
Adaptive Winograd’s Matrix Multiplications

PAOLO D’ALBERTO
Yahoo! Inc.
and
ALEXANDRU NICOLAU
Department of Computer Science, University of California Irvine

Modern architectures have complex memory hierarchies and increasing parallelism (e.g., multi-

cores). These features make achieving and maintaining good performance across rapidly changing

architectures increasingly difficult. Performance has become a complex trade-off, not just a simple
matter of counting cost of simple CPU operations.

We present a novel, hybrid, and adaptive recursive Strassen-Winograd’s matrix multiplication

(MM) that uses automatically tuned linear algebra software (ATLAS) or GotoBLAS. Our algo-
rithm applies to any size and shape matrices stored in either row or column major layout (in

double-precision in this work) and thus is efficiently applicable to both C and FORTRAN im-

plementations. In addition, our algorithm divides the computation into equivalent in-complexity
sub-MMs and does not require any extra computation to combine the intermediary sub-MM re-

sults.

We achieve up to 22% execution-time reduction versus GotoBLAS/ATLAS alone for a single
core system and up to 19% for a 2 dual-core processor system. Most importantly, even for small

matrices such as 1500×1500, our approach attains already 10% execution-time reduction and,
for MM of matrices larger than 3000×3000, it delivers performance that would correspond, for a

classic O(n3) algorithm, to faster-than-processor peak performance (i.e., our algorithm delivers

the equivalent of 5 GFLOPS performance on a system with 4.4 GFLOPS peak performance and
where GotoBLAS achieves only 4 GFLOPS). This is a result of the savings in operations (and

thus FLOPS). Therefore, our algorithm is faster than any classic MM algorithms could ever be

for matrices of this size. Furthermore, we present experimental evidence based on established
methodologies found in the literature that our algorithm is, for a family of matrices, as accurate

as the classic algorithms.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm design and analysis; D.2.2 [De-
sign Tools and Techniques]: Library; D.2.8 [Metrics]: Performance Measure

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Winograd’s matrix multiplications,fast algorithms

1. INTRODUCTION

Our main interest is the design and implementation of highly portable codes; that is, codes
that automatically adapt to the architecture evolution. We want to write efficient and easy
to maintain codes, which can be used for several generations of architectures. Adaptive

Author’s address: Paolo D’Alberto pdalbert@yahoo-inc.com; Alexandru Nicolau nicolau@ics.uci.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2008 ACM 0098-3500/2008/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008, Pages 1–0??.

2 · Paolo D’Alberto and Alexandru Nicolau

codes attempt to provide just that. In fact, they are an effective solution for the efficient
utilization of (and portability across) complex and always-changing architectures (e.g.,
[Frigo and Johnson 2005; Demmel et al. 2005; Püschel et al. 2005; Gunnels et al. 2001]).
In this paper, we discuss a single but fundamental algorithm in dense linear algebra: matrix
multiply (MM). We propose an algorithm that automatically adapts to any architecture
and applies to any size and shape matrices stored in double precision and in either row or
column-major layout (i.e., our algorithm is suitable for both C and FORTRAN, algorithms
using row-major order [Frens and Wise 1997; Eiron et al. 1998; Whaley and Dongarra
1998; Bilardi et al. 2001], and using column-major order [Higham 1990; Whaley and
Dongarra 1998; Goto and van de Geijn 2008]).

In practice, software packages such as LAPACK [Anderson et al. 1995] are based on
a basic routine set such as the basic linear algebra subprograms BLAS 3 [Lawson et al.
1979; Dongarra et al. 1990b; 1990a; Blackford et al. 2002], which, in turn, can be based
on efficient implementations of the MM kernel [Kagstrom et al. 1998a; 1998b]. ATLAS
[Whaley and Dongarra 1998; Whaley and Petitet 2005; Demmel et al. 2005] (successor of
PHiPAC [Bilmes et al. 1997]) has been a leading example of an adaptive software pack-
age implementing BLAS, by automatically adapting codes for many architectures around
a highly tuned MM kernel. Recently however, GotoBLAS [Goto and van de Geijn 2008]
is offering consistently better performance than ATLAS, because of a careful code organi-
zation that utilizes optimally the TLB coupled with hand tuned kernels written directly in
assembly.

In this paper, we show how, when, and where a hybrid adaptive implementation of
Strassen-Winograd’s algorithm [Strassen 1969; Douglas et al. 1994] improves the per-
formance of the best available adaptive matrix multiply (e.g., ATLAS or GotoBLAS). We
do this by using a novel algorithm and a simple installation process so as to adjust the
algorithm to modern architectures and systems automatically. In this paper, we extend
some of the concepts introduced in our previous work [D’Alberto and Nicolau 2005a;
2005b] related to the original Strassen’s algorithm. In particular, in this paper we general-
ize Strassen-Winograd’s original MM algorithm (Winograd) to apply to any problem sizes
and shapes similarly to the approach by [Douglas et al. 1994] but without their dynamic
overlapping (i.e., conceptually overlapping one row or column, computing the results for
the overlapped row or column in both subproblems, and ignoring one of the copies) and
thus fewer operations and cleaner formulation. We also propose a balanced division pro-
cess that assures a constant but lower operation count than previously proposed versions,
exploits better data locality, and ultimately outperforms any implementation based on the
classic algorithm of complexity O(n3) (we expand this comparison in Section 2); these
modifications are critical (especially the balancing) to the extension of the algorithm to
multicore systems, which we also present in this paper.

The results we present include performance on single-core and multicore processors that
are becoming common in state-of-the-art machines and everyday laptops. We present ex-
perimental results for 3 systems (two uni-processor systems and one multi–core-multiprocessor
system) where we tested our codes.

2. RELATED WORK

Strassen’s algorithm [Strassen 1969] is the first and the most widely used among the fast
algorithms for MM. In this paper we use the term fast algorithms to refer to the algorithms
ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

Adaptive Winograd’s Matrix Multiply · 3

that have asymptotic complexity less than O(N3), and we use the term classic or con-
ventional algorithms for those that have complexity O(N3). Strassen discovered that the
classic recursive MM algorithm of complexity O(n3) can be reorganized in such a way
that one computationally expensive recursive MM step can be replaced with 18 cheaper
matrix additions (MA and O(N2)). These MAs make the algorithm faster, however
they make it weakly numerically stable and not unstable [Higham 2002]. As the start-
ing point for our hybrid adaptive algorithm we use Winograd’s algorithm (e.g., [Douglas
et al. 1994]), which requires only 15 MAs. Thus, Winograd’s algorithm has, like the orig-
inal by Strassen, asymptotic operation count O(n2.81), but it has a smaller constant factor
and thus fewer operations than Strassen’s algorithm.

The asymptotically fastest algorithm to date is by Coppersmith and WinogradO(n2.376)
[Coppersmith and Winograd 1987]. This has a theoretical contribution, but it is not prac-
tical for common problem sizes. Pan showed a bi-linear algorithm that is asymptotically
faster than Strassen-Winograd [Pan 1978] O(n2.79) and he presented a survey of the topic
[Pan 1984] with best asymptotic complexity of O(n2.49). The practical implementation of
Pan’s algorithm O(n2.79) is presented by Kaporin [Kaporin 1999; 2004]. For the range
of problem sizes presented in this work, the asymptotic complexity of Winograd’s and
Pan’s is similar, however Kaporin implementation requires padding of matrices such that
the algorithm exploits specific matrix sizes (for the best implementation matrices should
be aligned to n = 48).

Recently, new, group-theoretic algorithms that have complexity O(n2.41) [Cohn et al.
2005] have been proposed. These algorithms are numerically stable [Demmel et al. 2006]
because they are based on the Discrete Fourier Transform (DFT) kernel computation.
However, there have not been any experimental quantification of the benefits of such ap-
proaches.

In practice, for small matrices, Winograd’s MM has a significant overhead and classic
MMs are more appealing. To overcome this, several authors have proposed hybrid algo-
rithms; that is, deploying Strassen/Winograd’s MM in conjunction with classic MM [Brent
1970b; 1970a; Higham 1990], where for a specific problem size n1, or recursion point
[Huss-Lederman et al. 1996], Strassen/Winograd’s algorithm yields the computation to
the classic MM implementations. 1 Our approach has three advantages versus previous
approaches:

(1) Our algorithm works for any matrix size and shape and it is a single algorithm, inde-
pendently of the matrix sizes, and that contains no conditional branches. In practice,
our algorithm requires only 43 lines of C code (i.e., including declarations, initial-
ization and de-allocation of local variables, and thus it is simple to understand and
to maintain). This implementation, because it has no conditional branches, offers an
easier means to investigate different scheduling optimizations/organizations without
control-flow dependency (see the appendix on page 20).

(2) Our algorithm divides the MM problems into a set of balanced subproblems; that is,
with minimum difference of operation count (i.e., complexity) between subproblems.
This balanced division leads to: a cleaner algorithm formulation (and a simpler/shorter
code), easier parallelization and more efficient parallel execution (i.e., because the

1Thus, for a problem of size n ≤ n1, this hybrid algorithm uses the classic MM; for every matrix size n ≥ n1,
the hybrid algorithm is faster because it applies Strassen’s strategy and thus it exploits all its performance benefits.

ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

4 · Paolo D’Alberto and Alexandru Nicolau

parallel subproblems are balanced, the workload between processors is balanced) and
little or no work in combining the solutions of the subproblems, and thus fewer op-
erations (w.r.t. algorithms applying peeling, more obliviously, padding [Panda et al.
1999], where the problem size is artificially increased, or data re-organization by using
recursive layout at run time).
This balanced division strategy differs from the division process proposed by Huss-
Lederman et al. [Huss-Lederman et al. 1996; Huss-Lederman et al. 1996; Higham
1990], where the division is a function of the problem size. In fact, for odd-matrix
sizes, they divide the problem into a large even-size problem (peeling), on which
Strassen’s algorithm can be applied, and a small, and extremely irregular, computa-
tion. This computation tail exploits little data locality and, even if for a constant factor,
in practice this affects negatively the operation count and the overall performance.

(3) At every recursive step, we use only 3 temporary matrices, which is the minimum
number possible [Douglas et al. 1994]. Furthermore, we differ from Douglas et al.
work in that we do not perform redundant computations for odd-size matrices.
We store matrices in standard row/column-major format and, at any time, we can
yield control to a highly tuned MM such as ATLAS/GotoBLAS DGEMM without
any overhead. Such an overhead would be incurred while changing to/from differ-
ent data layout and it has been often neglected in previous performance evaluations.
[Chatterjee et al. 2002; Thottethodi et al. 1998] estimated such overheads as 5–10%
of the total execution time. Furthermore, because we use the standard layout for our
matrices throughout the process, if faster implementations of BLAS emerge (or other
alternatives appear), we can always integrate these in our hybrid algorithm with no
(further) modifications, a major practical advantage.

While for large multi-processors our algorithm can be further optimized to yield even
better results, such work is beyond the scope of the current paper, that aims to present our
fundamental algorithm and demonstrate how it can yield significant improvements over
the current state-of-the-art for some of the most widely used modern high-performance
processors. In this work, we present a parallel implementation that uses fast algorithms
only at processor level and for few cores/processors. This is in contrast with previous
algorithms by Grayson et al. [Grayson et al. 1995] and more recently for machine clusters
[Ohtaki et al. 2004; Nguyen et al. 2005].

In fact, in this paper we do not claim a general parallel algorithm. We present an al-
gorithm designed for standalone desktop parallel systems with one or a few powerful pro-
cessors deploying multicore technology (i.e., the vast majority of state-of-the-art desktops
available today). We show how in these systems the algorithm proposed adapts and scales
maintaining superior performance because of a scalable approach where the major speed
up is the result of faster computation at the core level.

3. FAST MULTIPLICATION ALGORITHMS

For the description of our algorithms, we postopone the description of our parallel algo-
rithm to Section 5.3, where we divide the problem among processors and cores, yielding
our parallel algorithm; in Section 3.2, we describe how to reduce the operation count so as
to have fast algorithms for a single core. However, here, we start with some basic notations
and definitions.
ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

Adaptive Winograd’s Matrix Multiply · 5

3.1 Matrix Multiplication: Definition and Notations

We identify the size of a matrix A ∈ Mm×n as σ(A)=m×n, where m is the number of
rows and n the number of columns of the matrix A. Matrix multiplication is defined for
operands of sizes σ(C)=m×p, σ(A)=m×n and σ(B)=n×p, and identified as C=AB
(i.e., we omit the symbol ∗), where the component ci,j at row i and column j of the result
matrix C is defined as ci,j =

∑n−1
k=0 ai,kbk,j .

We use a simplified notation to identify submatrices. We choose to divide logically
a matrix M into four submatrices; we label them so that M0 is the first and the largest
submatrix, M2 is logically beneath M0, M1 is on the right of the M0, and M3 is beneath
M1 and to the right of M2.

The computation is divided into four parts, one for each submatrix composing C. Thus,
for every matrix Ci (0 ≤ i ≤ 3), the classic approach computes two products, using a total
of 8 MMs and 4 MAs —notice that the 4 MAs are computed in combination with 4 MMs
and require no further passes through the data. Notice that every product computes a result
that has the same size and shape as the destination submatrix Ci. If we decide to compute
the products recursively, each product AiBj is divided further into four subproblems, and
the computation in Equation 1 applies unchanged to these subproblems.

[
C0 C1

C2 C3

]
=
[

A0 A1

A2 A3

] [
B0 B1

B2 B3

]
=
[

A0B0+A1B2 A0B1+A1B3

A2B0+A3B2 A2B1+A3B3

]
, (1)

3.2 Adaptive Winograd’s Matrix Multiply

The combination of our MA and our adaptation of the original Winograd’s algorithm per-
mits a cleaner implementation. As result, our algorithm derives always a balanced sub-
problem division independently of the problem size and thus a consistent performance
across problem sizes, see the pseudo code in Algorithm 1 and the C-code implementation
in Figure 9 Appendix 6.

To extend Winograd’s algorithm to non-square matrices, we have to face the possibility
of adding un-even size matrices. A trivial extension of the definition of matrix addition
is the following: we simply add, element-wise, corresponding elements up to the size of
the smaller matrix, and fill the rest of the result matrix with the remaining elements of the
larger matrix [D’Alberto and Nicolau 2005a] (see for a simple implementation Figure 10
in the appendix).

The schedule of the operations is derived from the schedule proposed by Thottethodi
et al. [Thottethodi et al. 1998]; this requires one MA and one temporary more than the
schedule proposed by Douglas et al. [Douglas et al. 1994] (in the best case), because we
do not use the result matrix C as temporary matrix for the first MM (we use the temporary
matrix U2. However, this schedule is applied for the multiply-add matrix operations (i.e.,
C+=AB), for which we cannot use the result matrix as temporary space, and, in this case,
we perform the minimum number of MAs and we use the minimum number of temporary
matrices. Furthermore, the ability to combine the MA with the MM speeds up the overall
computation.

Notice that the matrix U2 is used to exploit common expressions (as Winograd’s pro-
posed so as to reduce the number of MAs) and the matrix is used not as temporary for
matrix additions (as matrices S and T) but for the accumulation of matrix products. In
fact at the end of the computation, U2 summarizes the result of three MMs: M1 = A0B0,

ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

6 · Paolo D’Alberto and Alexandru Nicolau

Algorithm 1 : Adaptive Winograd’s MM: C=A∗wB with σ(A)=m×n and σ(B)=n×p

Computation Operand Sizes

if RecursionPoint(A,B) then (e.g., max(m,n, p) < 100)
ATLAS/Goto C=A∗aB (Solve directly)

else { (Divide et impera)
S=A2 + A3 σ(S)=bm

2
c×dn

2
e

T=B1 + B0 σ(T)=dn
2
e×d p

2
e

U2=S∗wT σ(U2)=bm
2
c×d p

2
e

C3=U2, C1=U2

U2=A0∗wB0 σ(U2)=dm
2
e×d p

2
e

C0=U2

C0+=A1∗wB2

S=S + A0 σ(S)=dm
2
e×dn

2
e

T=B3 −T
U2+=S∗wT
C1+=U2

S=S + A1

C1+=S∗wB3

T=B2 −T

C2=A3∗wT σ(P)=bm
2
c×d p

2
e

S=A0 + A2 σ(S)=dm
2
e×dn

2
e

T=B3 + B1 σ(T)=dn
2
e×b p

2
c

U2+=S∗wT

C3+=U2

C2+=U2

}

M1 + M2 with M2 = (A2 + A3 + A0)(B3 − B1 − B0), and M1 + M2 + M3 with
M3 = (A0 + A2)(B3 + B1).

In practice, a matrix copy is memory bound and thus it takes approximately as much time
as a matrix addition, and we count matrix copies as MAs. Thus, this algorithm performs
7 MM, 18 MA, and it requires three temporary matrices (i.e., S, T, and U2) at every
recursion step. 2

Our contributions are: first, we present an extensive/detailed experimental data and com-
parisons of performance (Section 5), in particular when it comes to choose the leaf com-
putation kernel of the Winograd’s algorithm, the kernel performance for relatively small
matrices is the most important factor (e.g., N = 1000) and not the best asymptotic perfor-
mance (e.g., N = 3000). Second, we provide a quantitative evaluation of the numerical
stability of our algorithm and a comparison with other implementations such as in Goto-
BLAS, ATLAS or Strassen’s algorithm (Section 5.4). Third, we extend our algorithm to

2Notice that the temporary matrix S is used to store MAs involving only submatrices of A, T is used to store
MAs involving only submatrices of T, and U2 for C.

ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

Adaptive Winograd’s Matrix Multiply · 7

deal with the important multicore systems now emerging (Section 5.3).

4. ALGORITHM INSTALLATION AND EXPERIMENTAL SETUP

To make our algorithm self-installing we proceed as follows. For every machine, we
installed both GotoBLAS (Ver. 1.6.0) and ATLAS (Ver. 3.7.1). The installation time is
minimal because these libraries have been configured already. We installed our codes in
conjunction with these libraries. Each hybrid version uses either ATLAS or GotoBLAS
for the leaf computations in our version of Winograd’s algorithm, so we have two imple-
mentations that we identify as follows: W-Goto for the hybrid adaptive Winograd using
GotoBLAS; and W-ATLAS for the hybrid adaptive Winograd using ATLAS. For con-
ciseness, we identify the pure GotoBLAS MM as simply Goto and pure ATLAS MM as
ATLAS.

Our setting-up process follows these steps:

(1) Recursion point estimation. First, we determine the execution time Tmm of Go-
toBLAS and ATLAS MM for matrices of size 1000×1000, which is in practice a
problem size where MM does not fit in the caches of the surveyed machines, the MM
performance reaches the architecture limits and where Winograd’s algorithm could
start being beneficial. We compute π = 2 ∗ 10003/Tmm (the actual MM floating
point per second FLOPS, which is usually varies only slightly for problem larger
than 1000×1000). Then, we measure the execution time Tma, which is the esti-
mate overhead due to MA for Winograd’s algorithm, of MA for matrices 1000×1000
and we compute α = 10002/Tma (which will have negligible variations, and thus
can be approximated as an experimentally derived-constant for problems larger than
1000×1000). As an approximation, we use the formula n1 ≥ 22πα [D’Alberto and
Nicolau 2005a] to estimate the recursion point. That is, the point (matrix size) when
the execution time of 22 MAs of matrices of size n1×n1 (i.e., 22

α seconds) is equal to
the execution time of one MM (i.e., 1

π seconds) the time we save if we use Strassen/Winograd’s
algorithm. This is the matrix size when Strassen/Winograd yields control to Goto-
BLAS/ATLAS.

(2) Search and evaluation. Empirically, we perform a linear search starting from n =
22πα (thus reducing the search space): we increment n (size of a square matrix n×n)
until the execution time of Goto or ATLAS is slower than W-Goto/W-ATLAS with
one level of recursion always applied. We find the practical recursion point ṅ1. In
practice, n1 > 22πα (even for Winograd’s algorithm requiring only 18 MAs) because
the term 22πα accounts for the MAs and 7 MMs performance contributions in the
Winograd’s algorithm in isolation, instead, in the implementation, the MAs disrupt
locality of the 7 MMs and the time saved is practically less than the time of a single
MM in isolation; thus, we achieve the performance balance only for larger problem
sizes (n1). The recursion point is determined at this stage and used at run time. 3

(3) Code installation. We compile and install the hybrid adaptive W-Goto and W-
ATLAS codes, where they yield control to Goto and ATLAS respectively, for prob-
lems such that one matrix operand size is smaller than the practical recursion point

3The authors in [Huss-Lederman et al. 1996] and ourselves [D’Alberto and Nicolau 2007] investigated the rela-
tion between problem sizes and recursion point in general and dynamically at run time. This requires a run time
adaptation and this is beyond the scope of this work.

ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

8 · Paolo D’Alberto and Alexandru Nicolau

ṅ1. The compiler used in this work is gcc with optimization flags -O2 -Wall -march=*
-mtune=* -msse2. The code is available on-line http://www.ics.uci.edu/∼fastmm/ or
email fastmm@ics.uci.edu.

4.1 Measurement methodology

We select a set of problem sizes representing square and rectangular MMs. For example,
given a matrix multiply C = AB with σ(A)=m×n and σ(B)=n×p, we characterize
this problem size by a triplet s = [m,n, p]. We investigate the input space s∈T × T ×
T with T={500 1000 2000 3000 4000 5000 6000} (i.e., A ∗ B of size σ(A)=m×n and
σ(B)=n×p with m,n, p ∈ T). Given the input set, we measure the execution times.
Naturally, this would be a 4-dimensional plot, because the problem is specified by s and
its MM(s) performance. We present all 2-dimensional plots where the problem is specified
by the number of operations 2mnp. Thus, differently shaped matrices will have the same
number of operations and thus the same value in the abscissa. However, they can have
different performance. 4

We chose to present two performance measures: normalized GFLOPS and relative time.
Normalized GFLOPS. The complexity of Winograd’s algorithm has asymptotic com-

plexity O(n2.81) operations and the classic algorithm has 2n3. In practice for our hybrid
algorithm, the number of operations depends on how many times the algorithm recursively
divides the problem, which is a function of the problem size, architecture, and performance
of the leaf MM. For both the classic algorithm (i.e., Goto/ATLAS) and our algorithm (i.e,
W-Goto/W-ATLAS), we set the normalized GFLOPS (Giga Floating Point Operations per
second) performance as (2mnp/T ime)/109 where Time is the execution time of the MM
under examination (e.g., TimeGoto execution time of Goto or TimeW−Goto execution
time of W-Goto). The advantage of using such a normalized performance is threefold:
first, we can plot clearly the performance of very small and very large problems in the
same chart; second, this measure maintains the execution-time order among the algorithms
(e.g., higher normalized GFLOPS means faster time and vice versa); the normalized per-
formance for Goto/ATLAS specifies the distance to reach the architecture throughput or
peak performance (i.e., operation per second usually available in the processor/machine
manual). However, the normalized GFLOPS performance overestimates the GFLOPS of
our algorithms, because the actual number of floating-point operations is less than 2mnp.

Relative Time. Given a reference algorithm, for example Goto, we determine the
relative time reduction by our algorithm, for example W-Goto, as 100 ∗ (TimeGoto −
TimeW−Goto)/T imeGoto. The best relative improvement is 100 and the minimum is
−∞. This measure makes crystal clear the performance advantage of our algorithm; how-
ever, such a measure must be used in combination with the normalized GFLOPS perfor-
mance in order to emphasize that we can improve an algorithm that already achieves peak
performance and thus its performance limits.

5. PERFORMANCE EVALUATION

In this section, we present experimental results for our hybrid algorithms and we present
three important aspects of our code performance. First, our hybrid adaptive Winograd al-
gorithms are faster than both the best GotoBLAS and ATLAS MM. For problems larger

4GotoBLAS is relatively un-affected by the matrix shape

ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

Adaptive Winograd’s Matrix Multiply · 9

than 3000×3000, our algorithm is faster than every DGEMM implementations. Our algo-
rithm’s maximal performance cannot be matched by any classical GEMM implementation,
because such a GEMM would exceed the theoretical peak FLOP rate of the machine. Sec-
ond, even though ATLAS on its own is slower than Goto on its own, nevertheless, for
one Opteron system our algorithm deploys ATLAS MM to achieve the best performance
(because for matrices of sizes 1000 × 1000, which is what our leaf computation uses,
ATLAS provides better performance than the GotoBLAS). Third, we extend and apply a
scalable hybrid algorithm for a common multicore multi-processor desktop and show our
performance advantage.

In Table I, we present the three machines we used and the minimum problems size when
Winograd’s algorithm is profitable. The HP xw9300 is a multicore system and each proces-
sor can be used separately (Section 5.2) or together (Section 5.3) and thus having different
recursion points. In Table II, we summarize the performance and relative improvements
for each processor and, thus two configurations are related to the multicore system HP
xw9300. In the following subsections, we discuss the results in detail.

Table I. Systems and recursion points: π is the performance of DGEMM on matrices of size 1000×1000 in
MFLOPS; α is the performance of MA in MFLOPS; n1 is the theoretical recursion point as estimated in 22 π

α
;

instead, ṅ1 is the measured recursion point.

System Processors π α n1=22 π
α

ṅ1 Figure
HP xw9300 Opteron 2.2GHz 3680 104 810 950 Fig. 3
- Opteron 4 cores 2.2GHz - - - 1300 Fig. 5
Altura 939 Athlon64 2.45GHz 4320 110 860 900 Fig. 2
Optiplex GX280 Pentium 4 3.2GHz 4810 120 900 1000 Fig. 1

Table II. Processors and performance

Processors Peak Best DGEMM Best Winograd Average Best
GFLOPS GFLOPS Norm. GFLOPS Relative Relative

Opteron 1@2.2GHz 4.4 4 5 7.39% 22%
Athlon64 2.45GHz 4.9 4.4 5.7 8.33% 23%
Pentium 4 3.2GHz 6.4 5.5 7.1 7.55% 21%
Opteron 4@2.2GHz 17.6 15.6 19.5 11.8% 19%

5.1 W-Goto

In this section, we present evidence that W-Goto is faster than the current best implemen-
tation (i.e., using only GotoBLAS/ATLAS) and better than any implementation based on
the classic matrix multiply (i.e., any future MM implementation of complexity O(N3)).
We present experimental results for two architectures commonly used in desktops —i.e.,
Pentium 4 3.2 GHz and Athlon64 2.45 GHz— and we compare the actual performance of
fast algorithms w.r.t. the GotoBLAS DGEMM, which is optimized for these machines and
faster than ATLAS alone.

ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

10 · Paolo D’Alberto and Alexandru Nicolau

Given a matrix multiply C = AB with σ(A)=m×n and σ(B)=n×p, we characterize
this problem size by a triplet s = [m,n, p]. We investigated the input space s∈T×T×T
with T={500 1000 2000 3000 4000 5000 6000}.

Optiplex GX280: Pentium 4 3.2 GHz. This is a single core Pentium 4 3.2 GHz system
with 1GHz bus and a stand alone desktop running Kubuntu Linux. For matrices of size
1000×1000, GotoBLAS MM achieves 4.8 GFLOPS (π) and achieves 5.5 GFLOPS as
peak/best performance. For matrices 1000×1000, matrix addition achieves 120 MFLOPS
(α). This suggests that Winograd’s algorithm should have a recursion point at about 900
(22πα). In practice, the recursion point is at 1000.

W-Goto has on average 7.55% relative time improvement, and achieves 7.10 Normal-
ized GFLOPS best performance (i.e., Normalized GFLOPS is computed as 2mnp/T ime,
instead of the effective number of operation of Winograd’s algorithm, Section 4.1). This
yields an improvement up to 21% for large problems.

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350 400 450

Billion operations

Goto
W-Goto
Peak

Normalized GFLOPS

-5

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450
Billions Operations

100(TimeGoto - TimeW-Goto)/TimeGoto

Fig. 1. Pentium 4 3.2GHz: GFLOPS and Relative Performance

In Figure 1, we present the normalized performance of the two algorithms. We present
also the relative time saving using W-Goto. Notice that the peak performance of this
machine is 6.4 GFLOPS and our algorithm can achieve 7.10 Normalized GFLOPS.

Altura 939: Athlon64 2.45 GHz. This is a single core Athlon64 2.45 GHz with a 1 GHz
front bus and a stand alone desktop running Kubuntu. For matrix sizes of 1000×1000, Go-
toBLAS MM achieves 4.3 GFLOPS and a best performance of 4.46 GFLOPS. For matrices
1000×1000, matrix addition achieves 110 MFLOPS. This suggests that Winograd’s algo-
rithm should have a recursion point at about 860. In practice, the recursion point is at
900.

W-Goto has on average 8.23% relative time improvement, and achieves the best perfor-
mance of 5.7 Normalized GFLOPS. This yields an improvement up to 23%.

In Figure 2, we present the normalized performance of the two algorithms (Goto and
W-Goto) and the relative time saving using the W-Goto. Notice how the W-Goto perfor-
mance is such that no classic matrix multiplication can match our performance, because
the peak performance of the system is 5 GFLOPS.
ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

Adaptive Winograd’s Matrix Multiply · 11

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400 450

Billions Operations

Goto
W-Goto
Peak

Normalized GFLOPS

-5

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

Billions Operations

100(TimeGoto-TimeW-Goto)/TimeGoto

Fig. 2. Athlon64 2.45GHz.

5.2 W-Goto vs. W-ATLAS

In the following, even though GotoBLAS is the fastest conventional algorithm for this
system (as it is for the Pentium 4 and slightly faster for the Athlon64), we demonstrate that
in our hybrid versions we should use ATLAS MM instead. We investigated the input space
s∈T×T×T with T={500 1000 2000 3000 4000 5000 6000}.

HP xw9300: 1-Core Opteron 2.2 GHz. This is a 2 dual-core Opteron processor 2.2
GHz system with a 1 GHz front bus and a stand alone desktop running Kubuntu. For matrix
sizes of 1000×1000, GotoBLAS MM achieves 3.6 GFLOPS and the best performance ob-
tained by GOTOBLAS on this machine is 4.03 GFLOPS. For matrix sizes of 1000×1000,
ATLAS’s matrix multiply achieves 3.9 GFLOPS which is also its best performance for
this machine. Thus, ATLAS achieves better performance for small matrices, however falls
behind for larger ones when compared to GotoBLAS.

For matrices 1000×1000, matrix addition MA achieves 104 MFLOPS. This suggests
that Strassen’s algorithm should have a recursion point at about 810. In practice, the recur-
sion point is at 950.

If we deploy GotoBLAS MM as leaf computation for the fast algorithms, W-Goto has
on average 4.78% relative time improvement and it achieves 4.83 Normalized GFLOPS.
This algorithm has an improvement of up to 16% relative execution time.

However, if we deploy ATLAS, W-ATLAS has on average 7.39% relative time im-
provement (w.r.t. Goto) and achieves 5.07 Normalized GFLOPS. This in turn yields an
improvement of up to 22% relative execution time.

In Figure 3, we present the normalized performance of the four algorithms: Goto, AT-
LAS, W-ATLAS and W-Goto. W-ATLAS performance is such that no classic matrix
multiplication can match our performance, because the architecture peak is 4.4 GFLOPS.

5.3 Extension to Multicore processors: 2 Dual-Core Processor

Multicore multiprocessor systems are becoming ubiquitous. They represent small-scale
parallel architectures in standalone state-of-the-art desktops. For example, we consider
an AMD 2-dualcore processor Opteron 275 system. Each processor has two cores on the
same die. A core has a separate memory hierarchy composed of two levels: the first level
is composed of a data and an instruction cache (64KB each) and a unified second level
(1MB). Inter-processor communication is performed through a dedicated interconnection

ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

12 · Paolo D’Alberto and Alexandru Nicolau

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350 400 450

Billions Operations

W-ATLAS
W-Goto
Goto
ATLAS

Normalized GFLOPS

-5

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

Billions Operations

W-ATLAS
W-Goto

100(TimeGoto - TimeW)/TimeGoto

0

1

2

3

4

5

500 1000 2000 3000 4000 5000 6000

N

W-ATLAS
W-Goto
ATLAS
Goto
Peak

Normalized GFLOPS

Fig. 3. Opteron 2.2GHz: (top left) Absolute performance for rectangular matrices, (top right) relative performance
for rectangular matrices, and (bottom) absolute performance for square matrices.

directly from the cores. Memory-core connection is separate and the memory is up to 2
GByte (for this system).

We present a parallel algorithm (Figure 4) that scales up relative well for multicore ar-
chitectures. The parallel algorithm employs the hierarchical division process expressed in
Equation 1. The algorithm divides the problem in four subproblems, thus it allocates a
balanced work to each core and distributes data so as to optimize both the data commu-
nication among processors (i.e., minimize communication) and the common data among
cores (i.e., exploit local memory and caches). If more processors and cores are available,
we can recursively divide each subproblem and perform a similar allocation. In practice, it
is not arbitrarily scalable as for large numbers of processors the inter-processor/core band-
width, and data distribution will be a significant bottleneck and thus decrease performance.
Rather, this is a natural extension of our basic algorithm, that performs very well for current
limited parallelism state-of-the-art multicores.

The parallel-algorithm description. We start with one basic task (or process): the
mother of all tasks. The mother starts two tasks: T0 and T1. Mother moves T0 to processor
P0 and T1 to P1. Each processor has two cores. The operands are distributed as follows:
C0, C1, A0, A1, B are allocated within T0 thus processed using processor P0; C2, C3,
A2, A3, and B are allocated within T1, thus processed by P1. Notice that B is duplicated
in both processors.

The data is allocated at this time. That is, T0 and T1 make an explicit call to malloc() (or
ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

Adaptive Winograd’s Matrix Multiply · 13

Fig. 4. Hierarchical Parallel Algorithm

cmalloc()). While malloc() does not initialize the data it assures the data association to the
processor. Thus, data will be stored into the memory closest to the processor.
T0 spawns two tasks X0 and X1 that share the same virtual space. X0 is associated with

CPU0, and X1 with CPU1. T1 spawns two tasks as well X2 and X3 (CPU2, CPU3).
X0 is responsible to compute C0 = A0B0 + A1B2, and X1 is responsible to compute
C1 = A0B1 + A1B3 (similar for X2 and X3).

In such a scenario, tasks in different processors do not communicate. Both CPUs in
each processor have tasks that share the same memory space and the same data of A and
B and compute a basic computation such as C0 = A0B0 + A1B2 once. We shall present
the execution time such that starting from the spawn of tasks T0 and T1 to a barrier that
specifies the end of the main computation of X0, X1, X2, and X3. In this scenario, the
computation of tasks Xi dominates the overall execution time.

Notice that the division process and the data allocation is performed such that we can
benefit from the shared memory space without explicit data movement to/from different
processors keeping the programming simple and very close to what a sequential algorithm
would be.

HP xw9300: 4-Cores Opteron 2.2 GHz. We investigated the input space s∈T×T×T
with T={3000 5000 6000 7000 8000 10000 11000 12000 13000 14000} and we apply this par-
allel algorithm presented here. That is, the cores will compute MM on matrices of size
between 1500×1500 and 7000×7000. At core level (CPU) we adopt W-ATLAS. The
parallel solution that deploys ATLAS only achieves 15.6 GFLOPS performance.

Empirically, the recursion point for W-ATLAS to yield to ATLAS is at about 1300,
which is larger than the single core system (i.e., where it is about 950). To feed two cores
during MAs, which are memory bound, implies that memory and interconnection speeds
are not fast enough, and we have to adjust our strategy. For our system, the recursion point
is taken care of during installation and no further modifications are necessary w.r.t. the
single core case.

W-ATLAS has on average 11.8% time reduction and it achieves 19.5 Normalized GFLOPS
(i.e., Normalized GFLOPS is computed as 2mnp/T ime, instead of the effective number
of operation of Winograd’s algorithm, Section 4.1). Thus, we achieve improvements of up

ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

14 · Paolo D’Alberto and Alexandru Nicolau

to 19% relative to execution time. The parallel solution achieves faster than peak perfor-
mance, however the asymptotic improvement is smaller than the single core system (i.e.,
22% relative execution time improvement). This is due to the larger recursion point (1300
instead of 950) and its effects on the performance of W-ATLAS on each core. In principle,
if the recursion point for the parallel version would increase even further we should deploy
GotoBLAS instead of ATLAS. Due to space limitations we choose to show the graphs for
only the better performing (W-ATLAS instead of W-Goto) codes.

0

2

4

6

8

10

12

14

16

18

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Trillions Operations

W-ATLAS
ATLAS
Peak

Normalized GFLOPS

-5

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Trillions Operations

100(TimeATLAS - TimeW-ATLAS)/TimeATLAS

Fig. 5. 2 dual-core processor system: Opteron 2.2GHz

In Figure 5, we present the normalized performance and relative performance of the two
parallel algorithms (ATLAS and W-ATLAS). Notice how the W-ATLAS performance is
such that no classic matrix multiplication can match our performance, because the peak
performance of the system is 17.6 GFLOPS.

5.4 Error evaluation

As an example, fast MM algorithms find application in iterative methods for the solution
of equation systems (e.g., in the matrix factorization and determination of the starting
solution) where the iterative-algorithm convergence is independent of the starting solution
and the natural feedback of the method keeps the error under control. In the literature, there
is clear evidence of the practical stability of fast algorithms such as Winograd’s algorithm
[Demmel and Higham 1992; Higham 2002], which are known to be weakly stable as we
reiterate the definition in the following (Equation 2).

Nevertheless, the stability of fast algorithms is an issue that always raises questions.
As a final contribution, we now turn to the study of the stability of our algorithm and,
by experimentation, we offer a graphical, quantitative, and practical representation of the
numerical stability of our algorithm. We start with the known upper-bound of the numerical
error. Then, for classes of matrices, we show how far our algorithm may go from these
upper bounds .

An upper bound to the error of Winograd’s algorithm is (Theorem 23.3 [Higham 2002]):

‖C− Ċ‖ ≤
[(n
n1

)log2 18

(n2
1 + 6n1)− 6n

]
u‖A‖‖B‖+O(u2) (2)

where σ(A)=σ(B)=σ(C)=n×n, ‖A‖= maxij |aij |, n1 is the size where Winograd’s al-
gorithm yields to the usual MM, C is the exact output (C = A ∗exact B) and Ċ is the
ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

Adaptive Winograd’s Matrix Multiply · 15

computed output (using Winograd’s algorithm Ċ = A ∗w B), and u is the inherent float-
ing point precision. If we define the recursion depth as ` (i.e., the number of times we
divide the problem using Winograd’s division), this upper bound can be approximated as

‖C− Ċ‖ ≤ 4.5`n2u‖A‖‖B‖+O(u2) (3)

Similarly, Strassen’s algorithm has an upper bound of 3`n2u‖A‖‖B‖ + O(u2). In com-
parison, the forward error of the conventional computation of matrix multiplication is

|C− Ċ| ≤ nu|A||B| and ‖C− Ċ‖ ≤ n2u‖A‖‖B‖ (4)

That is, the norm-wise error of the Winograd’s MM increases by a factor of 4.5` w.r.t. the
conventional algorithm (Equation 4 norm-wise bound) as we divide the problem further.
For all the architectures and problem sizes we have investigated, ` is less than 3; thus for
practical purposes, both terms 4.5` and 3` are bound by a constant.

These bounds are tight; that is, there are matrices for which the actual error is close to
the bound. 5

Here, we use the experiments and the approach used by Higham to quantify empirically
and illustrate graphically that the error experienced in practice could be far less than the
upper bound analysis suggests in Equation 2, which can be extremely pessimistic.

Input. We restrict the input matrix values to a specific range or intervals: [−1, 1] and
[0, 1]. We then initialize the input matrices using a uniformly distributed random number
generator. This type of input reduces the range of the MM so that ‖AB‖ ≤ n‖A‖‖B‖ ≤
n, and basically, the error bound is a function of only the problem size and it is independent
of the matrix values. The same operand values [−1, 1] and [0, 1] are used by Higham and
presented in Ch. 23 [Higham 2002]. Notice that probability matrices have range [0,1] and
thus they represent a practical case where the upper-bound and quantitative evaluation is
not just a speculation. In practice, we could choose matrix operands to make the products
|A||B| and ‖A‖‖B‖ arbitrarily large, and thus the error arbitrarily large; however, in the
same fashion, matrix scaling can be applied to normalize matrices to the range investigated.

Reference DCS. Consider the output C=AB. We compute every element cij by per-
forming first a dot product of the row vector ai∗ by the column vector b∗j and we store
it into a vector z. Then, we sort the vector in decreasing order such that |zi| ≥ |zj | with
i < j [Li et al. 2005]. Finally, we compute the reference output using Priest’s doubly
compensated summation (DCS) procedure [Priest 1991] as described in Algorithm 4.3
of [Higham 2002] in double precision. This is our baseline or ultimate reference C in
Equation 2.

Architecture. We consider our adaptive hybrid algorithm for the Opteron based archi-
tecture and we use the same architecture to evaluate the error analysis.

Comparison. We compare the output-value difference (w.r.t the DCS based MM) of Go-
toBLAS algorithm, W-Goto, S-Goto (Strassen’s algorithm using Goto’s MM), ATLAS,
W-ATLAS, S-ATLAS (Strassen’s algorithm using ATLAS’s MM), and the classic row-
by-column algorithm (RBC) (for which the summation is not compensated and the values
are not ordered in any way and it is the BLAS FORTRAN reference www.netlib.org/blas/).

In Figure 6, 7 and 8, we show the error evaluation w.r.t. the DCS MM for square matrices
only, and the results confirm previous published results [Higham 2002].

5As there are matrices for which LU factorization with partial pivoting has the elements of factor U ∈ Rn×n
increasing as 2n.

ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

16 · Paolo D’Alberto and Alexandru Nicolau

Max Error Comparison [0,1]

0

1E-11

2E-11

3E-11

4E-11

5E-11

1200 1300 1400 2500 2600 3000 3200 4000 5000 6000

N

Max Error w.r.t. DCS

ATLAS
S_ATLAS
W-ATLAS
Goto
S-Goto
W-Goto
RBC

Max Relative Error [0,1]

1.0E-16

1.0E-15

1.0E-14

1.0E-13

1200 1300 1400 2500 2600 3000 3200 4000 5000 6000

N

Log Error w.r.t. DCS

ATLAS
S_ATLAS
W-ATLAS
Goto
S-Goto
W-Goto
RBC

Fig. 6. Opteron 270: Error evaluation matrices in the range [0, 1]

Max error comparison [-1,1]

0

1E-12

2E-12

3E-12

4E-12

5E-12

1200 1300 1400 2500 2600 3000 3200 4000 5000 6000

N

Max Error w.r.t. DCS

ATLAS
S_ATLAS
W-ATLAS
Goto
S-Goto
W-Goto
RBC

Max Relative Error [-1,1]

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1200 1300 1400 2500 2600 3000 3200 4000 5000 6000

N

Log Error w.r.t. DCS

ATLAS
S_ATLAS
W-ATLAS
Goto
S-Goto
W-Goto
RBC

Fig. 7. Opteron 270: Error evaluation matrices in the range [−1, 1]

Multiplicative factor ATLAS

0

1

2

3

4

5

6

7

8

1200 1300 1400 2500 2600 3000 3200 4000 5000 6000

N

S_ATLAS+
W-ATLAS+
S_ATLAS
W-ATLAS

Multiplicative factor Goto

0

5

10

15

20

25

1200 1300 1400 2500 2600 3000 3200 4000 5000 6000

N

S-Goto+
W-Goto+
S-Goto
W-Goto

Fig. 8. Opteron 270: Error multiplicative factor. For example, W-ATLAS+ and W-Goto+ represent the multi-
plicative error factors for positive matrices only

As we expected, as the number of recursive calls increases, so does the error. However,
the magnitude of the error is small. For Strassen’s algorithm the error ratio of S-Goto
over Goto is no larger than 15 (instead of the upper bound 33 = 27) for both ranges
ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

Adaptive Winograd’s Matrix Multiply · 17

[0, 1] and [−1, 1]; that is, we lose only one significant decimal digit of the 16 available.
For the range [−1, 1], the error ratio of W-Goto over Goto is no larger than 25 (instead
of 4.53 = 91, loss of 1 1

4 decimal digit instead of almost 2), and for the range [0, 1] the
error ratio is no larger than 1.5; that is, we have no practical loss (see Figure 8). Also, the
multiplicative error factors for the implementations using ATLAS are even more moderate
(less than 8); however, ATLAS based codes have larger maximum and maximum relative
error. 6 Nonetheless, these error ratios are less dramatic than what an upper bound analysis
suggest.

In our experiments, we have found that for matrices with values in the range [−1, 1],
Strassen’s algorithm has better accuracy than Winograd’s, and for the range [0, 1] the sit-
uation is reversed. Previously, [Higham 2002] has shown similar accuracy relationship
among Strassen’s, Winograd’s and the conventional algorithm for power-of-two matrices.

In summary, Winograd’s algorithm has empirically comparable stability as that of Goto
or ATLAS, and Strassen’s algorithm loses one digit (out of 16) of precision, making both
our hybrid algorithms usable in many applications and arbitrary sizes.

6. CONCLUSIONS

In this paper, we present a novel Winograd’s hybrid variant of Strassen’s fast matrix multi-
ply for arbitrarily shaped matrices. We demonstrate the performance of this algorithm for
single and multi core processors and we show the minimum problem size for which our
algorithm is beneficial. We present evidence that for matrices larger than 3000×3000 our
hybrid Winograd algorithm achieves performance that no classic algorithm will match.

Our hybrid version of Winograd’s algorithm is weakly stable and it is not (in practice)
unstable. It is also faster than previous hybrids, it is applicable to irregular shapes and sizes
in either row or column major order, and it is ultimately simpler to implement/understand.
In the literature, several authors have justified the use of fast algorithms in combination
with the classic algorithm (e.g., [Higham 2002]). We show that when the problem is not ill
conditioned the error introduced by our algorithm is under control and the weak stability
of the algorithm should not be used for a priori deterrent against its use. In line with
[Demmel and Higham 1992], we conclude that the algorithm we propose is viable in most
applications as the error introduced will be too small to matter.

In the appendix, we present an excerpt of our codes of Winograd’s algorithm and matrix
addition, but the code is available on line, please send email to fastmm@ics.uci.edu or to
look up experimental results for complex matrices visit us at http://www.ics.uci.edu/˜fastmm.

Acknowledgments. The first author worked on this project during his post-doctorate
fellowship in the SPIRAL Project at the Department of Electric and Computer Engineering
in the Carnegie Mellon University and his work was supported in part by DARPA through
the Department of Interior grant NBCH1050009.

We would like to acknowledge the reviewers and the editors for their helpful, clear,
detailed, and very well formulated suggestions that ultimately improved this manuscript.

6Probably, because Goto’s DGEMMs use a larger tiling —i.e., tailored for the L2 cache— than ATLAS —i.e.,
tailored for L1 cache— thus exploiting more reuse at register level and exploiting the 90-bit extended precision
of the MSSE register file further.

ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

18 · Paolo D’Alberto and Alexandru Nicolau

REFERENCES

ANDERSON, E., BAI, Z., BISCHOF, C., DONGARRA, J. D. J., DUCROZ, J., GREENBAUM, A., HAMMARLING,
S., MCKENNEY, A., OSTROUCHOV, S., AND SORENSEN, D. 1995. LAPACK User’ Guide, Release 2.0, 2 ed.
SIAM.

BILARDI, G., D’ALBERTO, P., AND NICOLAU, A. 2001. Fractal matrix multiplication: a case study on porta-
bility of cache performance. In Workshop on Algorithm Engineering 2001. Aarhus, Denmark.

BILMES, J., ASANOVIC, K., CHIN, C., AND DEMMEL, J. 1997. Optimizing matrix multiply using PHiPAC: a
portable, high-performance, Ansi C coding methodology. In Proceedings of the annual International Confer-
ence on Supercomputing.

BLACKFORD, L. S., DEMMEL, J., DONGARRA, J., DUFF, I., HAMMARLING, S., HENRY, G., HEROUX, M.,
KAUFMAN, L., LUMSDAINE, A., PETITET, A., POZO, R., REMINGTON, K., AND WHALEY, R. C. 2002. An
updated set of basic linear algebra subprograms (BLAS). ACM Transactions on Mathemathical Software 28, 2,
135–151.

BRENT, R. P. 1970a. Algorithms for matrix multiplication. Tech. Rep. TR-CS-70-157, Stanford University.
Mar.

BRENT, R. P. 1970b. Error analysis of algorithms for matrix multiplication and triangular decomposition using
Winograd’s identity. Numerische Mathematik 16, 145–156.

CHATTERJEE, S., R., A., PATNALA, P., AND THOTTETHODI, M. 2002. Recursive array layouts and fast matrix
multiplication. IEEE Transactions on Parallel Distributed Systems 13, 11, 1105–1123.

COHN, H., KLEINBERG, R., SZEGEDY, B., AND UMANS, C. 2005. Group-theoretic algorithms for matrix
multiplication.

COPPERSMITH, D. AND WINOGRAD, S. 1987. Matrix multiplication via arithmetic progressions. In Proceed-
ings of the 19th annual ACM conference on Theory of computing. 1–6.

D’ALBERTO, P. AND NICOLAU, A. 2005a. Adaptive Strassen and ATLAS’s DGEMM: A fast square-matrix
multiply for modern high-performance systems. In The 8th International Conference on High Performance
Computing in Asia Pacific Region (HPC asia). Beijing, 45–52.

D’ALBERTO, P. AND NICOLAU, A. 2005b. Using recursion to boost ATLAS’s performance. In The Sixth
International Symposium on High Performance Computing (ISHPC-VI).

D’ALBERTO, P. AND NICOLAU, A. 2007. Adaptive Strassen’s matrix multiplication. In Proceedings of the 21st
annual international conference on Supercomputing. ACM, New York, NY, USA, 284–292.

DEMMEL, J., DONGARRA, J., EIJKHOUT, E., FUENTES, E., PETITET, E., VUDUC, V., WHALEY, R., AND

YELICK, K. 2005. Self-Adapting linear algebra algorithms and software. Proceedings of the IEEE, special
issue on ”Program Generation, Optimization, and Adaptation” 93, 2.

DEMMEL, J., DUMITRIU, J., HOLTZ, O., AND KLEINBERG, R. 2006. Fast matrix multiplication is stable.
DEMMEL, J. AND HIGHAM, N. 1992. Stability of block algorithms with fast level-3 BLAS. ACM Transactions

on Mathematical Software 18, 3, 274–291.
DONGARRA, J. J., CROZ, J. D., DUFF, I. S., , AND HAMMARLING, S. 1990a. Algorithm 679: A set of level 3

Basic Linear Algebra Subprograms. ACM Transactions on Mathemathical Software 16, 18–28.
DONGARRA, J. J., CROZ, J. D., DUFF, I. S., , AND HAMMARLING, S. 1990b. A set of level 3 Basic Linear

Algebra Subprograms. ACM Transactions on Mathemathical Software 16, 1–17.
DOUGLAS, C., HEROUX, M., SLISHMAN, G., AND SMITH, R. 1994. GEMMW: A portable level 3 BLAS

Winograd variant of Strassen’s matrix–matrix multiply algorithm. J. Comp. Phys. 110, 1–10.
EIRON, N., RODEH, M., AND STEINWARTS, I. 1998. Matrix multiplication: a case study of algorithm engineer-

ing. In Proceedings WAE’98. Saarbru̇cken, Germany.
FRENS, J. AND WISE, D. 1997. Auto-Blocking matrix-multiplication or tracking BLAS3 performance from

source code. Proc. 1997 ACM Symp. on Principles and Practice of Parallel Programming 32, 7 (Jul.), 206–
216.

FRIGO, M. AND JOHNSON, S. 2005. The design and implementation of FFTW3. Proceedings of the IEEE,
special issue on ”Program Generation, Optimization, and Adaptation” 93, 2, 216–231.

GOTO, K. AND VAN DE GEIJN, R. 2008. Anatomy of high-performance matrix multiplication. ACM Transac-
tions on Mathematical Software 34, 3, 1–25.

GRAYSON, B., SHAH, A. P., AND VAN DE GEIJN, R. 1995. A high performance parallel Strassen implementa-
tion. Tech. Rep. CS-TR-95-24. 1,.

ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

Adaptive Winograd’s Matrix Multiply · 19

GUNNELS, J., GUSTAVSON, F., HENRY, G., AND VAN DE GEIJN, R. 2001. FLAME: Formal Linear Algebra
Methods Environment. ACM Transactions on Mathematical Software 27, 4 (Dec.), 422–455.

HIGHAM, N. 1990. Exploiting fast matrix multiplication within the level 3 BLAS. ACM Transactions on
Mathematical Software 16, 4, 352–368.

HIGHAM, N. 2002. Accuracy and Stability of Numerical Algorithms, Second Edition. SIAM.
HUSS-LEDERMAN, S., JACOBSON, E., JOHNSON, J., TSAO, A., AND TURNBULL, T. 1996. Strassen’s algo-

rithm for matrix multiplication: Modeling analysis, and implementation. Tech. Rep. CCS-TR-96-14, Center
for Computing Sciences.

HUSS-LEDERMAN, S., JACOBSON, E., TSAO, A., TURNBULL, T., AND JOHNSON, J. 1996. Implementation
of Strassen’s algorithm for matrix multiplication. In Proceedings of the 1996 ACM/IEEE conference on Su-
percomputing (CDROM). ACM Press, 32.

KAGSTROM, B., LING, P., AND VAN LOAN, C. 1998a. Algorithm 784: GEMM-based level 3 BLAS: portability
and optimization issues. ACM Transactions on Mathematical Software 24, 3 (Sept), 303–316.

KAGSTROM, B., LING, P., AND VAN LOAN, C. 1998b. GEMM-based level 3 BLAS: high-performance model
implementations and performance evaluation benchmark. ACM Transactions on Mathematical Software 24, 3
(Sept), 268–302.

KAPORIN, I. 1999. A practical algorithm for faster matrix multiplication. Numerical Linear Algebra with
Applications 6, 8, 687–700. Centre for Supercomputer and Massively Parallel Applications, Computing Centre
of the Russian Academy of Sciences, Vavilova 40, Moscow 117967, Russia.

KAPORIN, I. 2004. The aggregation and cancellation techniques as a practical tool for faster matrix multiplica-
tion. Theoretical Computuer Science 315, 2-3, 469–510.

LAWSON, C. L., HANSON, R. J., KINCAID, D., AND KROGH, F. T. 1979. Basic Linear Algebra Subprograms
for FORTRAN usage. ACM Transactions on Mathemathical Software 5, 308–323.

LI, X., GARZARAN, M., AND PADUA, D. 2005. Optimizing sorting with genetic algorithms. In In Proceedings
of the International Symposium on Code Generation and Optimization. 99–110.

NGUYEN, D., I.LAVALLEE, M.BUI, AND Q.HA. 2005. A general scalable implementation of fast
matrix multiplication algorithms on distributed memory computers. In Proceedings Sixth Interna-
tional Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing and First ACIS International Workshop on Self-Assembling Wireless Networks. 116–122.
http://doi.ieeecomputersociety.org/10.1109/SNPD-SAWN.2005.2.

OHTAKI, Y., TAKAHASHI, D., BOKU, T., AND SATO, M. 2004. Parallel implementation of Strassen’s matrix
multiplication algorithm for heterogeneous clusters. In Proceedings of the 18th International Parallel and
Distributed Processing Symposium. 112. http://doi.ieeecomputersociety.org/10.1109/IPDPS.2004.1303066.

PAN, V. 1978. Strassen’s algorithm is not optimal: Trililnear technique of aggregating, uniting and canceling for
constructing fast algorithms for matrix operations. In Foundation of Computer Science. 166–176.

PAN, V. 1984. How can we speed up matrix multiplication? SIAM Review 26, 3, 393–415.
PANDA, P., NAKAMURA, H., DUTT, N., AND NICOLAU, A. 1999. Augmenting loop tiling with data alignment

for improved cache performance. IEEE Transactions on Computers 48, 2, 142–149.
PRIEST, D. 1991. Algorithms for arbitrary precision floating point arithmetic. In Proceedings of the 10th IEEE

Symposium on Computer Arithmetic (Arith-10), P. Kornerup and D. W. Matula, Eds. IEEE Computer Society
Press, Los Alamitos, CA, Grenoble, France, 132–144.

PÜSCHEL, M., MOURA, J., JOHNSON, J., PADUA, D., VELOSO, M., SINGER, B., XIONG, J., FRANCHETTI,
F., GAČIĆ, A., VORONENKO, Y., CHEN, K., JOHNSON, R., AND RIZZOLO, N. 2005. SPIRAL: Code gen-
eration for DSP transforms. Proceedings of the IEEE, special issue on ”Program Generation, Optimization,
and Adaptation” 93, 2.

STRASSEN, V. 1969. Gaussian elimination is not optimal. Numerische Mathematik 14, 3, 354–356.
THOTTETHODI, M., CHATTERJEE, S., AND LEBECK, A. 1998. Tuning Strassen’s matrix multiplication for

memory efficiency. In Proceedings of the 1998 ACM/IEEE conference Supercomputing. Orlando, FL.
WHALEY, R. AND DONGARRA, J. 1998. Automatically tuned linear algebra software. In Proceedings of the

1998 ACM/IEEE conference on Supercomputing (CDROM). IEEE Computer Society, 1–27.
WHALEY, R. C. AND PETITET, A. 2005. Minimizing development and maintenance costs in sup-

porting persistently optimized BLAS. Software: Practice and Experience 35, 2 (Feb.), 101–121.
http://www.cs.utsa.edu/˜whaley/papers/spercw04.ps.

ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

20 · Paolo D’Alberto and Alexandru Nicolau

Appendix: Code

/***********************************
 C = a.C+(k.A)*(j.B) | a.C+(k.tran{A})*(j.tran{B}) | aC+(k.conj{A})*(j.conj{B})
 */
int wmadd(DEF(c), DEF(a), DEF(b)) {

 if (a.m<= LEAF || a.n<= LEAF || b.n<=LEAF) {
 fastCPU();
 CMC(USE(c), = , USE(a), mm_leaf_computation_madd , USE(b));
 slowCPU();
 }
 else {
 Matrix tc0 = Q0(c),tc1 = Q1(c), tc2 =Q2(c),tc3=Q3(c);
 Matrix ta0 = Q0(a),ta1 = Q1(a), ta2 =Q2(a),ta3=Q3(a);
 Matrix tb0 = Q0(b),tb1 = Q1(b), tb2 =Q2(b),tb3=Q3(b);

 // temporary
 Matrix s = {0, S0(a.m,a.n),S0(a.m,a.n),a.trans,a.beta};
 Matrix t = {0, S0(b.m,b.n),S0(b.m,b.n),b.trans,b.beta};
 Matrix u2 = {0, S0(c.m,c.n),S0(c.m,c.n),c.trans,1};

 // temporary allocation
 s.data = (Mat *) CALLOC(s); t.data = (Mat *) CALLOC(t);
 u2.data = (Mat *) CALLOC(u2); assert(s.data && t.data && u2.data);

 /* S = A2 + A3 */ CMC(RQ2(s,a), =, ta2, s_add, ta3);
 /* T = B1 − B0 */ CMC(t , =, tb1, s_sub, tb0);
 /* U2 = S * T */ CMC(RQ2(u2,c) ,=, RQ2(s,a), wm , t);

 /* *C3 += U2 */ CMC(tc3 ,=, tc3, s_add_t , RQ3(u2,c)); tc3.beta = 1;
 /* *C1 += U2 */ CMC(tc1 ,=, tc1, s_add_t , RQ1(u2,c)); tc1.beta = 1;

 /* U2 = A0 * B0 */ CMC (u2, =, ta0, wm, tb0);
 /* C0 += U2 + C0 */ CMC(tc0, =, tc0, s_add_t, u2); tc0.beta = 1;

 /* C0 += A1 * B2 */ CMC(tc0, =, ta1, wmadd, tb2);

 /* S = S − A0 */ CMC(s, =, RQ2(s,a), s_sub, ta0);
 /* T = B3 − T */ CMC(t, =, tb3, s_sub, t);

 /* U2 += S * T */ CMC(u2, =, s, wmadd, t);
 /* C1 += U2, */ CMC(tc1, =, tc1, s_add, RQ1(u2,c));

 /* S = A1 − S */ CMC(s, =, ta1, s_sub, s);
 /* C1 += S * B3 */ CMC(tc1, =, RQ1(s,a), wmadd, tb3);

 /* T = B2 − T */ CMC(RQ2(t,b), =, tb2, s_sub, RQ2(t,b));
 /* C2 += A3 * T */ CMC(tc2, =, ta3, wmadd, RQ2(t,b)); tc2.beta = 1;

 /* S = A0 − A2 */ CMC(s, =, ta0, s_sub, ta2);
 /* T = B3 − B1 */ CMC(RQ1(t,b), =, tb3, s_sub, tb1);
 /* U2 += S*T */ CMC(RQ1(u2,c), =, s, wmadd, RQ1(t,b));
 /* C3 += U2 */ CMC(tc3, =, tc3, s_add, RQ3(u2,c));
 /* C2 += U2 */ CMC(tc2, =, RQ2(u2,c), s_add, tc2);

 // free temporaries
 FREE(s.data); FREE(t.data); FREE(u2.data);
 }
 return 1;
}

Fig. 9. Winograd MM code

ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

Adaptive Winograd’s Matrix Multiply · 21

// C = A + B
void add_t(DEF(c), DEF(a), DEF(b)) {

 int i,j,x,y;

 /* minimum sizes */
 x = min(a.m,b.m); y = min(a.n,b.n);

 for (i=0; i<x; i++) {
 /* core of the computation */
 for (j=0;j<y;j++)
 E_(c.data,i,j,c.M,c.N) = a.beta*E_(a.data,i,j,a.M,a.N)

 + b.beta*E_(b.data,i,j,b.M,b.N);

 if (y<a.n) /* A is larger than B */
 E_(c.data,i,j,c.M,c.N) = a.beta*E_(a.data,i,j,a.M,a.N) ;
 else
 if (y<b.n) /* B is larger than A */

 E_(c.data,i,j,c.M,c.N) = b.beta*E_(b.data,i,j,b.M,b.N);
 }
 /* last row */
 if (x<a.m) {/* A is taller than B */
 for (j=0;j<a.n;j++)
 E_(c.data,i,j,c.M,c.N) = a.beta*E_(a.data,i,j,a.M,a.N);
 }
 if (x<b.m) {/* B is taller than A */
 for (j=0;j<b.n;j++)
 E_(c.data,i,j,c.M,c.N) = b.beta*E_(b.data,i,j,b.M,b.N);
 }
 // c.beta = 1;
}

Fig. 10. Matrix addition code

ACM Transactions on Mathematical Software, Vol. V, No. N, July 2008.

