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1. INTRODUCTION

Multicore multiprocessor blades are the most common computational and storage
nodes in data centers, multi-nodes are becoming the trend (a blade supporting one
or two boards), and mixed systems based on the Cell processor are topping the fastest-
supercomputers list.

In this work, we experiment with general purpose processors; this type of node
is often used in search-engine data centers, it can reach up to 200 Giga FLOPS
(i.e., depending on the number of processors and CPU’s frequency; for example, we
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will present a system providing 150 GFLOPS in practice in single precision and 75
GFLOPS in double precision), and such nodes can (and do) serve as the basis for quite
complex parallel architectures. These machines implement a shared memory system so
that developers may use the PRAM model as an abstraction (e.g., [JaJa 1992]). That
is, developers think and design algorithms as a collaboration among tasks without
explicit communications by using the memory for data sharing and data communica-
tions.

In this work, we investigate the implementation features and performance caveats
of fast matrix-multiplication algorithms: the hybrid Strassen’s, Winograd’s, and 3M
matrix multiplications algorithms (the last is for complex matrices). For example, the
hybrid Winograd’s matrix multiplication is a recursive algorithm deploying the Wino-
grad’s algorithm using 15 matrix addition in place of a (recursive) matrix multiplica-
tion until —the size of the operand matrices are small enough so that— we can deploy
a highly tuned BLAS matrix multiplication implementation so that to achieve the best
performance. These algorithms are a means for a fast implementation of matrix multi-
plication (MM). Thus, we present optimizations at algorithmic level, thread allocation
level, function scheduling level, register allocation level, and instruction scheduling
level so as to improve these MM algorithms, which are basic kernels in matrix compu-
tations. However, we look at them as an example of matrix-computations on top of the
matrix algebra (*, +). As such, we think the concepts introduced and applied in this
work are of more general interests. Our novel contributions are:

(1) We present new algorithms that are necessary for the next contributions and op-
timizations (the following optimization in the paper). Here, we present optimiza-
tions that when applied to the-state-of-the-art algorithms A provide a speed up of,
let us say, 2-5%. To have full effect of our optimizations we need to formulate a
new family of algorithms 5, though these algorithms are slower than the ones in
A. When we apply our optimizations in a parallel architecture to the algorithms
in B, we may achieve even better performance, for example, 10-15% w.r.t. A. Dur-
ing the discovery of the algorithms in B, we have found and present another class
of algorithms C that are faster than A (up to 2% faster) but when we apply our
optimizations these algorithms achieve a speed up of only 5—-7% w.r.t. A.

(2) We show that these fast algorithms are compelling for a large set of SMP systems:
they are fast, simple to code and maintain.

(3) We show that fast algorithms offer a much richer scenario and more opportunities
for optimizations than the classical MM implementation. Actually, we show that
we have further space for improvements (10—-15%) making fast algorithms even
faster than we have already shown in previous implementations. In practice, at
the fast-algorithms core is the trade off between MMs and matrix additions MAs
(trading one MM for a few MAs). In this paper, we propose a new approach to
scheduling, and thread allocation for MA and MM in the context of fast MM, and
we explore and measure the advantages of these new techniques. As a side ef-
fect, we show that thanks to parallelism we can speed up the original Strassen’s
algorithm such that it can be as fast as the Winograd’s formulation and we can
implement the resulting algorithm in such a way as to achieve the ideal speed up
w.r.t. highly tune implementations of MM. That is, We have found an operation
schedule that hides the MAs latency completely; thus, we reduce or nullify the per-
formance influence of the number of MAs and, thus, achieving the ideal speedups
that Winograd/Strassen algorithms could achieve.

In Figure 1, we show graphically a summary of the best possible speed up we can
achieve using Winograd’s algorithms and our optimizations (GotoBLAS DGEMM
is the reference).
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Fig. 1. Summary: speed up w.r.t. GotoBLAS double precision for a few systems. GotoBLAS has speed up 1

(4) We believe this work could be of interest for compiler designers and developers
from other fields. At first, our contribution seems limited to fast algorithms, but in
practice, what we propose is applied to matrix computations build on the matrix
algebra (*,+) composed of parallel basic MM (¥) and MA (+) subroutines (i.e., matrix
computations are simply a sequence of * and + operations and the optimizations
we propose could be applied to any such schedules).

In practice, we present a family of fast algorithms that can achieve an ideal speed
up w.r.t. the state-of-the-art algorithms such as the ones available in GotoBLAS and
ATLAS library (i.e., one recursion level of Strasswe/Winograd algorithm will be 8/7
faster than GotoBLAS GEMM). The introduction of our optimizations and algorithms
provide speed up that other implementations of Winograd’s algorithm —based only
on algorithmic improvements without taking in account of the architecture— cannot
match nor outperform. For any machine where a fast implementation (not using our
techniques) is available, our approach can derive a significantly faster algorithm using
this BLAS implementation as building block (leaf).

The paper is organized as follows. In Section 2, we introduce the related work. In
Section 3, we introduce the notations and matrix computation algorithms such as MM
and MA. In Section 4, we introduce the fast algorithms and thus our main contri-
butions. In Section 6, we introduce our experiments and divide them into single and
double precision sections (thus single and double complex).

2. RELATED WORK

Our main interest is the design and implementation of highly portable codes that au-
tomatically adapt to the architecture evolution, that is, adaptive codes (e.g., [Frigo
and Johnson 2005; Demmel et al. 2005; Piischel et al. 2005; Gunnels et al. 2001]). In
this paper, we discuss a family of algorithms from dense linear algebra: Matrix Mul-
tiply (MM). All algorithms apply to any size and shape matrices stored in either row
or column-major layout (i.e., our algorithm is suitable for both C and FORTRAN, al-
gorithms using row-major order [Frens and Wise 1997; Eiron et al. 1998; Whaley and
Dongarra 1998], and using column-major order [Higham 1990; Whaley and Dongarra
1998; Goto and van de Geijn 2008]).

Software packages such as LAPACK [Anderson et al. 1995] are based on a basic
routine set such as the basic linear algebra subprograms BLAS 3 [Lawson et al. 1979;
Dongarra et al. 1990b; 1990a; Blackford et al. 2002]. In turn, BLAS 3 can be built on
top of an efficient implementations of the MM kernel [Kagstrom et al. 1998a; 1998b].
ATLAS [Whaley and Dongarra 1998; Whaley and Petitet 2005; Demmel et al. 2005]
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Table I. Recursion point (problem size when we yield to GEMM) for a few
architectures and for different precisions

machine | single | double | single complex [ double complex

Opteron 3100 3100 1500 1500
Pentium 3100 2500 1500 1500
Nehalem 3800 3800 2000 2000
Xeon 7000 7000 3500 3500
Shanghai 3500 3500 3500 3500

(pseudo successor of PHiPAC [Bilmes et al. 1997]) is a very good example of an adaptive
software package implementing BLAS, by tuning codes for many architectures around
a highly tuned MM kernel optimized automatically for the L1 and L2 data caches.
Recently however, GotoBLAS [Goto and van de Geijn 2008] (or Intel’s MKL or a few
vendor implementations) is offering consistently better performance than ATLAS.

In this paper, we take a step forward towards the parallel implementation of fast
MM algorithms: we show how, when, and where our (novel) hybrid implementations
of Strassen’s, Winograd’s, and the 3M algorithms [Strassen 1969; Douglas et al. 1994;
D’Alberto and Nicolau 2009; 2007] improve the performance over the best available
adaptive matrix multiply (e.g., ATLAS or GotoBLAS). We use the term fast algo-
rithms to refer to the algorithms that have asymptotic complexity less than O(N?),
and we use the term classic or conventional algorithms for those that have com-
plexity O(N?). We take the freedom to stretch the term fast algorithm in such a way to
comprise the 3M algorithm for complex matrices. Strassen’s algorithm [Strassen 1969]
is the first practically used among the fast algorithms for MM.

The asymptotically fastest algorithm to date is by Coppersmith and Winograd
O(n*376) [Coppersmith and Winograd 1987]. Pan showed a bi-linear algorithm that is
asymptotically faster than Strassen-Winograd [Pan 1978] O(n*™) (i.e., see Pan’s sur-
vey [Pan 1984] with best asymptotic complexity of O(n?4?)). Kaporin [Kaporin 1999;
2004] presented the implementation of Pan’s algorithm O(n?7"). For the range of prob-
lem sizes presented in this work, the asymptotic complexity of Winograd’s and Pan’s is
similar. Recently, new, group-theoretic algorithms that have complexity O(n?4!) [Cohn
et al. 2005] have been proposed. These algorithms are numerically stable [Demmel
et al. 2006] because they are based on the Discrete Fourier Transform (DFT) kernel
computation. However, there have not been any experimental quantification of the
benefits of such approaches.

In practice, for relatively small matrices, Winograd’s MM has a significant over-
head and classic MMs are more appealing. To overcome this, Strassen/Winograd’s
MM is used in conjunction with classic MM [Brent 1970b; 1970a; Higham 1990]:
for a specific problem size n;, or recursion point [Huss-Lederman et al. 1996],
Strassen/Winograd’s algorithm yields the computation to the classic MM implemen-
tations. The recursion point depends on various properties of the machine hardware,
and thus will vary from one machine to the next.

In table I, we show an excerpt of the possible recursion points for the architecture
presented in this paper. However, the recursion point is immaterial per se because it
can be always estimated and tuned for any architecture and family of problems (e.g.,
real or complex).

A practical problem with Strassen and Winograd’s algorithms is how to divide the
matrix when not a power of two. All our algorithms divide the MM problems into
a set of balanced subproblems; that is, with minimum difference of operation count
(i.e., complexity). This balanced division leads to simple code, and natural recursive
parallelism. This balanced division strategy differs from the division process proposed
by Huss-Lederman et al. [Huss-Lederman et al. 1996; Huss-Lederman et al. 1996;
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Higham 1990], where the division is a function of the problem size. In fact, for odd-
matrix sizes, they divide the problem into a large even-size problem (peeling), on which
Strassen’s algorithm is applied once or recursively, and a few irregular computations
based on matrix-vector operations.

Recently, there is a new interest in discovering new algorithms (or schedules) as
well as new implementations taken from the Winograd’s MM. Our work is similar to
the ones presented in [Dumas et al. 2008; Boyer et al. 2009] and takes from a con-
current work in [Bodrato 2010]. The first presents a library (how to integrate finite
precision MM computation with high performance double precision MM) and the sec-
ond presents new implementations in such a way to minimize the memory space (i.e.,
foot print) of Strassen—Winograd’s MM. Memory efficient fast MMs are interesting be-
cause the natural reduction of memory space also improves the data locality of the
computation (extremely beneficial when data spill to disk). The third proposes an op-
timized algorithm to reduce even further the computation for matrices of odd sizes.
In contrast, in this work, we are going to show that to achieve performance, we need
parallelism; to exploit parallelism, we need more temporary space (worse memory foot
print). We show that the fastest algorithm (among the ones presented in this work)
requires the largest space to allow more parallelism; thus, if we can work in mem-
ory without disk spills, we present the best performance strategy, otherwise a hybrid
approach is advised.

3. ALGORITHMS DESIGN AND TASKS SCHEDULING

In this section, we present MM (i.e., the classic one) and MA algorithms and imple-
mentations for multicore multiprocessor SMP systems. We present both the main al-
gorithms and the optimizations in an intuitive but rigorous way.

Before we present any algorithm, we introduce our notations. Consider any matrix
A € R™*™_this can be always divided into four quadrants:

Ay A,
A= A, As (1)

where Ay € RIZ1%[31 and A3 € RLZ1*LZ] In the same way, we can divide a matrix
into two vertical matrices (similarly horizontal ones):

A= {Ao Al} (2)
where Ay € R™*[31 and A; € R™*13],

3.1. Classic Matrix Multiplication O(N?)

The classic matrix multiplication (MM) of C=AB with C, A,B € R"*" is defined by
the following recursive algorithm:

Co=A¢Bo+Ai1B2 C;=A(B; + ABg, (3)
Co=A5By + A3By; C3=A5B; + A3B3

The computation is divided into four parts, one for each sub-matrix composing C.
Thus, for every matrix C; (0 < i < 3), the classic approach computes two products,
using a total of 8 MMs and 4 MAs (which can be computed concurrently with MM
and thus not contributing to the overall execution time). Notice that every product
computes a result that has the same size and shape as the destination sub-matrix C;.
If we decide to compute the products recursively, each product A;B; is divided further
into four subproblems, and the computation in Equation 3 applies unchanged to these
subproblems.
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The time complexity of MM is 2n3 (n® multiplications and n® additions); the space
complexity is 3n? requiring at least the storage of the addenda and the result; the num-
ber of memory accesses (if the problem fits in memory) also known as I/O complexity

or access complexity is O(%) where S is the size of the largest cache as a function of

the numli)er of matrix elements; the constant term is a function of how the problem is
divided.

The MM procedure has data locality and we can easily parallelize MM using threads
on a SMP architecture; for example, Equation 3 presents one policy of how to divide the
computation. In this work, we deploy either ATLAS or GotoBLAS multi-threaded MM
where the number of threads (the parallelism) and the core allocation can be driven
by either a few global environment variables or, as in our case, using the Linux utility,

set_affinity.

3.2. Matrix Addition

Matrix addition (MA) C = A + B with C,A,B € R"*", has time complexity O(n?)
because it requires n? additions, 2n? reads and n? writes; thus 3n?> memory access
operations. The MA has space complexity 3n° because its input and output are three
matrices.

The MA does not have temporal locality because any matrix element is used just
once. It has spatial locality; that is, we tend to read and write contiguous elements
from/to the matrices. The nonexistent temporal locality makes a hierarchical memory
(level of caches) completely useless and actually harmful (we could achieve better per-
formance if we just circumvent the caches and go directly to the register files). The
MA is embarrassingly parallel. For example, if we divide a matrix into two vertical
sub-matrices we can easily describe the addition as two parallel MAs (Equation 4):

Do

P1 Po p1

Co Cl‘:‘AO+BO A+ B, (4)
We can perform this division recursively until we achieve the number of tasks nec-
essary and, also, we can determine a logical allocation of each MA to a specific
core/processor. We can time the MA performance for the purpose of investigating the
data throughput to all cores. For example, if the MA performance improves as the
number of threads increases till matching the number of cores, we can state that the
memory system has the bandwidth to provide data to all cores (the computation cost
is negligible compared to the communication cost). In this work, all architectures can
actually feed all cores for computing MA (note this is not necessarily true for other ap-
plications such as the classic MM because of the different access complexity). However,
notice that even when the memory system has the bandwidth to sustain computation
to all cores, it does not means that we can achieve the maximum throughput of any
core.

Remark. to simplify the complexity model and operation counts, in the following,
we consider a matrix copy (i.e., A = B) as time consuming as a matrix addition.

3.3. The classic MM and MA algorithm as building blocks for fast algorithms

In the following, we consider the classic MM and the MA as parallel routines optimized
for the specific architectures. Our fast matrix multiplication algorithms are written
as a sequence of these operations (recursive divide-and-conquer algorithms) and we
model the system simply as the composition of a core set and a single memory storage
(i.e., parallel random access memory machine PRAM). We further make sure that: first,

IThe recursive division in Equation 3 is not the best but asymptotically optimal nonetheless.

ACM Transactions on Embedded Computing Systems, Vol. -, No. -, Article -, Publication date: 2011.



Exploiting Parallelism in Matrix-Computation Kernels -7

each basic operation is optimized for the architecture achieving optimal/best through-
put; second, the problem size is large enough that a parallel system is necessary to
obtain results in a timely manner. In the following, we investigate how to integrate
and combine MM and MA to optimize the code and improve the performance.

4. FAST MATRIX MULTIPLICATION ALGORITHMS

We present all the following fast MMs as a sequence of MMs and MAs. As such, any
MM can be either a recursive call to a fast MM or a direct call to an optimized and clas-
sic BLAS MM (GEMM). A recursive MM algorithm will switch to the classic MM for
any problem sizes smaller than a specified threshold or recursion point (we specify in
the set up how this point is computed, Section 6.1). The recursion point is a function of
the architecture, the implementation of the classic MM algorithm and the implementa-
tion of MA. In this work, the recursion point is found empirically for each architecture
once the library is installed. We present four basic hybrid algorithms based on a bal-
anced decomposition of the matrix operands: 3M Section 4.1, Strassen’s 4.3 , Winograd
4.2, Winograd optimized to reduce MAs (WOPT) 4.4, and Winograd optimized to hide
MA latency (WIDEAL) 4.5.

4.1. 3M Matrix Multiply

Table II. 3M algorithm.

Sequential Parallel/Pipelining
CR: ARBR 1: CR:ARBR T:AR+AI S:BR+BI
C[Z A]B[ 2: C[:AIB[
C; = C;+Cgr 3: C;=C;+Cpr
CR: QCR—C] 4: CRZQCR—C[
T = Ar+Ag 5: C;— =ST
S = BR+BI
C;—= ST

We can consider a complex matrix A as either a matrix where each element is a

complex number ay, = (b, + icks), or the composition of two real matrices A =
Ag + iA;. If we adopt the former, we can compute the MM by any implementation
discussed so far. If we adopt the latter, we can use an even faster algorithm: the 3M
multiplication as in Table II. Our implementation hides the latency of the last MA
because MA and MM are computed at the same time, and it introduces a small extra
computation because one addition is of the form: Cr = 2Cr — C;. In practice, this
algorithm has 3 MM, thus the name of the algorithm, and only four MAs (instead of
five).

The MM dominates the overall time complexity. Independently of our real-MM-
algorithm choice, the 3M algorithm requires extra space for the temporary matrices
T and S (i.e., an extra complex matrix). So at a minimum, the 3M algorithm has a
space complexity of 4n2. If we apply the classic algorithm, the 3M algorithm has the
time complexity of O(3 * 2n?). Due to the data locality, we know that given the largest

cache sizes S (e.g., L2 or L3) we have 0(3%) memory accesses. The 3M algorithm

—in comparison with the classic MM applied to complex matrices— offers a ~ % speed

up. This fast algorithm, actually every 3M algorithm, compromises the precision of the
imaginary part of the complex result matrix because of the compounding error effects
of both MA and MM similar to the Strassen’s algorithm.
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Algorithm and scheduling. We notice that the MAs T = Agr+A;and S = B +B;
can be executed in parallel to the previous addition and actually as early as the first
matrix multiplications as we suggested in Table II; that is, we perform a function
percolation (upward movement), in principle as in [Nicolau et al. 2009]. Notice that we
did schedule the two independent MMs Cr = ArBg and C; = A;B; into two different
steps (line 1 and 2) (instead of executing them in parallel together). We do this because
each MM will be parallelized and we will achieve the best asymptotic performance for
each multiplication separately, thus there would be no loss of performance.

If the MM cannot exploit full parallelism from an architecture, some cores are
better running idle than executing small sub problems of MM (because we may
achieve a lower throughput). A MA has the same space complexity of a MM, it has
a (much) smaller time complexity and, more importantly, fewer memory accesses: 3n>
vs. 2n3/1/S, where S is the size of the largest cache. Here, we have the opportunity to
use those idle cores to run MAs thus hiding the MAs latency and taking full advantage
of an otherwise under utilized system. In practice, we will show that the thread par-
allelism between MAs concurrently with a parallel MM is beneficial even when there
are no idle/under-utilized cores.

Our idea is to schedule a sequential implementation of MA such as T = Ar + A;
and S = By + B; (line 1) to different cores (e.g., core 0 and core 1 respectively of a 4
core system), thus to exploit functional/thread parallelism in assigning a specific set of
threads to specific cores. The MAs in line 3 and 4 are parallelized independently and
fully (e.g., both using all cores, 4) as described in Section 3.2. We will show that this
multi-threading can be advantageous even when the MM will use all cores.

Finally, we have a 3M algorithm with only two MAs in the critical path. In hindsight,
this is a simple observation that is the backbone of our approach and we apply it to
other algorithms (i.e., Winograd’s and Strassen’s) as well.

4.2. Winograd

Winograd reduced Strassen’s number of MAs by the reuse of the partial results. In
Table III, we present our algorithm.

We use three temporary matrices S, T, and U, where we use the first two to combine
submatrices of A and B, respectively, and we use the last one to combine results of
the MMs (thus of sub-matrices of C). This ability to remember part of the computation
using the temporary matrices saves MAs on one side (w.r.t. the Strassen algorithm
see next section), but it forces a stronger data dependency in the computation on the
other side; that is, for the Winograd’s algorithm, we can overlap 4 MMs with MAs as
we are going to show in Table IIT —for Strassen’s algorithm, we can overlap 6 MMs as
discussed in Section 4.3.

Algorithm and scheduling. On the left of Table III, we present the sequential
recursive algorithm where MM and MA operations between matrices in the schedule
are assumed to be parallel in the following discussion (e.g., MM is a call to the parallel
GotoBLAS or a recursive call to the Winograd’s algorithm and MA is parallelized as
explained in Section 3.2). Once again, the schedule on the right in Table III will allocate
up to two MAs in parallel with MMs. We decided to use sequential code for these MAs
and to set statically the core executing them as a function of the system; however, we
could have used parallel codes as well.

This has the potential to utilize better the system while hiding the latency of 6 MAs
(we exploit thread parallelism in such a way to hide the MA latency). In practice, we
may say that the effective length of the schedule (critical path) is only 8MAs (i.e., we
consider a matrix copy as expensive as a MA).
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Table I1l. Winograd’s MM (our implementation, WINOGRAD).

Sequential Parallel/Pipelining
S =As+ Aj 1: S=As+ A3
T =B;1 —Bg 2: T =B;—Byg
U =ST 3: U=S8ST
Ci =U
C; =U
Co =AyBg 4. Cop=ApBg C,=U C3=U
U = CU 5: U= CU
Co +=A1B2 6: Co+ =A1B2 S=S-Ag T=B3—-T
S =S —-Ap
T =B3-T
U +=ST 7. U+ =ST
C, +=U, 8: Ci+ =10,
S =A;—S 99 S=A;-S
C; +=SBs 10: Ci;+ =SBj3 T=B,—-T
T =B, - T
Cy =A3T 11 Cy = A3T S=Ag— A
S =A07A2 12: T=B37B1
T =B3 — B4 13: U+ =ST
U += ST 14: C3+=U
Cs; +=U 15: C2+=U
Co +=U

On the recursion and parallelism. The algorithm description presents a flat rep-
resentation of the computation, that is, it is static. The main difference between the
3M algorithm scheduling and the Winograd’s algorithm regarding the parallel compu-
tation of MAs and MMs is about the recursive nature of the algorithm. Assume we are
computing MM for matrices of size k *n; X k*n; where n; is the recursion point where
we use GEMM directly and k£ > 1 is a natural number.

If we follow the recursion, after &k recursive calls, it is in step 3 that we have the first
MM described in the static algorithm. The MM is on matrices of size n; x n; and we
actually call the GEMM. In parallel, we are going to execute up to two MAs, for which
the maximum size will be (k — 1)ny x (k — 1)n; for the Winograd algorithm and & % n; x
k x ny for the 3M algorithm (if we are using this Winograd algorithm). The complexity
is a function of which recursion level demands the MAs. To keep constant the number
of MAs to be executed in parallel with GEMM, we keep the first MM recursive call free
of any parallel MA (as in step 3 in the Winograd algorithm). Otherwise, we may have
to compute as many as 2 x k MAs "as we would for the Strassen’s algorithm, discussed
next.

4.3. Strassen

This idea of exploiting parallelism between MMs and MAs exposes another interesting
scenario especially for the Strassen’s algorithm. In Table IV, we present our imple-
mentation of Strassen’s algorithm. Each matrix multiplication is independent of each
other; that is, with minor modifications in how to store the data into the matrix C, we
could change the order of the computation as we like. If we sacrifice a little more space
using four matrices (instead of just two S and T), we could exploit more parallelism
between MA and MM as we show on the right in Table IV.

ACM Transactions on Embedded Computing Systems, Vol. -, No. -, Article -, Publication date: 2011.



=10 P. D’Alberto, M. Bodrato, A. Nicolau

Table IV. Strassen’s MM (our implementation STRASSEN).

Sequential Parallel/Pipelining

T=B17B3 1: T=B17B3

U=AgxT 2: U=AoxT V=As—-Ag Z =By +B;
C1:U 3: C1:U

C3s=U

S=Ay—- Ay

T=Bo+B;

U=SxT 4 U=V=xZ Cs=C; S=As+ A3
Cg-i-:U 5 Cg-‘r—U

S=A>+ A3

U=Sx%*Bg 6: U=Sx*Bg V =Ap+ A3 Z =By +Bs
C3—=U

C,=U 7. Co=U

S=Ap+ A3

T=Bo+Bs3

U=Sx%xT 8: Co=VxZ C3— =0Cy S=A0+ A,
Cs3+=U 9: C3+ =Cy

Co=U

S=A0+A,

U=Sx%*Bgj 10: U=Sx*Bj V=A]— A3 Z = B> + B3
CQ—:U 11: Co—=

Ci+=1U 12: C;+=U

S=A; — A3

T =B2+ B3

U=Sx%xT

Co+=1U 13: Co+=V=xZ S=B2 —Bg

S=B27B0 14: U=A3*S

U=A3x%S 15: Co+=U

Co+=U 16: Cy+=U

C+=U

We can hide the latency of more MAs behind the computation of MMs than what
we did for the Winograd’s algorithm. Nonetheless, this Strassen’s implementation has
9 parallel MAs in the critical path and it has only one MA more than the Winograd’s
implementation.

What we have is a Strassen’s algorithm that, in this specific situation and using an
unusual computational model, can be as fast as the Winograd’s implementation. How-
ever, the round-off error and its characterization is exactly as for the sequential case
(we just exploit parallelism among operations that have no data dependency and thus
no error propagation). So when this scheduling is applicable, we have a new algorithm
with the speed of the Winograd’s algorithm and the asymptotic error analysis of the
Strassen’s algorithm (i.e., faster and more accurate).

This schedule is new and a contribution of this paper and we may conjecture that
there may be a formulation of Winograd’s, a formulation of Strassen’s algorithm, and
a parallel architectures for which the algorithms have the same execution time (time
complexity). In this work, we show that there are a couple of systems where this type
of software pipelining is beneficial and we show that Strassen’s algorithm (Table IV)
has performance very close to the Winograd’s algorithm performance (Table III).

On the recursion and parallelism. Notice that the two MAs executed in parallel
with MM (e.g., in step 2 Table IV) are set to specific cores and are sequential codes.
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The MAs such as the ones in the critical path are parallel as described in Section 3.2.
Because of our algorithm design, during the unfolding of the recursion, we may accu-
mulate up to two MAs per recursion level to be executed in parallel with the GEMM
MM. In practice and for the problem sizes we present in this paper, we can apply be-
tween 1-3 levels of recursion. If we start with a problem size 3n; x 3n; we will have 2
MAs of complexity O(9n?), 2 MAs of complexity O(4n?), 2 of complexity O(n?), and in
parallel with one GEMM of complexity O(2n3).

4.4. Improved Winograd: reduced number of MAs (WOPT)

Table V. Winograd’s MM (improved implementation C=AB WOPT).

Sequential Parallel/Pipelining
S =A37A2 1: S=A37A2
T =B3 — B2 2: T =Bs—B:
Cg =ST 3: Cg =ST
U +=A1B2 4: U+ :AlBQ
Co =AoBg 5: Co=A0Bg S=S+A, T=T+B;
Co +=U 6: Co+ =U
S =S+ A;
T =T+ B;
U += ST 7. U+ =ST
C1 =U — C3 8: Cle— C3
S =Ag-—S 90 S=Ap-S
Cy +=SB; 10: C;+ =SB, T=Byg—-T
=Bo—T
C2 += AT 11: Cao+ =ALT S=A3—-A; T =B3 — B;
S =A3— Ay
T =B3s; — B;
U -=ST 12: U- =ST
C; -=U 13: C3—=U
Co -=U 14: C,— =U

The previous Strassen—Winograd algorithms (i.e., in Section 4.2 and 4.3) have two
basic weaknesses. First, the algorithms present the same scheduling whether or not
we perform the regular MM C = AB or the accumulate matrix multiply C+=AB,
requiring more space and performing 4 more MAs. Second, these same algorithms use
more the larger sub-matrices Ay and By (e.g., [% X %D, instead of the smaller sub-
matrices Az and B (e.g., [§ x &), and thus a potential saving of about O(N?) for odd
matrices. In this section, we address and provide a solution for both:

C = AB vs. C+=AB.

In the literature, we can find that the former algorithm (without post matrix addi-
tion C = AB) requires four fewer matrix additions and it requires one fewer tempo-
rary matrix than the latter, by using the destination matrix C as temporary matrix.
Though, we do not pursue the minimization of the space (by temporary matrices), we
find it useful to reduce the number of MAs when possible. So we propose an algo-
rithm where the two computations (with and without accumulation) are considered
separately (Table V and VI) and also the software pipelining is considered separately.

Fewer uses of A; and B,.
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We proposed the division of a matrix A into four balanced sub matrices Ay, A1, Ao,
and A3 as in Equation 1, because we wanted to reduce Strassen—Winograd’s algorithm
into seven balanced sub-problem [D’Alberto and Nicolau 2007]. Such a division is op-
timal (i.e., asymptotically and w.r.t. to any unbalanced division used in peeling and
padding) and provides a natural extension for the Strassen’s algorithm to any problem
sizes (and thus to the Winograd’s variant). Such a generalization uses more the larger
sub-matrix A, than the smaller matrix Aj (i.e., more MMs with operands of the sizes
of Ag and By instead of the size of A3 and Bs).

In the literature we can find different algorithms especially in light of the following
simple equation taken from [Loos and Wise ]:

C = (AP)(P'B) (5)

where the unitary permutation matrix P rotates the sub-matrices of A and B ac-
cordingly (for example, anti-clockwise half rotation Ay — A3 and A; — A,). This
means, we can obtain further savings by a reorganization of the computation and a
re-definition of matrix addition (the savings are of the order of O(N?), a few MAs).

In fact, we have found a schedule (algorithm) that allows us to use our matrix ad-
ditions —thus without changing our algebra— and it has equivalent complexity. In
Table V and VI we present the final algorithms.

Notice that for even-sized matrices the size of Ay is equal to the size of Az, and
thus there is no savings. For odd-size these savings are of the order of O(/N?) per each
level of recursion, and in relative terms, if we have a recursion point Ny, we achieve a
relative saving of O(x-).

If we consider only the number of operations as savings, for the systems presented
in this work we may save 1% operations. For most researchers, this represents little or
no improvement; however, with the application of the techniques here presented, we
can achieve up to 10% (on top of 20% improvement from the classic MM), making this
more appealing.

4.5. Ideal Winograd: No MAs in the critical path

In the previous sections, we presented algorithms that may hide a few MAs in par-
allel with MMs. In this section, we present a variant of the Winograd algorithm that
requires two more temporary matrices (for a total of 5 temporary matrices) but for
which we are able to hide the latency of all MAs. Thus we have an algorithm that, in
principle, can achieve the theoretical speed up of (approximated well by) ~ (%)k where
k is the number of recursive levels (in practice, 1 < k£ < 3 and thus about a potential
speed up of 30%). In other words, in the presence of sufficient cores being available,
we can hide the MAs by executing them in parallel with MMs and since the MAs take
less time than the MMs, the MAs therefore have no impact/cost in terms of the critical
path (i.e., total execution time) of the overall algorithm.

In Table VII, we present the algorithm for the product C = AB. As we can see,
there are 7 parallel steps. The first recursive step is always executed without MAs
in parallel. This assures that the number of MAs executed in parallel with the basic
kernel MM is independent of the recursive level and, for this particular case, no more
than 3 MAs (i.e., each MA is executed by a single thread on a different core in parallel
with a multi-threaded MM; for example, ATLAS DGEMM).

Notice that the no-pipelined algorithm with fewer MAs (Table V) has the potential to
be faster than the no-pipelind algorithm presented in this section (Table VII). We will
show that this is the case in the experimental results. However, we have the opposite
situation for the pipelined algorithms: the algorithm presented in this section is faster
(than any of the previous ones).
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Table VI. Winograd’s MM (improved implementation C+=AB WOPT).

Sequential Parallel/Pipelining
S =A3—A2 1: S=A3—A2
T =B3 —B; 2: T =Bs—B:
U =ST 3: U=ST
C, +=U 4: C1+ =U
Cs -= 5: C3—=U
U +=A1B2 6 U+ =A1B2
Co +=U 7 Co+ =U
Co += AoBg 8 Co+ =ApBg S=S+A; T=T+B;
S =S+ A,
T =T+ B
U +=ST 9: U+ =ST
C; +=U 10: Ci+=U
S =Ao-—S 11: S=Ap-S
C, +=SB; 12: Ci1+ =SB, T=Byg—-T
T =Bo—T
C2 += AT 13 Ca+ =ALT S=A3—-A; T =B3 — B;
S =A3z— Ay
T =B3s — B;
U -=ST 14: U- =ST
Cs -=U 15 Cs3—=U
Co -= 16: Cy,— =U

Expected improvements. What is going to be the maximum speed up by hid-
ing the latency of MAs? In our previous work [D’Alberto and Nicolau 2009; 2007],
we used a simplified complexity model to determine the recursion point (when the
Winograd/Strassen algorithm yields to the BLAS GEMM) and for example with a sin-
gle recursion level and for a classic Winograd algorithm (with 3 or more temporary
matrices):

MM(N) = 7a2(g)3 + 155(%)2 (6)

a3
The number of operations is obtained by 7 MMs, each performing 2(%3 ) operations,

and 15 MAs, each performing NTQ operations. Where « is the throughput of the MM and
0 is the throughput of MA. In practice, for most of the architectures presented in this
paper it is fair to estimate the ratio g ~ 100. In the original work the algorithms were
sequential and what we wanted to compute was an estimate of the execution time.

What will be the speed up if we remove all MAs? First let us explicitly introduce the
effect of the recursion in the execution time:

N, 158N2 < 7
() =770 + TSy
i=0 )
:7T(§>+55N2[(1) —1]
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Table VII. Winograd’s MM (no MAs in the critical path of C=AB WIDEAL).

Sequential Parallel/Pipelining
U = A1B2 1: U= A1B2
Co =AOB0 2: Co = AOBO S = A3 — AQ T = B3 — BQ
S =A3— A
T =B;-B,
C3 =8T 3: C3=ST Co+=U V=S+A Z=T+B;
Co +=U
A% =S+ A
Z =T+ B,
U +=VZ 4: U+=VZ S=A3+A; T=By—-Z
S =A3z+ A,
T =Bo—-Z
Co =A-sT 5: Cy = AT Z =Bs3+ B; C;=U-C3
Z =B3 + B3
C; =U-0C3
U -=SZ 6: U-=SZ V=Ap-V
\% =Ao—-V
Cl += VB1 7: Cl+=VB1 Cg—= Cz—=
Cs =
C, -=

The ratio between the computation with additions and without is:
5AN?[(3) - 1]

R(N)=1+ ()
210 7Vi

56N? 5421
T 4Ty aN

For any level i > 0 of the recursion T'() = 2a(% )3, when we perform the computa-
tion of the leaf using the classic GEMM computation.

The speed up achievable with a single recursion is S(N) ~ % First, increasing
N, the dominant term is /N? and the effect of hiding the MAs is decreasing as the
problem size increases (we should find a decreasing speed up and we do show in the
experimental results section). Of course, as we increases the number of recursions, we
have an accumulative effect and we should experience a seesaw effect.

In fact, for a few recursion levels (1 < k < 4)

Si(N) > 20715 (N)

For example, for N = 5000, £k = 1, and g = 100 we should expect a speed up of about
51(5000) ~ 4% (for N = 10000 we can expect to have at least two recursion levels and
thus we could expect S2(10000) ~ 8%).

In all algorithms presented in this paper, we try to minimize the number of tempo-
rary matrices. In the literature, we can find that the minimum number of temporary
matrices is three (without using the result matrix C' as temporary space) and we must
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perform more copy or matrix additions. In other words no implementations trying to
reduce the temporary space will perform just 15.

When we take our original implementation of Winograd [D’Alberto and Nicolau
2009] the number of additions (and copies) is 14 and thus the speedup we could ex-
pect is % which is about 4% (per recursion level and N = 5000), in Figure 8 we show
results exceeding this expectations to reach about 5%.

As last remark, if we consider double precision complex numbers and thus double
complex operations, the throughput of the MM and MAs must be adjusted accordingly.
For the architectures presented in this paper, for double precision complex data, we can
say that the ratio § easily double ( 3 ~ 200 because MMs performs more operations

per matrix element, thus we should expect an even better speed up, and in Figure 11
we meet such an expectation).

5. ON THE ERROR ANALYSIS

In this work, we will not present a theoretical evaluation of the numerical error we
would incur when we use our fast algorithms. Such a topic is well covered in the lit-
erature [Higham 1990; Demmel and Higham 1992; Higham 2002; Dumas et al. 2008;
D’Alberto and Nicolau 2009]. Instead, we will present a practical evaluation of the er-
ror analysis. That is, we present a quantitative evaluation of the error we would have
in case we run these algorithms instead of standard GEMM algorithms or the MM
algorithm based on the doubly compensated summation algorithm DCS [Priest
1991], which is tailored to minimize the error.

On one side, it is always possible to construct cases for which the worst case scenario
is applicable, making these fast algorithms worse than standard algorithms. 2 On the
other side, we show an example of the error on average: that is, what the error could
be if the matrices are built using a random number generator and thus without the
structure to create the worst case scenarios.

5.1. Parallel DCS based MM

In this paper, we emphasize the recursive nature of the MM algorithms. However, it
is more intuitive to describe the MM algorithm based on the DCS by using a vector
notation.

A single entry of a matrix ¢;; is the result of the row-by-column computation
>k @irbi ;. This is also the basic computation of the BLAS GEMM computation. Each
element of the result matrix C is based on the independent computation of a summa-
tion. Of course, this algorithm is highly parallel, as soon as we split the computation
of the matrix C to different cores.

The DCS algorithm reorganizes the summation in such a way that the products
are ordered (in absolute module decreasing) and the error committed in every addi-
tion is compensated (actually three times compensated). The computation is naturally
divided into parallel computations by splitting the matrix result C. This approach as-
sures that a MM produces results at the precision of the architecture, however, we
have found that this algorithm is often three order of magnitude slower than any less
accurate algorithms.

In Section 6.4, we provide a quantitative estimate of the maximum absolute error
(i.e., |Caig — Cpeslleo)-

2 For any problem size and for a finite number of recursive calls like we present in this paper, the bound is
a known—constant
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6. EXPERIMENTAL RESULTS

We divide this section into five parts. First, in Section 6.1, we introduce the set up start-
ing with the five architectures we used to carry the experiments. Second, we provide
our abbreviations and conventions in Section 6.2. Third, in Section 6.3, we provide the
experimental results for matrices in complex double precision (double complex) and
real double precision (i.e., 64 bits) in Figure 2-5. In Section 6.3.1, we give an in depth
performance evaluation of the optimized Winograd’s algorithm as presented in Table
V and VI (e.g., Figure 6). Fifth, and last, we present a representative error analysis for
one representative architecture and a selected set of fast algorithms, in Section 6.4.

6.1. Set up

We experiment with five multi-core multiprocessors systems: 2-core 2 Xeon (Pentium-
based), 2-core 2 Opteron 270 (1386 and x86_64), 4-core 2 Xeon; 4-core 2 Opteron (Shang-
hai), and 8-core 2 Xeon (Nehalem).

Our approach views these architectures as one memory and one set of cores. In other
words, we do not optimize the data layout for any specific architecture (i.e., the Ne-
halem, the shanghai, and the Opteron 270 have a separate and dedicated memory for
each processor, while the others use a single memory bank and single bus). We opti-
mize the performance of MM and MA for each architecture independently, by tuning
the code, and then optimize the fast algorithms. We explain the procedure in the fol-
lowing.

MM installation, optimization, and tuning. For all architectures, we have in-
stalled GotoBLAS and ATLAS. Once the installation is finished, we tune the number
of threads so as to achieve the best performance. We then have chosen the implemen-
tation that offers the best performance. If the optimal number of threads is smaller
than the number of cores, the architecture has the potential for effective scheduling
optimizations. However, notice that even when MM performance scales up nicely with
the number of cores and will use all cores, we can still improve performance by the ap-
plication of MA and MM pipelining (we present two systems for which this is possible
and, for completeness, we show one system for which this is not).

MA installation, optimization, and tuning. For matrix addition we follow these
steps: For double and double complex matrices (as well as for single and single com-
plex, not presented here), we probe the performance with different loop-unrolling; that
is, we exploit and test different register allocation policies. In fact, MA is a routine with
2-level nested loops and we unroll the inner loop. For each loop unrolling, we tested the
performance for a different number of threads as explained in Section 3.2; that is, we
split the computation as a sequence of MAs function calls, one for each thread. In this
fashion, we optimize the parallel MA (which is in the critical path of the computation).

Strassen and Winograd algorithm installation. For each architecture and prob-
lem type (e.g., double or double complex), we determine the recursion point for the
Winograd’s algorithm; that is, we determine the problem size when the Winograd’s al-
gorithm must yield to the classic implementation of MM (GotoBLAS or ATLAS). We
use this recursion point for all fast algorithms, even for the Strassen’s algorithm. Of
course, this is not optimal for Strassen’s algorithm, which should yield control to the
classic MM for larger recursion points because the algorithm requires more additions.
Furthermore, if the pipeline of MA and MM is beneficial, we could exploit a smaller
recursion point (and thus better performance).

Performance Measure. In this section, we measure performance by normalized
giga floating point per second (Normalized GFLOPS). This measure is the ratio
between the number of operations, which we fixed to 2n (where n is the matrix size),
and the execution time (wall clock). We choose the standard number of operation 2n3
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for three reasons (even though fast algorithms perform fewer operations): First, this
sets a common bound that is well known in the field; second, we can compare easily the
performance for small and large problems; third, we can use it safely for comparing
performance across algorithms —i.e., with different operation numbers and thus we
compare execution time— and architectures —i.e., specific architecture throughput.

We measure wall-clock time when the application is computed with cold caches (just
once) or with hot caches (the average for a set of runs, at least two for very large sizes)
as we describe in the following code and explanation:

Average execution time.

// see code mat-mulkernels.h
#define TIMING(X,time, interval) { int i,j; \
/* 1%/ j=1; \

/x 2%/ X; \

/* 3%/ do { \

/* 4x/ j*=2; \

/* 5%/ START_CLOCK; \

/* 6%/ for (i=0;i<j;i++) { X; 1} \

/* T*/ END_CLOCK; \

/* 8%/ time = duration/j; \

/% 9%/ printf (" average %f\n",time); \
/*10x/ } while (duration<interval); \
/*11%/ }

// see code example.3.c
#define MULINTERVAL 10

#ifdef MARCO_TEST
TIMING(CMC(c, =, a,BMOWR , b),time_mul,MULINTERVAL);
#endif

The TIMING macro takes three operands: the matrix multiplication algorithm (i.e.,
the application we want to measure the execution time), the time variable where we
will store the measure, and the minimum interval of time we require to run the appli-
cation.

First, notice that we run the application once without timing, to warm up the system
(line 2), then we run the application twice (line 6). If the duration is less than the
minimum interval (line 10), we double the number of times we run the application and
we repeat the process. We will use the average execution time.

We used an interval between 10-45 seconds (as a function of the architecture, 10 sec-
onds for fast architecture such as the Nehalem, 45 seconds for slow ones such as the
Pentium) as minimum interval. Of course, this can be tailored further to any specific
need. This will assure that for small size problems we have a representative measure,
for large problems, this is still a reasonable estimate of the execution time (the appli-
cations will run at least 10 seconds on machines where they will perform at least 20
Giga operations, if not 150, and thus a 10% improvement translates into 1 second or 2
Giga operations). For this paper and for the large problem sizes, we measured execu-
tion times of the order of minutes (~ at least 10 seconds improvement, easy to measure
without considerable error).

We repeat here that we measured cold execution time (just one run) and the average
execution time (average over at least two runs), and we presented the best of the two.
Furthermore, this process has been repeated in case we found outliers and exceptions
(for all codes and especially for older architectures).
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Remark. It must be clear that we used a reasonable approach to measure execution
time, we also provided a review and retrial of the experiments to provide reasonable
and representative measure of execution time, and, in summary, we followed the sen-
sible steps that other research groups already are taking to collect performance in the
field.
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Fig. 2. 4-core 2 Xeon processor: Complex (top) GotoBLAS ZGEMM 14 GFLOPS, ZGEMM_3M 18 GFLOPS
and our 3M_WINOGRAD 20 GFLOPS; and double precision (bottom) GotoBLAS DGEMM 56 GFLOPS and
WINOGRAD 62 GFLOPS. Function pipelining does not provide significant improvements
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6.2. Abbreviations

In the following sections and figures, we use a consistent but not truly standardized
conventions in calling algorithms, we hope this will not be a major problem and this
section should be used whenever consulting a performance plot.

— STRASSEN: Strassen’s algorithms as in Table IV.

— WINOGRAD: Winograd’s algorithm as in Table III.

— WOPT: Winograd’s algorithm as in Table V with fewer MAs.

— WIDEAL: Winograd’s algorithm as in Table VII optimized for a pipeline execution
(but not pipelined).

— GOTOS: MM implementation as available in GotoBLAS.

—BLAS MM or MM only: MM implementation row-by-column (this is used in the
error analysis only).

— (STRASSEN|WINOGRAD|WOPT|WIDEAL) _PIPE: software pipeline implemen-
tation of Strassen—Winograd algorithms as in Table IV, III, and VII where some
MMs and MAs are interleaved.

— GOTOS_3M: 3M algorithm as available in GotoBLAS where matrices are stored as
complex matrices.

— 3M_(GOTOS|WINOGRAD|STRASSEN|ATLAS): our implementation of the 3M
algorithm as presented in Table II, where MM is implemented as STRASSEN,
WINOGRAD, GOTOS, or ATLAS and thus complex matrices are stored as two dis-
tinct real matrices.

— 3M_(WINOGRAD|STRASSEN) PIPE: our implementation of the 3M algorithm
as presented in Table II, where MM is implemented as STRASSEN_PIPE, WINO-
GRAD _PIPE and thus there is software pipelining between MMs and MAs, and com-
plex matrices are stored as two real matrices.

6.3. Double-Precision and Complex Matrices

We divide this section into two parts: where software pipelining does not provide any
improvement (actually is detrimental and not shown) and where software pipelining
provides performance improvement. Notice that we postpone the experimental results
for the optimized Winograd’s algorithm as presented in Section 4.4 in the following
experiment section (Section 6.3.1), where we present an in depth analysis.

No Software Pipelining. In Figure 2, we show the performance for at least one
architecture where software pipelining does not work. Notice that the recursion point
is quite large: N=7500 in Figure 2, with a small speed up (up to 2-10%) for double
precision matrices. The performance improvements are more effective for complex ma-
trices: smaller recursion point (i.e., we can apply fast algorithm for smaller problems)
and best speed up (i.e., faster).

Software Pipelining. In Figures 3-5, we present the performance plots for three
architectures where software pipelining offers performance improvements, we will give
more details in Section 6.3.1.

For only one architecture, 2-core 2 Xeon (Pentium based) Figure 3, the 3M fast al-
gorithms have a speedup of 4/3 (+25%) achieving a clean and consistent performance
improvement. For this architecture, Goto’s MM has best performance when using only
two threads (instead of four), and thus this system is underutilized. Using fast algo-
rithms and our scheduling optimizations we improve performance consistently.

For the Shanghai system, Figure 4, Goto’s MM achieves peak performance using
all cores, so this architecture is fully utilized. Nonetheless, fast algorithms and opti-
mizing schedules achieve a consistent performance improvement. Software pipelining
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Fig. 5. 8-core 2 Xeon processor (Nehalem): Complex double precision with GotoBLAS peak performance
ZGEMM 17 GFLOPS, our WINOGRAD 19 GFLOPS and WIDEAL PIPE 20.5 GFLOPS

exploits the good bandwidth of the system and, even though MAs are competing for
the resources against the MM, the overhead is very limited.

For the Nehalem system, Figure 5, we have very good speed ups (see the following
section). This architecture has 4 physical cores for each processor and the architecture
is designed to provide task parallelism; each physical core can execute in parallel 2
threads for a total of 8 virtual cores providing task as well as thread parallelism; this
is the number of cores the operating system believes exist. Such architecture provides
the best performance overall, just shy of 70 GFLOPS in Double precision, but also the
best scenario for our optimizations.

6.3.1. Double precision: Software Pipelining and Optimized Algorithm. In the previous section,
we presented the performance for the MM base line (e.g., GotoBLAS), Winograd, and
Strassen with and without function software pipelining. In this section we focus on
the optimized Winograd algorithms (Section 4.4) and the effect of (function) software
pipelining (with respect to the Winograd’s algorithm without software pipelining). This
comparison will highlights the performance advantages of our pipelining optimizations
(achieving ideal speedup w.r.t. the GEMM because the MA have not weight nor contri-
bution).

We consider three architectures: 2-core 2 Xeon (Pentium Based), 8-core 2 Xeon (Ne-
halem), and 2-core 2 Opteron 270 (x86_64). The former two architectures are friendlier
to software pipelining than the latter one. The first two architectures are underutilized
because we can achieve the best performance with, respectively, two cores and 8 vir-
tual cores idle. The latter architecture should provide a smaller space for improvement
(if any) because there is no idle core. All architecture will provide information about
the algorithms, the optimizations, and the overall performance.

We present odd problem sizes (e.g., N = 2001, 3001 etc.) because the optimized WOPT
algorithm has potentially fewer MAs and smaller subproblems. We want to quantify
such a performance advantage. In this section, we present experimental results for
double (Figure 6-7), and double complex matrices (Figure 9-10). Especially, we present
the performance advantage of the WIDEAL algorithm (the algorithm that has no MA
in the critical path).
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For double precision and for the WIDEAL PIPE algorithm (Figure 6, 7, and 8), we
achieve 6% speed up for the Pentium based system, we achieve 4% for the Opteron
system, and we achieve 10% for the Nehalem system.

For double complex matrices (Figure 9, 10, and 11), we have better relative improve-
ments: we achieve 11% speed up for the Pentium based system, 7% for the Opteron,
and 12% for the Nehalem (15% if we can perform 3 recursion levels). We show that
WOPT (winograd’s with fewer MAs) has a performance advantage (for these architec-
tures) mostly because of the compounding effects of saving operations.

It is clear from the performance plots, that the WIDEAL algorithm has a
performance advantage only when combined with our scheduling optimizations
(WIDEAL_PIPE), otherwise WIDEAL is always slower than any other algorithms.

Notice that the experimental results for the Nehalem architecture follows the ex-
pected seesaw performance as the problem size increases and the recursion number

ACM Transactions on Embedded Computing Systems, Vol. -, No. -, Article -, Publication date: 2011.



Exploiting Parallelism in Matrix-Computation Kernels -:23

% speedup vs WINOGRAD

12

10
~=WIDEAL_PIPE

{
8 T WOPT_PIPE /
. /
‘ /

6 - <=WINOGRAD_PIPE /’\*y

| ==wWOoPT

«L=\WIDEAL

2501 3001 3501 4001

Fig. 8. 8-core 2 Xeon (Nehalem) double precision: peak speedup WIDEAL _PIPE 11% w.r.t. WINOGRAD

% speedup vs
WINOGRAD A

" <eWIDEAL_PIPE /
o ““WOPT_PIPE A
<=WINOGRAD_PIPE
. e=\WOPT /\\ /
L PWIDEAL / \_\/
A

3 > i
hid i v =
A /
1 — &
L ] L) y L] -
11 01

Fig. 9. 2-core 2 Xeon processor (Pentium Based) double complex precision: peak speedup WIDEAL_PIPE
11% w.r.t. WINOGRAD

increases, which follows roughly the formula 2"~1~/N (where N is the problem size
and r is the number of recursions (i.e., see Section 4.5 Equation 8).

We know that for the Opteron-based system, there is not idle core and thus our ap-
proach will allocate two or more threads onto a single core. Using Goto’s GEMM, we
are achieving close to 95% utilization of the cores and thus there should be a very little
space for improvements. In practice, hiding MAs provides little performance advan-
tage for the WINOGRAD and WOP algorithm, however, there is quite a speed up in
combination with WIDEAL (i.e., 5-7%).

6.4. Error analysis

In this section, we want to gather the error analysis for a few algorithms (i.e., fast algo-
rithms), with different low-level optimizations and hardware operations, using either
ATLAS or GotoBLAS, for single complex and double complex matrices, and for matri-
ces in the range |a| € [0, 1] (probability matrices) and |a| € [—1, 1] (scaled matrices).
What we present in the following figures can be summarized by a matrix norm:

|Cats — P3| o = max|c?7ljg - CZ%CS ) 9
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That is, we present the maximum absolute error. We investigate the error for complex
matrices —thus we can compare all algorithms at once— but instead of showing the
absolute maximum error for the complex matrix we present the maximum error for
the real and imaginary parts of the matrices:

(|Re(C*) — Re(CPO5) || oo, [ Im(C9) — Im(CPC5)]|o0) (10)

We will show that, in practice and for these architectures, the Winograd’s based
algorithms have similar error than the 3M algorithms and comparable to the BLAS
classic algorithm. Furthermore we investigate the effect of the different schedules for
the Winograd’s-based algorithms. Notice, pipeline optimizations do not effect the error
because we do not change the order of the computation.

We present a large volume of data, see Figure 12 and and 13.

Why two libraries have different error. GotoBLAS and ATLAS have different
way to tailor the code to an architecture. This will provide different tiling techniques.
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Fig. 12. 8-core 2 Xeon Nehalem Error Analysis [-1,1] with respect to the DCS algorithm: (top) based on
GotoBLAS and (bottom) based on ATLAS. The GotoBLAS based implementation is 3 times more accurate
than ATLAS based implementation. The GotoBLAS based WOPT (and thus WIDEAL) implementation has
the same accuracy as the row-by-column definition BLAS implementation. Our 3M implementation has the
same accuracy of GotoBLAS GEMM _3M.

For exarglple, GotoBLAS exhibits a better accuracy (probably because the tiling size is
larger).

3We reached such a conclusion by our personal communications with the GotoBLAS’ authors and, intuitively,
because a larger tile may provide a better register reuse, thus the computation will exploit the internal
extended precision of the register file, 90bits, instead of normal encoding in memory using 64bits; that is,
inherently a better precision that will fit what we observed and it is against the intuitive idea that a larger
tile will provide a longer string of additions thus a larger error.
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Fig. 13. 8-core 2 Xeon Nehalem Error Analysis [0,1] with respect to the DCS algorithm: (top) based on
GotoBLAS and (bottom) based on ATLAS

We want to show that the relative errors (between fast and standard algorithm) are
consistent across BLAS library installations. We show that a better accuracy of the
kernels (GotoBLAS GEMMs) will allow a better accuracy of the fast algorithms as
significant as a factor of 3 (1/3 of a digit).

Why comparing real and imaginary parts. We show that the error is different
for the real and the imaginary part of the computation for several algorithms. In partic-
ular, we show that the 3M algorithm tends to have larger error on the imaginary part
than the real part (which is known in the literature). However, we may notice that
the 3M-Winograd variant has the same error as the BLAS GEMM (row-by-column)
computation (and it is two order of magnitude faster than the BLAS GEMM). So the
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application of the Winograd algorithm, alone or in combination with the 3M algorithm,
has a reasonable error and it should not be discarded a priori.

Why different matrix element ranges. First, the sign of the matrix element af-
fects the precision of any operation (cancellation of similar numbers) and the accuracy
of the algorithm. It is known in the literature that Winograd’s algorithm is in general
stable for probability matrices (|a| € [0, 1]). We show that variation of the Winograd’s
algorithm such as the one with fewer additions may actually loose accuracy with little
performance advantage. The range of the matrix is chosen such that all the error up-
per bounds can be expressed as a polynomial of the matrix size (and there is no need
of norm measure).

We present our findings in Figure 12—-13. We believe, this is the first attempt to show
how in practice all these algorithms work and how they affect the final result and
error. We do not justify the blind use of fast algorithms when accuracy is paramount;
however, we want to make sure that fast algorithms are not rejected just because of an
unfounded fear of their instability.

In practice, it’s prohibitively expensive to provide statistics based on DCS algorithm
(described in Section 5.1): to gather the experimental results presented in Figure 12—
13 took about 2 weeks. To collect, say ten points, it will take about 20 weeks. First, it
is not really necessary. Second, if we take a weaker reference (i.e., an algorithm with
better accuracy because it uses better precision arithmetic double precision instead of
single precision), then we may estimate the statistics of the average error and show
that there is no contradictions (with the result presented in the paper Figure 12-13)
and in the literature.

Error w.r.t. DGEMM input [0,1] Error w.r.t. DGEMM input [0,1]
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Fig. 14. 2-core 2 Opteron, problem size N=6500, absolute error statistics w.r.t. DGEMM for matrices with
input [0,1]: distribution of the maximum error for GEMM, WINOGRAD, STRASSEN, and WOPT/WIDEAL
in single precision w.r.t. DGEMM by 100 runs. WINOGRAD is 3 times more accurate on average that WOPT
and 0.3 times less accurate than SGEMM
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Consider the DGEMM as the reference (more precise arithmetic but no more
accurate algorithm than the DCS algorithm in double precision) and we compare
the error committed by the SGEMM, Winograd’s, Strassen’s and the optimized
Winograd’s algorithm all computed in single precision. What we can measure is
the statistic of the fast algorithms w.r.t. the more accurate DGEMM. We run 100
MMs and we collected the maximum absolute error for matrices of sizes N =
{3500, 4000, 4500, 5000, 5500, 6000, 6500}, we report here only for 6500, see Figure 14-15.
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Fig. 15. 2-core 2 Opteron (x86_64) N=6500 absolute error statistics w.r.t. DGEMM for matrices with input
[-1,1]: distribution as above. WINOGRAD and WOPT have on average the same error and WINOGRAD is
10 times less accurate than SGEMM (1 digit) and STRASSEN is 5 times less accurate than SGEMM (1/2
digit)

First, the maximum of the maximum error and the average measure of the maxi-
mum error have the expected behavior and there is not evidence of any contradicting
results w.r.t. to the one already presented in this paper. Second, the standard devia-
tion of the error is relatively small (the range of the error), thus the inference about
the error we commit base only on a single trial as we do in this paper, may be off for
a fraction of a significant digit, it confirms the already published results, and our es-
timation. Third, the statistic confirm a difference in the error between the version of
Winograd’s algorithms (in the paper we distinguish them as WINOGRAD and WOPT
where we reduce the number of additions) where we show that reducing further the
number of MAs increases the maximum error for probability matrices.

7. CONCLUSIONS

We investigated the performance of fast algorithms such as 3M/Winograd/Strassen for
general purpose SMP systems (common in search engine data centers). We show that
fast algorithms can be always applied (achieving 5-25% improvement) but more impor-
tantly they present a family of matrix computation algorithms where very interesting
and useful optimizations can be applied (further 2—15% performance improvements).
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On one side, there is no dominant algorithm for all architectures and all problem
sizes. This performance variety should not undermine our overall message: fast al-
gorithms can be used in combination with classic MM algorithms and all will thrive
when used together. On the other side, a few researchers may see the same variety as
discouraging because there is no clear dominant algorithm: it would be easier to rely
on a single common solution.

Here we have shown, that our algorithms and optimizations are simple to apply
and they extend the performance of the fastest BLAS libraries for the state of the art
architectures.
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