module’s statements, which typically define names in the
namespace of the module’s object by binding each name to an object.

If a program ever imports the same module again, Python skips these three Python skips the previous steps
if the module has already been
imported; the modules name in
the namespace of the sys mod-
ule object stores references to all
imported modules

actions, because the module object and all the names in its namespace are al-
ready defined; in this case Python immediately performs the semantics specified
below for the form of import used. Python determines whether or not a module
has already been imported by checking whether or not the dict object bound
to the modules name in the namespace of the special sys module object has
already defined the name of the imported module.

The rules specifying the semantics for each form of import are explained Semantics for Each Form of
Import Statementbelow, followed by some simple examples of each form, and their meanings.

In all cases, Python defines a name: it adds a name to the namespace of the
module’s object in which the import appears (if it is not already there) and
binds that name to the object bound to the imported name.

Import Form 1: import module name as{,module name as}
For each module name as specified in the import, define either module name
or new name (if the [as new name] option is included) in the importing
module and bind it to the object created by the imported the module.

Import Form 2: from module name import name as{,name as}
For each name as, specified in the import, define either name or new name
(if the [as new name] option is included) in the importing module and bind
it to the same object (sharing the object, as discussed in Section 3.3.2)
that name is bound to in module name.

Import Form 3: from module name import *
For each name in the namespace of the module name object, define that
name in the importing module and bind it to the same object (sharing
the object, as discussed in Section 3.3.2) it is bound to in module name.
Exception: if the name starts with an underscore, do not define/bind it
in this module; recall that names that start with underscores are special.

All Forms (Raising Exceptions): If Python cannot find the file for an im-
ported module name or the attribute name in an imported module object,
it raises the ImportError exception, with the message No module named

... or cannot import name ...

import statement name(s) to bind in object(s) that name(s) is/are bound to
the namespace of the
module with the import

import math math object bound to math in dict namespace
import math as m math object bound to math in dict namespace
import os.path os.path object bound to os.path in dict namespace
import os.path as op op object bound to os.path in dict namespace
import math, os.path math/os.path objects bound to math/os.path in dict namespace
from math import pi pi object bound to pi in namespace of math module
from math import e as mathe mathe object bound to e in namespace of math module
from math import * pi, e and all other names objects bound to pi, e and all other names

defined in the namespace in the namespace of the math module
of the math module

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 46

Figure 3.7 illustrates Python executing the script module, which refers to the A detailed example illustrating
the first two import formsimports module. The four import statements define six names in the script

object module, some with names from imports and some with different names.

script module

1 import imports , imports as alias

2 from imports import a

3 from alias import b

4 from imports import c as ac, d

imports module

1 a = 1

2 b = True
3 c = ’ICS 31’

4 d = None

Figure 3.7: Semantics of Running script as a Script, Importing imports

It is a bit premature to discuss the pragmatics of importing. Generally, though, Pragmatics of Import
Statementsimports all appear at the top of a module (although Python allows them to

be intermingled with other statements). Also, there is a preference to not
pollute the namespace of the importing module: so using Form 1 (defining
just module names) is preferred to Form 2 (defining selected attribute names),
which is preferred to Form 3 (defining attribute names for every name from a
namespace); but there are circumstances where each form is appropriate.

Finally, Python allows recursive imports, both direct (a module importing Recursive imports are possible,
and work according to the rules,
but they are rarely needed: not
at all in this book

itself) and mutual (two modules each importing the other). While the import
rules we have learned specify exactly what happens in these cases, they are
complex and tricky to apply, so we will not show any examples here. In fact,
recursive imports are rarely needed, and none are used in this book.

3.4.1 Assignment/Delete Statements with Imports

Now that we know how to import modules, we will explore how to use a qual- Assignment statements and
delete statements can be ex-
tended to use the qualified
names created by imports

ified name (written module name dot attribute name) to manipulate names in
the namespace of an imported module: how to find the objects they refer to,
redefine their bindings, and undefine them. First, we extend three previously
defined EBNF rules to use qualified name instead of name.

EBNF Description: Extending: expression, assignment statement, and delete statement

expression ⇐ literal | qualified name
assignment statement ⇐ qualified name = expression
delete statement ⇐ del qualified name{,qualified name}

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 47

So, for example, if a script module includes import m and m refers to a module We can use qualified names
to access, redefine, and delete
names in modules

object with the attribute name n in its namespace, we can write m.n in the
script to refer to that qualified name name. Here are three ways to use it.

� We can write m.n as an expression in an assignment statement: x = m.n

binds x to the same object that m.n refers to.

� We can write m.n as a qualified name on the left side of an assign-
ment statement: m.n = 1 rebinds n in the namespace of the module object
m to a value object storing the value 1.

� We can write m.n as a qualified name in a delete statement: del m.n

deletes name n from the namespace of module object m. We illustrate
this deletion by erasing, or placing an X over, the deleted name and its
storage cell and the arrow in it.

For any qualified name used as an expression in an assignment statement or Extended assignment and delete
statements can raise exceptionsspecified in the delete statement, the module name must exist and the name

must be in the namespace of that module’s object; if Python cannot find the
attribute name, it raises the NameError exception. If a qualified name appears
on the left side of the = delimiter in an assignment statement, the module
name must exist; but if the attribute name doesn’t, Python defines that name
in the namespace of the module object, as part of the semantics of assignment
statements.

Figure 3.8, illustrates how Python executes the script below, which imports One module can manipulate the
namespace of anotherand manipulates the namespace of the second module.

script module

1 import second # import module

2 x = second.a

3 second.a = ’foo’

4 second.c = ’bar’

5 from second import a as b, b as a #import attributes

6 del second.b

second module

1 a = 1

2 b = 2

Figure 3.8: Semantics of Running script as a Script, importing second

A module normally manipulates names only in its own namespace. Although Generally, it is bad style for one
module to manipulate the name
space of another module object

Python allows one module to manipulate the namespace of another, beginners

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 48

should avoid using this feature: it is not a good idea for one module to de-
fine, redefine, or delete an attribute name in another. For example, if a script
imported the math module and executed the assignment statement math.pi =

3 then for the rest of the program, every access to math.pi would result in a
reference to a value object with an incorrect value of 3. Finally, although the
module object created from math.py is changed, this file remains unchanged;
so a different program that that imports the math module will create a module
object that binds the correct value object to math.py.

3.4.2 The builtins Module

The Python system includes a special module named builtins, which Python Python automatically imports
the builtins module into every
imported module

automatically imports into every Python module, including scripts, as if by the
from builtins import * statement. By doing so, Python creates a builtins

module object, defines in its namespace all the attribute names defined in the
builtins.py file, and imports all these names into the namespace of the script’s
module object, where we can then easily refer to and use them.

The builtins module defines about 100 names. It defines about two dozen The builtins module binds it
attribute names to class objects,
value objects, function objects

names for types and binds them to their class objects, including the names of
the seven built in types that we studied when we introduced literals, the name
dict, and the names of many other important types/classes that we will study
and use later in this book. It also defines nine name, including False, None, and
True and binds them to their value objects. It defines about four dozen names
for exceptions (including NameError, ImportError and ZeroDivisionError)
and binds them to them to their class objects. And finally, it defines about
three dozen names for functions and binds them to their function objects.

This module defines names for Python’s most basic and important objects, The builtins module provides
a rich environment for writing
code

which provide a rich environment for writing code. Chapters ?? and ?? will dis-
cuss the meaning and usage of many of the names defined in Python’s builtins
module.

Section Review Exercises
1. Draw a picture to illustrate the semantics of executing code in the script

module below. Remember to write dashed arrows for removed references.
script module

1 from imports import b as a, b as c

2 from imports import *

imports module

1 a = 1

2 b = 2

Answer:

2. Draw a picture to illustrate the semantics of executing the script module

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 49

below.
script module

1 import m2,m3

2 x = m2.x

3 y = m3.y

4 from m2 import next.y as z

5 m2.z = ’scriptz ’

6 m2.next.x = 1

m2 module

1 import m3 as next

2 x = ’m2x’

3 y = ’m2y’

m3 module

1 x = ’m3x’

2 y = ’m3y’

Answer:

3. If the imports module defines a (a name starting with an underscore),
and the script module includes the from imports import a statement,
will the name a be imported or not? Justify your answer.

Answer: It will be imported. Names starting with underscores are im-
ported in this form of import, but are not imported in the last form of
import, using * to import all names not starting with an underscore.

4. In the script module below, what value is bound to pi? math.pi?
script module

1 import math

2 from math import pi

3 math.pi = 3

Answer: pi is bound to a value object storing π; math.pi is bound to a
value object storing 3.

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 50

3.5 The Python Interpreter: Experiment!

We ave now learned some fundamentally import information about Python The Python interpreter is a great
resource for exploring Python
and discovering its rules of op-
eration

modules and their namespaces. We have examined and practiced drawing pic-
tures that illustrate the result of executing Python assignment, delete, and im-
port statements. In the next few chapters, we will learn enough about Python
to begin writing and understanding real programs that implement useful tasks.
In this section, we will learn the basics of the Python interpreter, which allows
us to easily test and validate/correct our knowledge of the Python language fea-
tures we are learning. The interpreter is a great resource for exploring Python
and discovering its rules of operation.

The Python interpreter embodies a “Read–Execute–Print” loop. It repeatedly The Python interpreter embodies
a Read–Execute–Print loopprompts us to enter a Python statement, reads the statement, executes that

statement, and finally prints the value produced by executing the statement.
The interpreter prompts us to enter statements with the triple chevron: >>>.
It has a few simple rules/conventions for entering statements.

� We can type a new statement or use the ↑ and ↓ keys to scroll through
and select any previously entered statement and edit it by using the ←,

→, Del , and Backspace keys (as well as typing, marking, cutting, and

pasting). Note that when we enter a statement that is just a literal or
name: the Python interpreter executes it by printing the value of the
literal or the value bound to the name.

� We can use a single underscore in a statement to refer to the value the
interpreter last printed. Note that the assignment, delete, and import
statements produce the value None when Python executes them: the pur-
pose of these statements is not to produce a value, but instead to change
the namespace. The interpreter treats None specially: it does not print
None and does not remember it for future reference by the underscore.

� When we have typed/edited the statement we want, we press ←↩ (Enter)
to instruct the Python interpreter to read and execute the statement and
print its resulting value; if we press ←↩ but the statement is incomplete,
Python prompts with ... for the completion. The statement we en-
ter also becomes the new last statement executed, which can be scrolled
through; if we mistype a statement, we can easily scroll back to it, edit
it, and execute the corrected statement. Remember that if the value pro-
duced is not None it is printed and becomes the last value printed, which
can be referred to via the underscore convention.

When we start the interpreter, it is as if we are entering/executing statements In the Python interpreter, the
statements we type are the scriptinside the script: the main module. We can import other modules and use

the names in their namespaces, but to do so those modules must already exist in
files. For now, we will import only special modules that are part of the Python
system; but if you know/learn how to write your own files, you can name them
with the py extension and then import them in the interpreter.

Figure 3.9 shows an annotated interaction with the Python interpreter for Running the interpreter is an ex-
cellent way to explore Python;
here are some examples

some of the language features in Python that we already know and some simple–
to–understand features we will explore soon. Notice how the interpreter reports
raised exceptions when incorrect statements are entered.

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 51

Figure 3.9: Interpreter Interaction (with annotations)

Entered Statement Annotation
>>> 1 Enter a literal
1 The interpreter prints the value of the literal
>>> x = Bind x to 1 (the value last printed): produce non-printing None

>>> x Enter a name: x
1 The interpreter prints the value bound to x

>>> import math Import the math module: produce non-printing None

>>> math.pi Enter a qualified name: pi from the math module
3.141592653589793 The interpreter prints the value bound to math.pi

>>> x = \

... 2

Enter part of a statement then the line join character
Finish the statement; same as typing x = 2 on one line

>>> del x Remove x from the script’s namespace: produce non-printing None

>>> x Enter the name x (which is no longer in the script’s namespace)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name ’x’ is not defined

Traceback identifies where error occurred
In the interpreter, this is always <stdin> on line 1

Raised exception is NameError, with a brief explanation
>>> 1 = x Bad syntax for an assignment statement
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

SyntaxError: can’t assign to literal

Traceback identifies where error occurred
In the interpreter, this is always <stdin> on line 1

Raised exception is SyntaxError, with a brief explanation
>>> from math import pie There is no pie attribute in the math module
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ImportError: cannot import name pie

Traceback identifies where error occurred
In the interpreter, this is always <stdin> on line 1
Raised exception is ImportError, with a brief explanation

>>> math.factorial(5) Compute 5!: call the factorial function defined in the math module
120 The interpreter prints the value computed by this function
>>> 1*2*3*4*5 Compute 5!: explicitly use the * (multiply) operators
120 The interpreter prints the value computed by these operators

Learning Python requires mastering a lot of information about its syntax and We can perform experiments
with the Python interpreter to
verify our understanding or cor-
rect our misconceptions

semantics. It takes time to fully understand the rules describing each language
feature. How do we know when we understand? We can try experiments with
the interpreter: predicting the results of executing statements based on our
understanding of the Python’s rules, and then running the Python interpreter
on those statements. The results produced by the interpreter will either validate
our prediction and understanding of the rules, or alert us that our knowledge
is deficient, so so we can correct our misunderstanding of the rules. Actively
testing our understanding of Python, trying to probe our knowledge to find
misconceptions, is an excellent way to improve our understanding.

Chapter Summary

This chapter examined the meaning of names and modules and how they are
used in Python. It first discussed the general concepts of names, the objects
they refer to and whose namespaces they are part of, and the rules that govern
the use of names and objects. We learned that Python translates files into
module objects, mostly by defining names; every task that Python implements
starts with the execution of a module that is the script for that task. We

CHAPTER 3. DEFINING NAMES IN AND FROM MODULES 52

discussed assignment statements, which define names in the namespace of a
a module object and bind them to a value objects. This discussion included
how names can share objects, be redefined to refer to different objects, and
be undefined using the delete statement: removed from the namespace of a
module object. Throughout this discussion we used pictures to illustrate and
help us understand and disambiguate the meanings of these operations. We
also learned that sometimes these operations fail, which Python recognizes and
reports by raising exceptions. We then explored three different forms of the
import statement, each of which allows a module to define names that are
bound to value objects that are defined in other modules. Given this capability,
and the use of qualified names to specify a name in the namespace of another
module object, we re–examined the assignment and delete statements, and
briefly discussed the special builtins module that is automatically imported
into every Python module. Finally, we discussed the Python interpreter and
how to enter and execute statements into it; we saw many examples of the
statements taught in this chapter, including incorrect statements that raise
exceptions. The interpreter is a powerful testbed in which we can explore
Python and our understanding of its rules.

Chapter Exercises

1. Assume modules m1 and m2 each define an attribute named n. a. Describe
what problem arises if we write a script that starts with the following two
import statements: from m1 import n and from m2 import n b. Write
at least four different pairs of import statements that avoid this problem;
for each, write how to refer to the n from each module.

2. Assume module m defines the names a and b. Write a module that swaps
the values referred to by these names: a will ultimately refer to the original
values b referred to, and b will ultimately refer to the original values a

referred to. Hint: use some form of import and an extra name.

3. This chapter briefly discussed four different exceptions. Name them and
briefly explain when Python raises each.

4. In the semantics of the assignment statement EBNF rule: a. Explain in
what rule Python raises an exception if it cannot find a name. b. Explain
in what rule Python does not raise an exception if it cannot find a name
(and say what Python does).

5. After Python executes the script module below, what values are bound
to a and b defined in this module? Justify your answer by explaining
the action of each line in the script module. It might help to draw and
update a pictures of the objects involved. Hint: Reread what happens
when an already–imported module is imported.
script module

1 from imports import *

2 a = 10

3 import imports

4 imports.b = 20

5 from imports import *

imports module

1 a = 1

2 b = 2

	Contents
	Defining Names in and from Modules
	Introduction
	Modules, Files, and Scripts
	Defining Names in a Module
	Illustrating Names and their Bindings in Modules
	How Names Share, are Redefined, and are Deleted
	Programming Errors and Raising Exceptions

	Importing Names of/from Modules
	Assignment/Delete Statements with Imports
	The builtins Module

	The Python Interpreter: Experiment!

