

Fast Matrix Multiplications for Multicore Multiprocessor Systems

Paolo D'Alberto Yahoo!

Marco Bodrato and Alex Nicolau

What We Present

- FastMM: A library of fast algorithms for MM and its performance, for different machines, types and sizes
 - Fast Algorithms: 3M, Strassen, Winograd
 - Types: single, double, single complex, and double complex
 - Problem size: 2,000 12,000
- The algorithms are hand crafted
 - The development and engineering is automatic

Our Main Message

Performance

- Algorithm design + development + system based optimizations
- There is no dominant algorithm

• We show that:

- Our new algorithms translate to simple code
- Algorithm design, development and care for system optimizations can be done naturally using recursive algorithms

Disclaimer: no dominant algorithm

- There is NOT a single algorithm that is always better
 - You may say that there is no good solution because there is not a single solution
 - Why bother?
- If you don't: you may miss the Gestalt's effect of algorithm design and algorithm optimization
 - You may lose a 30% speed-up
- I am not here to preach for any specific algorithm

State-of-the-art

- Take any BLAS library: MKL, ATLAS, GotoBLAS
 - E.g., GotoBLAS
 - 90-95% of peak performance
 - Nehalem 2 processor system (16 cores), 150 GFLOPS for single precision matrices
 - Performance equivalent to a Cell processor
 - Further improvements are very hard
- We have the perfect computational work horse
 - We can build complex applications on it
 - We can build fast MM
- We do not compete with BLAS, we extend BLAS

Algorithms, Systems, and Optimizations Double Precision

Algorithm + Optimizations

TABLE IV WINOGRAD'S MM (IMPROVED IMPLEMENTATION C=AB)

TABLE VI	
WINOGRAD'S MM (NO MAS IN THE CRITICAL	PATH OF C=AB

	₩			
Sequential	Parallel/Pipelining	Sequential	Parallel/Pipelining	
$T = B_3 - B_2$	1: $S = A_3 - A_2$ 2: $T = B_3 - B_2$ 3: $C_3 = ST$ 4: $U + = A_1B_2$		1: $U = A_1B_2$ 2: $C_0 = A_0B_0$ $S = A_3 - A_2$	$T = B_3 - B_2$
$C_0 = A_0B_0$ $C_0 += U$ $S = S + A_1$	5: $C_0 = A_0B_0$ $S = S + A_1$ $T = T + B_1$ $C_0 + = U$	$C_3 = ST$ $C_0 += U$ $V = S + A_1$ $Z = T + B_1$	3: $C_3 = ST$ $C_0 += U$	$V = S + A_1$ $Z = T + B_1$
$T = T + B_1$ $U += ST$ $C_1 = U - C_3$	U+ = ST 8: $C_1 = U - C_3$	$U += VZ$ $S = A_3 + A_1$ $T = B_0 - Z$	$U+=VZ$ $S=A_3+A_1$	$T = B_0 - Z$
$S = A_0 - S$ $C_1 += SB_1$ $T = B_0 - T$	9: $S = A_0 - S$ 10: $C_1 + = SB_1$ $T = B_0 - T$	$C_2 = A_2T$ $Z = B_3 + B_1$ $C_1 = U - C_3$	5: $C_2 = A_2T$ $Z = B_3 + B_1$	$C_1 = U - C_3$
C_2 += A_2T S = $A_3 - A_1$ T = $B_3 - B_1$	11: $C_2 + = A_2T$ $S = A_3 - A_1$ $T = B_3 - B_1$		6: $U=SZ$ $V = A_0 - V$	
U -= ST	12: $U - = ST$ 13: $C_3 - = U$ 14: $C_2 - = U$	C_1 += VB_1 C_3 -= U C_2 -= U	7: C ₁ +=VB ₁ C ₃ -=U	C_2 -= U

Algorithm + Performance

Algorithm + Performance Shanghai

Conclusions

Though there is no dominant algorithm

- 1. We have an arsenal of algorithms
 - We can fit to the occasion
- 2. We have algorithm optimizations
 - We can fit to the system
- Neglecting these, we may lose up to 30% performance
 - On average, the accuracy is not too bad

Future Works and Collaboration

Algorithm implementation and choice done automatically

- Expand the set of fast algorithms
- Similar to what has been done for FFT
- Automate the process and development of hybrids methods

Numerical correction

Discover, develop, and deploy techniques for error reduction

Thank you

Marco Bodrato

Paolo D'Alberto

Alex Nicolau