
Paolo D'Alberto
Yahoo!

Marco Bodrato and Alex Nicolau

  FastMM: A library of fast algorithms for MM and its
performance, for different machines, types and
sizes

-  Fast Algorithms: 3M, Strassen, Winograd
-  Types: single, double, single complex, and double

complex
-  Problem size: 2,000 – 12,000

  The algorithms are hand crafted
-  The development and engineering is automatic

  Performance
-  Algorithm design + development + system based

optimizations

-  There is no dominant algorithm

  We show that :
-  Our new algorithms translate to simple code

-  Algorithm design, development and care for system
optimizations can be done naturally using recursive
algorithms

  There is NOT a single algorithm that is always
better

-  You may say that there is no good solution because
there is not a single solution

-  Why bother ?

  If you don't: you may miss the Gestalt's effect of
algorithm design and algorithm optimization

-  You may lose a 30% speed-up

  I am not here to preach for any specific algorithm

  Take any BLAS library: MKL, ATLAS, GotoBLAS
-  E.g., GotoBLAS
-  90-95% of peak performance

  Nehalem 2 processor system (16 cores), 150 GFLOPS for
single precision matrices

  Performance equivalent to a Cell processor
-  Further improvements are very hard

  We have the perfect computational work horse
-  We can build complex applications on it
-  We can build fast MM

  We do not compete with BLAS, we extend BLAS

  Though there is no dominant algorithm
1.  We have an arsenal of algorithms

  We can fit to the occasion

2.  We have algorithm optimizations
  We can fit to the system

3.  Neglecting these, we may lose up to 30%
performance

  On average, the accuracy is not too bad

  Algorithm implementation and choice done
automatically

-  Expand the set of fast algorithms
-  Similar to what has been done for FFT

-  Automate the process and development of hybrids
methods

  Numerical correction
-  Discover, develop, and deploy techniques for error

reduction

