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Abstract—Caches are crucial components of modern processors; they allow high-performance processors to access data fast and,

due to their small sizes, they enable low-power processors to save energy—by circumventing memory accesses. We examine efficient

utilization of data caches in an adaptive memory hierarchy. We exploit data reuse through the static analysis of cache-line size

adaptivity. We present an approach that enables the quantification of data misses with respect to cache-line size at compile-time using

(parametric) equations, which model interference. Our approach aims at the analysis of perfect loop nests in scientific applications; it is

applied to direct mapped cache and it is an extension and generalization of the Cache Miss Equation (CME) proposed by Ghosh et al.

(1999). Part of this analysis is implemented in a software package, STAMINA. We present analytical results in comparison with

simulation-based methods and we show evidence of both the expressiveness and the practicability of the analysis.

Index Terms—Cache-line size adaptivity, spatial locality, interference, parameterized loop nests.
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1 INTRODUCTION

INmodern uniprocessor systems, the memory hierarchy is
an important concern for performance, area, and energy.

It is also the component requiring most of the die area in
systems-on-chip and it is the principal power consumer,
accounting for as much as 20-50 percent of the total chip
power [1], [2]. In recent years, there has been a great
endeavor to engineer several levels of cache for the
exploitation of performance and power. In particular, we
have studied the effect of adaptivity in cache subsystems
and we have built an architecture as a prototype that
enables static and dynamic adaptation of memory hier-
archy: its configuration and policies [3]. In this paper, we
turn our attention to (compiler-driven) cache-line size
adaptation of direct mapped data caches [4], [3]. In fact,
the architecture changes the cache-line size dynamically (by
hardware monitoring or application instruction) during the
execution of the application. To fully exploit the potential of
this adaptation, we need a way to target it, that is,
(statically) determine the application cache behavior to
trace adaptation for maximum performance and minimum
energy dissipation. The related work on cache behavior
analysis can be distinguished in profiling-based and static
approaches.

Profiling is an approach that uses the direct measure of

performance as feed-back to drive the fine-tuning of some

architecture parameters. The main goal is to improve

performance of an application when applied on a repre-

sentative input [5]. The approach is flexible and it can be
used for the analysis of the whole application, as well as
part of it. However, profiling has two limitations: The
performance of an application is often dependent on the
inputs and, of course, the analysis cannot be faster than the
execution of the application itself.

Static approaches are basically independent of the inputs
and, thus, the analysis can be performed just once at
compile time. In particular, static approaches analyze
mostly perfect loop nests and these loop nests are
ubiquitous in scientific applications. (As reported by Ghosh
et al. [6], 244 loop nests are statically analyzable, 289 are
parameterized loop nests, and 189 are not analyzable—
Table I, page 707—for SPECfp 95 benchmarks.) In fact, static
approaches model data-cache misses of a memory reference
in a perfect loop nest by using cache miss equations (CME)
[6]. When the CMEs are defined for a given memory
reference and a loop nest, every iteration in the loop nest (or
a sampled version such as in [7], [8]) is checked as to
whether or not it satisfies the equations. If an iteration
satisfies the equations, then the memory reference has a
cache miss at that particular iteration. Thus, the approaches
count the solutions of the equations to achieve an estimation
of the number of cache misses. As an extension of this idea,
Vera and Xue [9] propose an approach to analyze the whole
program based on their cache-miss solver developed by the
same group [8]. For parameterized loop nests, the authors
(both Ghosh et al. and Vera and Xue) suggest that the
approach can be applied at runtime in similar fashion,
because the parameters are known. However, there are two
limitations in the current static approaches. First, the loop
nest bounds must be known at compile time. This is not
realistic (e.g., 289 loop nest in SPECfp) because they are
often parameterized. Also, even if the analysis is performed
at runtime, it may be impractical because these loop nests
can be very large. Second, the analyzable loops are sensitive
to tiling loop transformation. For example, if tiling is
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performed on the three-loop-algorithm for matrix multi-
plication and the tile sizes do not evenly divide the loop
bounds, the inner loop bounds cannot be represented by
affine functions. The resulting nest is not analyzable.

To attack and overcome these limitations, we propose a
static approach to investigate perfect (parameterized) loop
nests and to determine the relation between cache-line size
and number of misses on a per-nest-base for a direct-
mapped cache. The analysis result is annotated in the code
and it can be used at runtime to set the line size. The
approach is especially suitable for applications with
references having reuse within a few iterations in the inner
loop and exploiting spatial locality [10].

A well-known paper on optimizing for data locality and
parallelism exploitation is by Kennedy and McKinley [11].
In practice, they assume that there is little or no interference
for a small number of iterations in the innermost loop.
Spatial locality is exploited, if any is available in the inner
loop, under the assumption that cache misses are indepen-
dent of any interference. The authors propose different loop
optimizations (i.e., loop permutations) to exploit maximum
spatial and temporal locality in the innermost loop. The
examples presented in this paper, as many other loop nests
in real applications, do not satisfy McKinley and Kennedy’s
assumption. Cache interference can be the major contribu-
tor of cache misses in inner loops. Instead, our approach
considers such interference and, in practice, the two
approaches are orthogonal.

The paper is organized as follows: In Section 2, we use an
example to outline the common pitfalls of the current
approaches and intuitively introduce the reader to our
approach. In Section 3, we introduce the notations about
loop nests, cache equations, and parameterized loop nests.
In Section 4, we introduce the theoretical framework and
our approach. Finally, in Section 5, we show the results of
our analysis for three representative examples.

2 OUR APPROACH: AN OVERVIEW

In this section, we present the novel contribution of our
approach using a simple example. We break down the
problem and the solution—as our approach does—in order
to present the following three points: first, the challenges
that current analysis tools face determining data cache
misses, second, the terminology that is adopted in this
paper, third, a quantitative and informal application of our
approach—we shall see a rigorous notation and analysis in
Sections 3 and 4.

Consider the example shown in Fig. 1. The two memory

references A½i�½jþ start� and B½i�½j� in the inner loop body

are affine functions of the loop indices, that is, the indices i

and j. The indices are represented as a vector k ¼ ði; jÞt: The
first entry is the outermost index, the second entry is the

innermost index. A particular iteration of the loop nest is

simply identified by k0 ¼ ði0; j0Þt.
The memory references exploit spatial reuse in the inner

loop.Twoconsecutive accesses tomatrixA (i.e.,A½i�½jþ start�
andA½i�½jþ 1þ start�) and tomatrixB tend to exploit spatial

locality. We describe this reuse property by the vector

r ¼ ð0; 1Þt. The reuse vector is relative to an iteration, that is,

the cache line read at iteration ði0; j0Þt will be read again at the

next iteration ði0; j0 þ 1Þt (i.e., r ¼ ði0; j0 þ 1Þt � ði0; j0Þt).1
When the two references of matrices A and B at an

iteration ði0; j0Þt are mapped to the same cache line, there is

interference in the cache. The cache interference prevents

the spatial reuse as the same line may be reloaded. Without

cache interference, we can estimate the number of cache

misses as 2m2=‘, where ‘ ¼ L=8 is the number of double

precision float numbers in a cache line, L cache-line size.

Let us consider the order of memory accesses in the loop

body as follows: A read of A precedes a read of B, which

precedes a write of A. The read of A has spatial reuse ð0; 1Þt
and temporal reuse ð0; 0Þt. The read of B has spatial reuse

only. The temporal and spatial reuse of A is not exploited

when the access to B is mapped to the same cache line; in

other words, when the address of B½i�½j� is the address of

A½i�½jþ start� plus a multiple of the cache size and an offset

no larger than the cache-line size at the iteration specified

by k ¼ ði; jÞt (where 0 � i; j < m). We model interference by

the following equation:

B�1 þ 8; 192iþ 8j ¼
B�1 þ 16; 384; 000þ 8; 192iþ 8jþ 8startþ nC þ q:

The constant B�1 is the start addresses of B; the constant

C ¼ 16 � 1; 024 is the cache size; the variable n has positive

integer values and q has integer value so that jqj < L. We

simplify the equation to: 16; 384; 000� 8start ¼ nC þ q. The

set of inequalities defines a parameterized polyhedron.2

When 8start mod C < L, we have a solution (e.g., for n ¼
1; 000 and q ¼ 8start mod C). The solution of the equation
stands for a cache interference. The interference prevents
the cache-line reuse and we have a cache miss.

Note that the optimal cache-line size and the number
of cache misses are a function of the parameter start.
The optimal line size is Lopt ¼ 8start mod C (i.e., no
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Fig. 1. Example: paramterized loop bounds and interference. Matrices A
and B have the same number of columns but a different number of rows.
The matrices are in row-major format and they are consecutively
stored—as their declaration suggests. The procedure foo has two
parameters, m and start. The first parameter m specifies the size of the
iteration space. The second parameter, start, is an offset to access the
columns of matrix A.

1. Note that the reuse depends on no parameters.
2. Static approaches based on the one proposed by Ghosh et al. are not

practical for large polyhedra. The analysis must be repeated for each
parameter value.



cache interference).3 The number of cache misses is
M ¼ 2m2ðL��Þ=L; the term m2 specifies the number of
iterations; the constant 2 is the number of references we
analyze; the last term ðL��Þ=L, where � ¼ 8start mod C,
specifies the fraction of accesses that effect cache misses
caused by cache-line underutilization.4

Now, consider matrixB½100�½512� instead ofB½100�½1; 024�.
The interference equation is

16; 384; 000� 4; 096i ¼ 8startþ nC þ q:

When i is 0, it is the previous equation. Both memory
references interfere in the cache for the first m iterations,
when 8start mod C < L. For i ¼ 1 and for the same values
of start, there is no interference. Indeed, we have
interference every four iterations of i. We define this ratio
as interference density, denoted by � ¼ 512�8

C ¼ 1=4. In the
presence of cache interference, the number of cache misses
is 2m2� ðL��Þ

L .5

The main idea of our approach is to decouple the
estimate of cache misses from the loop iteration space so
that the approach can be fast even for large loop nests. Our
approach combines a static symbolic analysis with an
efficient and practical implementation. We use SUIF 1.3 and
the framework developed by Ghosh et al. for the determi-
nation of eligible loop nests, memory references, reuse
vectors, and for the manipulation of CMEs. We use Polylib
for the estimation of the total number of iterations (e.g., m2)
and representation of parameterized polyhedra. We devel-
oped the software package STAMINA: It sorts the memory
references as a function of their reuse vectors (i.e., temporal
and spatial reuse, length); it determines their interference
densities and it computes the total number of cache misses
for each loop nest in an application. STAMINA annotates
the original code with directives for the adaptation of the
cache-line size for each eligible loop nest.

3 NOTATION AND INTERFERENCE DENSITY

In this section, we introduce the notation and terminology
used.

A perfect loop nest composed of d loops determines a set
of integral points in INd. Each point is denoted by a column
vector: i ¼ ði0; . . . ; id�1Þt; the first component (i.e., i0) is
associated with the outermost loop and the last component
(i.e., id�1) is associated with the innermost loop. The loop
order specifies a lexicographic order (as in [6]). In fact, a
point u precedes a point v, denoted by u / v, if there exists
an index t, 0 � t � d� 1, such that un ¼ vn for every n < t
and ut < vt. When v ¼ u or v / u, we use the notation
u �/ v. A partial order6 between two points v and u is
defined as follows: A point u is smaller than a point v,
denoted by u < v, when vn � un for every index n,

0 � n � d� 1, except at least one index k such that
uk < vk. For example, a point u determines a unique
bounded polyhedron: P ¼ fvj0 � v � ug. Note that, if
v < u, then v / u, but not vice versa. (For example, ð1; 1Þ <
ð2; 2Þ and ð1; 1Þ / ð2; 2Þ, and ð1; 2Þ / ð2; 1Þ, but ð1; 2Þ < ð2; 1Þ is
not defined!)

We define an iteration space as a bounded polyhedron:
Sp ¼ fij0 �/ i �/ ng, where n is AiþBkþCp with A, B,
and C being constant matrices of size d� d, k is a vector of
constants, and p is a vector of parameters. The parameter p
does not affect the shape of the iteration space, but only its
cardinality. For example, consider Sp defined as
fij0 �/ i / ðp; pÞt; g. The iteration space Sp has cardinality
jSpj ¼ p2, which is a function of p, and it has a square shape
in IN2 independently of any value of p.

An interval is a set P rðsÞ ¼ fv 2 Spjs� r / v �/ sg,
where s; s� r 2 Sp and 0 �/ r. The cardinality of an
interval is a function of s. The cardinality of an interval
represents the number of iterations separating the itera-
tion point s� r and the iteration point s. In short, we
specify distance as the cardinality of an interval, jP rðsÞj.
When r ¼ ed�1 � ð0; . . . ; 0; 1Þ,7 we have jP rðsÞj � 1. An
interval, as well as an iteration space, is the composition
of disjoint elementary rectilinear polyhedra. Note that these
polyhedra can be just one point, where the vertices merge
into one. This property assures that the determination of the
distance of any interval is computable and that an Ehrhart
polynomial exists [12], [13], [14], [15].

A reference R in the body of a loop nest has temporal

reuse if, in different iterations u and v, the reference
accesses the same memory location Ad½RðuÞ� ¼ Ad½RðvÞ�
[16]. We represent reuse by a vector r such that we have
Ad½RðuÞ� ¼ Ad½Rðuþ rÞ� for every iteration point u. When
the address of a reference is an affine function, that is,
Ad½RðuÞ� ¼ ltðMuþ bÞ, the reuse vector is a point in the
null space of matrix M—i.e., Mr ¼ 0.8 A reference has
spatial reuse if the reference accesses—in different iter-
ations—the same cache line. Note that temporal reuse is a
particular case of spatial reuse. We have group temporal

and group spatial reuse when different references exploit
temporal and spatial locality among each other—during the
computation.

For example, consider a matrix A½100�½100� stored in row-
major format and starting at address 0x0. Consider a
reference RA ¼ A½u0 þ u1�½u1� in a loop nest composed of
two loops. We have

Ad½RAðuÞ� ¼ ð100; 1Þt 1 1
0 1

� �
uþ ð0; 0Þt

� �
:

In practice, RA has spatial reuse and reuse vector ð0; 1Þt, but
it has no temporal reuse because

1 1
0 1

� �
u ¼ 0

only when u ¼ 0 (nullðAÞ ¼ ;).
While we carry on the computation of the loop nest and

one reuse of a reference is accomplished, we have a hit in

D’ALBERTO ET AL.: LINE SIZE ADAPTIVITY ANALYSIS OF PARAMETERIZED LOOP NESTS FOR DIRECT MAPPED DATA CACHE 3

3. Polylib achieves an equivalent result.
4. Profiling approaches use a black-box approach about the application,

therefore they should test all possible values of start just to be confident of
the performance measurements

5. Polylib achieves an equivalent result, but it has to determine the
solution of the equation for 512 different values of start and then it has to
solve a system of 512 unknowns. This is a limitation of Ehrahrt’s polynomial
approach, rather than a Polylib limitation.

6. Also known as geometrical order, it does not always define an order
between two iteration points.

7. The vector ei, the ith column vector of the identity matrix I 2 INd.
8. Note that linear parameters do not affect the null space.



cache because the same reference is reused successfully.
Otherwise, the memory reference may have been evicted
from the cache and a miss may happen. The reuse r of a
reference RAðuÞ is prevented when either a reference RBðsÞ
with s 2 PrðuÞ interferes with the reference RAðuÞ or the
iteration u� r does not belong to the space.9

In general, the prevention of a reuse by another memory
reference does not mean that we have a miss in cache. A
reference may have multiple reuse vectors and, to have a
miss in cache, all reuses must be prevented. We model the
prevention of a reuse by an interference equation as follows.

Given two array references RA—interferer—and
RB—interferee, we define an interference equation as:

Er �
atuþ a�1 ¼ btsþ b�1 þ nC þ q þ dtp

with u 2 P rðsÞ; s 2 Sp; n 6¼ 0; jqj < L;
and with L cache-line size;

8>><
>>: ð1Þ

where a, b, and d are constant vectors; the affine function
for RA is atiþ a�1 and the affine function for RB is btiþ b�1;
the parameter vector is p and the reuse vector for RB is r;
the cache size is a constant C; the free variable n is not zero;
the offset in the cache is jqj � L� 1; the cache-line size is L.
The set of constraints is defined as definition domain.

An interference equation is always represented by an
equality constraint—Diophantine equation—and by a defi-
nition domain in which the unknowns are defined [6], [17].
For example, in Fig. 1, the interference equation for
interferer A and interferee B is as follows:

E1 �

b�1 þ ð1024; 8Þðs0; s1Þt þ nC þ q þ ð0; 8Þðm; startÞt
¼ a�1 þ ð1; 024; 8Þðu0; u1Þt

with u ¼ s; s 2 Sp; n 6¼ 0; jqj < L;
and with L cache-line size:

8>>>><
>>>>:

ð2Þ

We model a direct-mapped cache, so, when the inter-
ference equation has a solution, we have cache interference
and, thus, we have cache misses. Otherwise, if the equation
has no solution and the interferee has only one reuse vector,
then we have a hit.

When jP rðsÞj ¼ 1, we simplify (1) . When
r ¼ ed�1 � ð0; . . . ; 1Þ, u ¼ s� ed�1 (u ¼ s when r ¼ 0), we
isolate the term nC þ q as follows:10

Eed�1
�

c�1 þ cts ¼ nC þ q

with c ¼ a� b; s 2 Sp

and c�1 ¼ a�1 þ ad�1 � b�1 � dtp:

8>><
>>: ð3Þ

For example, we simplify (2) as follows:

E1 � �168; 384; 000� 8start ¼ nC þ q:f ð4Þ

We define the interference density, denoted by �E , as
the ratio of the number of points in the iteration space, for
which the equation E has solution, over the total number of
iteration points. For example, in (4), �E1

is 1 (if 8start < L).

Property 1. If, in (3), Eed�1
, a solution exists and c ¼ Cm, then

�Eed�1
¼ 1.

Proof. Because a solution exists in (3), a pointv, an integer n0,
and an integer q0 exist for which c�1 þ ctv ¼ n0C þ q0. We
substitute c with Cm to obtain c�1 þ Cmtv ¼ n0C þ q0.
For any point s 2 Sp, we find an integer g such that c�1 þ
Cmts ¼ gC þ q0 (e.g., g ¼ n0 þmtðv� sÞ). Therefore, a
solution exists and �Eed�1

¼ 1. tu

We can simplify (3) further because the element ck, which is
a multiple of the cache size (i.e., ck mod C ¼ 0), does not
contribute to the interference density:

Emod �
f�1 þ f ts ¼ nC þ q

where fk ¼ ck mod C; 8k 2 ½�1; d� 1�
and s 2 Sp:

8>><
>>: ð5Þ

In practice, �Eed�1
for (3) is equal to �Emod

for (5).

Property 2. For the general case in (1), we have
�Er

< minð1;maxs2Sp;p �Emod
� jP rðsÞjÞ.

Proof. For every s 2 Sp, we break the interval P rðsÞ in
smaller intervals with unit distance. We have up to
maxs2Sp

jP rðsÞj unit intervals. We consider each interval
independently and we determine its interference density.
Every interval has interference density, maxs;p �Emod

. tu

Property 2 states that we can determine the interference
density for a rather complex interval using an estimate
based on unit intervals. We shall present in Section 4.3 a
technique that estimates �Emod

and it is independent of any
parameter p and any iteration point in the iteration space s.
Furthermore, when the reuse vectors are short, the reuse
intervals have short distance and, therefore, we have a
simple and tight estimation. McKinley and Temam present
strong evidence that short reuse are common in scientific
computations [10]. We assume that the target of our
analysis are applications with short reuse vectors—mostly
spatial reuse.

4 PARAMETERIZED LOOP ANALYSIS

In this section, we introduce our approach in a top-down
fashion describing the organization of our software package
STAMINA, Fig. 2. In Section 4.1, we introduce the trade off
between spatial reuse and cache interference and we
propose our model for the representation of cache misses
as a function of both cache-line size and interference
density. In Section 4.2, we present how we model
interference as set of interference equations. In Section 4.3,
we discuss the computation of the interference density
based on a simplified analysis of the interference equations.
In Section 4.3.1, we introduce a more accurate analysis of
the interference density based on the theory of affine
equations using unimodular transformations [17].

4.1 Spatial Reuse versus Interference: Optimal
Cache-Line Size

Ideally, without cache interference, an application having
spatial locality is able to exploit a large cache-line size by
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9. Spatial reuse is prevented when a different line is accessed.
10. Note that we do not repeat the definition of the domains for the

unknowns n and q.



reducing cache misses by virtue of fewer memory accesses.
However, a large cache-line size may increase interference,
which may impede the spatial locality exploitation and, in
the worst case, it may increase cache misses. For some
applications, we find it acceptable to have an increase of
cache misses due to interference as long as the overall
performance improves due to fewer communications to and
from the cache.

For one memory reference R, we estimate the total
contribution to the interference density, �RðLÞ, by
distinguishing three different cases and considering two
contributions.

�RðLÞ ¼

minð1; s‘ þ �RðLÞÞ if �RðLÞ < 1 and
spatial&temporal reuse;

minð1; �RðLÞÞ if temporal reuse only;
0 otherwise:

8>><
>>: ð6Þ

We define �RðLÞ in (6) as the spatial-temporal interference
density per memory reference.

The memory reference can have spatial and temporal
reuse, that is, a reference has reuse of the same cache line
and reuse of the same element located in a cache line. If a
reference R has spatial reuse and there is no interference,
we estimate a miss every ‘

s access(es)—i.e., iteration(s). The
interference density is s

‘ , where ‘ is the line size in data
elements (i.e., ‘ ¼ L=8when an element is a double) and s is
the length of the spatial reuse in elements. This contribution
to the interference density is due to the spatial reuse only
and notice that it is a monotonically decreasing function in
L. Spatial reuse is an artificial reuse, which is introduced by
the memory architecture configuration. A spatial reuse may
be prevented because of the access of a different cache line
and not because of interference. In fact, any other (longer)
reuse may be satisfied and, instead of a cache miss, we
could achieve a cache hit. For spatial reuse, it would be
convenient to consider the effect of longer (temporal) reuse
as well (see Ghosh et al. [18]).

If there is interference, part of the reuse can be prevented
and we can have a larger contribution to the interference

density. The factor �RðLÞ 2 ½0; 1� is the estimate of inter-
ference density due to cache interference only, interference
density per memory reference, that is, how other references
displace reference R from the cache. When �RðLÞ ¼ 1, it
means that interference is so high that no reuse is possible.
The factor �RðLÞ is a monotonically increasing function. We
shall see how to determine �RðLÞ in Section 4.2.

If a reference R does not have reuse of any kind, then
�RðLÞ ¼ 0. If there is no reuse, there is no interference. If
there is a cold miss,11 it is unavoidable in this framework
for every cache-line size.

Finally, the estimate of the number of cachemisses, due to
one memory reference, is simply jSpj�RðLÞ (i.e., jSpj is the
numberof iterations in the loopnest).Weexplain shortlyhow
we use �RðLÞ to estimate the number of cache misses as a
function of the cache-line size. Suppose we have z memory
references in a loop nest. We sort the references and we label
them by using a unique integer according to the following
criterion: Reference Ri, with 0 � i < x, has spatial reuse and
reference Rj, with x � j < z, has temporal reuse. An upper
bound on the number of cache misses is given in (7).

jMissesj � jSpj�ðLÞ

jSpj�ðLÞ ¼ jSpj
Xz�1

i¼0

�Ri
ðLÞ

¼ jSpj
Xn�1

i¼0

�Ri
ðLÞ þ

Xm�1

i¼n

�Ri
ðLÞ

 !
:

ð7Þ

Because the function jSpj is independent of the cache-line
size, the minimum number of cache misses is a function of
�ðLÞ ¼

Pn�1
i¼0 �Ri

ðLÞ. In practice, we seek the optimal cache-
line size thatminimizes �ðLÞ andwedo it bya linear search for
increasing values of L (i.e., L ¼ 8; 16; 32; 64; 128; 256 bytes).

4.2 Interference Density per Memory Reference

In this section, we introduce two important concepts and
estimates: the interference existence and the interference
density per memory reference (i.e., �EðLÞ and �ðLÞ,
respectively).

Consider an interference equation Emod—as in (5). We
define interference existence as a 0-1 function expressing
whether or not the equation Emod has integer solutions:

�Emod
ðLÞ ¼ 1 if Emod has a solution

0 otherwise;

�
ð8Þ

where L is the cache-line size.
A CME solver, as it counts the number of integer solutions

of an interference equation, resolves the existence problem as
well. However, a solver may be designed for the existence
problem only; in fact, Omega test is an example of such a
solver [19], [20]. Note that, in the worst-case scenario,
searching for one solution is as hard as counting all integer
solutions.

Currently, we deploy Polylib, which applies a linear
search in parameterized polyhedra to find whether or not
an integer solution exists. In Sections 5.3 and 5.2, we present
an example showing the way we use the interference
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11. The first time a reference is read, we have a cache miss and it is
defined as cold miss.

Fig. 2. STAMINA.



existence to achieve an accurate estimate of the number of

cache misses.
In the following, we present our approach for the

determination of the interference density per memory

reference. We outline the approach, describing the follow-

ing three possible scenarios:

1. Consider a memory reference RA with one reuse
vector r and with k interferers RBi

, 0 � i < k. For
each pair of references RA and RBi

, we determine the
interference equation Ei, we estimate the interfer-
ence density, and we compute the interference
existence (i.e., �Ei

and �Ei
ðLÞ). Then, we determine

the contribution of each interferer RBi
independently

and we add their contributions:

�ðLÞ ¼
Xk
i¼0

�Ei
�Ei

ðLÞ: ð9Þ

2. Consider a memory reference, RA, and one inter-
ferer, RB. The reference RA has m reuse vectors
frig0;m�1 such that rm�1 / . . . / r0. Every reuse vector
ri is associated with an interval P riðsÞ and, for every
i > j, we have P riðsÞ � P rjðsÞ. In particular, we have
that \m

i¼0P
riðsÞ ¼ P rm�1ðsÞ. We consider the shortest

reuse vector only (i.e., rm�1) and, therefore, we
consider the shortest interval only (e.g., P rm�1ðsÞ)
because, if the shortest reuse is prevented, all reuses
are prevented and there is a cache miss; otherwise,
the shortest reuse is exploited and there is no miss in
the cache—however, other reuse may be prevented.
This is equivalent to the first case with one interferer:
�ðLÞ is �E�EðLÞ (e.g., in (9) with k ¼ 1).

3. Consider a reference RA with k interferers RBi
and

m reuse vectors frig0;m�1 such that rm�1 / . . . / r0.
Every reuse vector ri is associated with an interval
PriðsÞ and, for every i > j, we have P riðsÞ � P rjðsÞ.
In particular, we have that \m

i¼0P
riðsÞ ¼ P rm�1ðsÞ.

For each pair of references RA and RBi
, we

determine the interference equation Ei for the

shortest reuse only, therefore for the shortest

interval (e.g., P rm�1ðsÞ). If the shortest reuse is

prevented, all reuses are prevented and there is a

cache miss; otherwise, the shortest reuse is

exploited and there is no miss in cache. In fact,

in (9), we model this case as well.

The number of cache misses for a direct mapped cache is

up to jSpj�ðLÞ. For a k-way associative cache, we may

estimate the number of cache misses as jSpjb�ðLÞk c. In

practice, our estimate/approach is independent of the

approach proposed by Chatterjee et al. [21] for associative

caches. However, there are three common features we

summarize as follows: First, both approaches model cache

misses using polyhedra, thus they do not convey any

information on the temporal distribution of the cache

interference; second, both are approximations—not upper

bounds; third, we may use these estimations to determine

statically the minimum associativity that circumvents cache

interference altogether.

The interference equations model cache interference in
an interval. This interval must be a valid interval in the
iteration space. Otherwise, no analysis is performed. For
example, given a reuse vector r, our approach does not
analyze the set of iterations:

P r
B ¼ fjjj 2 Sp \ ðj� rÞ 62 Spg: ð10Þ

We can rewrite (10) as the union of nonintersecting
elementary rectangular sets, therefore we may use Polylib
to compute its cardinality. If we count the number of
iterations in this set, we determine a confidence index,
which is used separately to assess whether the analysis has
any contribution. In fact, the smaller the reuse vector is, the
larger the iteration space investigated by our approach is,
therefore the larger the number of cache misses we can
determine through the interference density. For the exam-
ples we present in Section 5, we analyze 99.9 percent of the
iterations.

4.3 Interference Density Analysis, STAMINA

In this section, we describe our approach to determine the
interference density only from the equality of an inter-
ference equation—as in (5)—that we repeat here:

Emod �

f�1 þ f ts ¼ nC þ q

where fk ¼ ck mod C 8k 2 ½�1; d� 1�;
ck ¼ ak � ak; d�1 ¼ a�1 � b�1 � dtp;
and with s 2 Sp

8>>>><
>>>>:

ð11Þ

(i.e., we consider f�1 þ f ts ¼ nC þ q only).
Theorem 4.1 states the main result of this section—the

interference density is simply a function of the cache size
and cache-line size: �E � 1

2d�1
2L
C . To prove this result, we

start by showing that the solutions space—e.g., the iteration
points where a interference equation has a solution—is a
regular structure in a rational domain. This structure
envelopes all integer solutions and it has an extremely
regular organization in cells—or tiles. We determine the
interference density by computing the ratio of volumes, that
is, we determine the volume of the solutions over the volume
of a solution cell.

We begin with the definition of inner product and
inverse vector. The inner product of two vectors u and v is
the vector s ¼ u � v such that sk ¼ ukvk. The vector 1 ¼
ð1; � � � ; 1Þt is the identity vector for the inner product (i.e.,
v � 1 ¼ 1 � v ¼ v). For every nonzero rational vector
v 2 QQd— i.e., vk 6¼ 0—there is one and only one inverse
vector, denoted by v�1 2 QQd, such that v�1 � v ¼ 1.

From here on, we denote by i0 the smallest rational
solution for equation Emod. We now describe a regular
structure that models the solution space. We define a grid

as a set of points:

Gði0Þ ¼ fjjj ¼ i0 þ Cf�1 � s; such that s 2 INdg: ð12Þ

We define a grid cell as a d-dimensional rectangle
determined by the 2þ d vertices i0 þ Cf�1 � s,

i0 þ Cf�1 � ðsþ e0Þ; . . . ; i0 þ Cf�1 � ðsþ ed�1Þ;

and
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i0 þ Cf�1 � sþ
Xd�1

j¼0

ej

 !
;

for any s 2 Gði0Þ. Given an integer u, we define a band as
the following set of rational points:

BðuÞ � fbj � L < uþ f tb < L

with b 2 QQd and u 2 INg:
ð13Þ

We define a band cell as the set of rational points:

BCðuÞ � fbjð�L ¼ uþ f tb [ L ¼ uþ f tbÞ\
\ ð8k 6¼ j; bk ¼ 0 and j 2 ½0; d� 1�Þg:

ð14Þ

For every grid point in Gði0Þ, we determine a band, that is,
Bðn0C þ f�1Þ. Every point in the band is a solution and, in
particular, it has the same value for the variable n. The grid
and the bands represent a regular structure (see Fig. 3, for a
two-dimensional example). We use the band cells to express
the volume of the bands, therefore of the solution number in
a grid cell; we eventually determine the interference density
for a single grid cell as representative for the entire space
determining their volume ratio.

Considering an example as in Fig. 3, a grid cell is a
rectangle and the band is a line crossing the grid cell on
only two grid points. Two different bands are crossing the
remaining two vertices. In a two-dimensional space, the
grid cell has an area, in a three-dimensional space, it has a
volume. In general, we use the term volume to indicate the
same quantity-concept for any dimension.12

Property 3. Every grid cell has volume CdQd�1

k¼0
fk
.

We now determine how many bands cross a grid cell and
then we determine their volumes. A band is determined by
two ðd� 1Þ-dimensional spaces and, by construction, it
passes through grid points. For any grid cell, there is only
one band splitting the cell in two so that two vertices are
apart. We have three bands crossing a grid cell.

In the following property, we state how many band cells
we may find in a grid cell; therefore, we have an estimate of
the volume of a band intersecting a grid cell.

Property 4. Every grid cell intersects three bands and up to
1

2d�1 ð C
2LÞ

d�1 band cells.

Proof. Consider a grid cell with size C
fk
, 0 � k < d, in a

d-dimensional space (i.e., in a three-dimensional
space, it is a cube). The projection of a band on
any ðd� 1Þ-dimensional space has a number of band
cells as 1

2d�1

Q
k6¼j

C
fk
= 2L

fk
(i.e., in a three-dimensional space,

we have three projections on three planes; on each plane,
the band cell projections are 1

2 ð Cfk =
2L
fk
Þ � ðCfj =

2L
fj
Þ with

j 6¼ k). tu
Property 5. Every band cell has volume at most ð2LÞdQd�1

k¼0
fk

.

When we have an estimate of the volume of a band cell and
we have the number of bands cells, we have an estimate of
the volume of a band. The last step is to show that this
regular structure, made of a grid and bands, is dense as it
contains all integer solutions.

Lemma 1. For any integer solution z of equation Emod, there is a
grid point in the band passing through z.

Proof. By definition, Cn0 þ q0 ¼ f ti0 and Cn1 þ q1 ¼ f tz,
without loss of generality consider n1 > n0. A band is a
space for which each rational point is a solution for the
equation with same value of n, we prove the lemma as
soon as we show that p exists so that Cn2 þ q2 ¼
f tði0 þ Cf�1 � pÞ and n2 ¼ n1.

We have Cn2 þ q2 ¼ f ti0 þ f tCf�1 � p, that is,
Cn2 þ q2 ¼ f ti0 þ C1tp. We determine n2:

n2 ¼
f ti0 þ C1tp

C

� �
:

We obtain

n2 ¼
f ti0

C þ 1tp

� �
¼ f ti0

C

� �
þ 1tp ¼ n0 þ 1tp:

So, n2 ¼ n1 when 1tp ¼ n1 � n2. There is always such
a vector p. tu

Finally, we state and prove our estimate for the interference
density.

Theorem 4.1. If, in (5),Emod, a solution exists and fk mod C 6¼ 0,

8k 2 ½0; d� 1� and C 	 2L, then �E � 1
2d�1

2L
C .

Proof. By Lemma 1, the grid and the bands on the grid

constitute a dense solution space. Every integer solution

is in it. The density is computed on a grid cell as the ratio

of the volume of a band intersecting a cell over the

volume of a grid cell. By Properties 4 and 5, there are

1
2d�1 ð C

2LÞ
d�1 band cells of volume ð2LÞdQd�1

k¼0
fk

in a grid cell. By

Property 3, a grid cell has volume CdQd�1

k¼0
fk
. Then, we have

�E � 1
2d�1

2L
C . tu
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12. We avoid the use of the term space because we use it in another
context, that is, iteration space.

Fig. 3. Grid cells and band cells in a plane. In a two-dimensional space,

grid cells and band cells are rectangles. Note that three bands pass

through a grid cell.



4.3.1 Interference Density Analysis, Refined

In this section, we present a more detailed analysis of the
interference density; we refine the analysis for the integer
domain. First, we present some considerations on the
approach to solve Diophantine equations [17]. Second, we
apply this approach when both the variable n and l are
assigned to values, therefore they are constant terms of the
equation. We then consider the case when only the variable
l is assigned to a value. At last, we present the final result of
this section in Theorem 4.4.

Consider the coefficients in (5). In fact, Emod is a
Diophantine equation. For the solution of Diophantine
equations, we may use the GCD test [17]. We determine the
great common divisor of the coefficients of the equations
—g ¼ gcdðd�1; d0; . . . ; dd�1; C; 1Þ—and we verify whether the
constant factor of the equation, for example �, is evenly
divided by g. If � mod g ¼ 0, the equation may have a
solution—we need to check the domain; otherwise, the
equation has no solution.

Because the free variable l has 1 as coefficient, the
gcdðd�1; d0; . . . ; dd�1; C; 1Þ ¼ 1, the GCD test is inconclusive:
we cannot conclude whether or not there is any solution.
We need to solve the system and verify the constraints on
the definition domain.

Banerjee presents a general approach to determine all
integer solutions for Diophantine equations—without para-
meters, using the theory of unimodular matrices. We
consider whether or not there is solution for arbitrary
values of n ¼ n0 and l ¼ l0. The constant value will be
� ¼ f�1 þ n0C þ l0, which includes the parameters as well.
We can rewrite (5) as follows:

Eb � � ¼ f ts:
�

ð15Þ

If g is gcdk2½0;d�1�ðfkÞ and gcdðg; �Þ is not 1, then there exists a
unimodular matrix U so that all the solutions are
determined by the following expression:

Esol �

i ¼ Uts

where s ¼ ð�=g; s1; s2; . . . ; sd�1Þ
and sk 2 IN; 8k 2 ½1; d� 1�
and where U 2 IRd�d is unimodular
and Uf ¼ ðg; 0; . . . ; 0Þt:

8>>>>>><
>>>>>>:

ð16Þ

A matrixU is unimodular when it is an upper triangular
matrix and it has jdetðUÞj ¼ 1.13 A unimodular matrixU is a
linear transformation, it always has an inverse matrix U�1

(i.e., such that U�1U ¼ I, I the identity matrix), and U�1 is
unimodular as well. Banerjee presents an effective techni-
que in Algorithm 2.1 for the determination of U.

The matrix U is a 1-1 mapping between the iteration
space S and a space TT, where S;TT � INd. In TT, the solution
space is the plane s0 ¼ �=g; the number of integer solutions
in TT is as many as in S and all solutions in S are in a plane.

For example, if TT ¼ IN2, the solution space is a line s ¼
ð�=g; s0Þt and the minimum distance between any two
points in TT is 1, that is, ð�=g; 1Þ � ð�=g; 0Þ ¼ ð0; 1Þ. Consider
the equation 6i0 � 4i1 ¼ 10.14 The solutions are:

it ¼ ð5; s0Þ
1 1
2 3

� �
: ð17Þ

Two solutions in TT, such as ð5; 0Þ and ð5; 1Þ, are mapped on

two solutions in S, ð5; 5Þ and ð7; 3Þ, respectively. We notice

that, in TT, the distance is 1, but, in S, the distance is more

than 1. We want to determine the interference density in the

original space—i.e., S—using some of the properties of

matrix U.15 Indeed, we estimate the distance computing the

volume of the d-dimensional rectangle that has the two

solutions as opposite vertices. To do so, we estimate the size

of the rectangle as follows:
We define

hi ¼ max
j2½1;d�1�

uj;i � min
j2½1;d�1�

uj;i

				
				; ð18Þ

where uj;i is the element in the ith column and jth row inU.

Intuitively, the product
Qd�1

i¼0 hi is a lower bound to the

distance between two solutions in S.

Theorem 4.2. If equation Eb � � ¼ f ts has a solution, then the

interference density is at most �Eb
� 1=ð

Qd�1
i¼0 hiÞ.

Proof. Consider the solutions sþ e1; . . . ; sþ ed�1. These

solutions are mapped to UtsþUte1; . . . ;U
tsþUted�1,

that is, Utsþ u1; . . . ;U
tsþ ud�1. The solutions are the

d� 1 vertices of a bounded region and
Qd�1

i¼0 hi is a lower

bound to the number of integer points in the region. tu

When n is not an arbitrary value but it is a variable, the

equation may have solutions for different values of n (i.e.,

the equation is � ¼ Cnþ f ts). For each solution of n, there is

a different parallel plane in TT. As long as the planes are far

apart, Theorem 4.2 holds. Otherwise, the interference

density may be reevaluated as the following theorem states.

Theorem 4.3. If an integer j 2 ½0; d� 1� exists such that hj >
C
fj
,

then �Ed
b
� maxk

2hkfk
C �Eb

.

Proof. For any n, the solution space is a set of parallel

planes. We determine the image of the planes and of the

set of points sþ e1; . . . ; sþ ed�1 in S. We note that, in one

dimension, the distance between any two planes is

(asymptotically) C=fi and, in Utsþ u1; . . . ;U
tsþ ud�1,

there can be at most maxk2½0;d�1�
2hkfk
C planes intersecting.

Each plane contributes just one integral solution. By

Theorem 4.2, the proof follows. tu

The last case is when, for every solution of n, there are

different solutions of l. The following theorem estimates the

interference density in this scenario.

Theorem 4.4. If we have a set J so that hj < 2L with j 2 J , then

�E � ðð2LC Þ
jJ jQ

j2J
1
hj
Þ � �

E
ðk¼d�jJ jÞ
b

.

Proof. In this case, each variable in J satisfies the equation in

an interval of size C at most 2L=hi (with i 2 J) times,

therefore,withdensity 2L
Chi

.We restrict the investigation on

the other d� jKj variables and we apply Theorem 4.3. tu
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13. Where detðUÞ is the determinant of matrix U.
14. Example 3.5 [17].

15. Because U is unimodular, we have that jdetðUÞj ¼ jdetðU�1Þj ¼ 1
and, therefore, we cannot use the determinant to achieve any estimation for
the interference density—at least directly.



5 STAMINA IMPLEMENTATION RESULTS

The reuse and interference analysis is implemented in the
software package STAMINA (abbreviation for Static Model-
ing of Interference And reuse). It is built on top of an SUIF 1.3
compiler adapting the analysis developed by Ghosh et al.
[6] and using Polylib [13], [12], [15]. In this section, we
consider three cases to explore three important aspects of
our analysis. We analyze loop nests presenting: first,
parameterized loop bounds; second, only self-interference
among memory accesses; and, last, parameterized loop
bounds, parameterized memory accesses, and tiling.

STAMINA presents the result of the analysis in two
forms (or types): a numeric and a symbolic form.

Numeric form: The output is a table with two con-
tributions—two rows:

. A row is the contribution at compile time. It
presents the estimation of interference as a function
of the cache-line size, at compile time only. We
identify the entries in such a row by �ctðLÞ.

. A row is the contribution at runtime. It presents the
estimation of the interference as a function of the
numeric value of the parameters. We identify the
entries in such a row by �rtðLÞ.

This distinction between compile time and runtime is
extremely helpful for an optimizing compiler: A compiler
may use the quantitative measure and decide whether or
not any adaptation is worth pursuing. In other words, if the
contribution at runtime is overall negligible, we can set the
optimal line size at compile time; otherwise, we may
introduce annotations to the original code and drive
adaptation at runtime.

Symbolic form: We represent the effect of the cache-line
size by a symbolic function. We insert code computing the
symbolic function as header of the loop nest and we
evaluate it at runtime, before the loop nest execution.

We assume that the scheduling of the references (i.e.,
loads and stores) follows two criteria. First, the computation
is performed so as to minimize the number of temporaries
[22] for each statement. Second, a reference may be loaded
once or more in the inner loop. We assume the final
scheduling from the source code only because it is very
difficult to retain high-level information from the source
code to the assembly code and vice versa (e.g., after all
optimizations such as scheduling and register allocation).
For example, we label each reference with an integer and
we assume a possible reference schedule. This schedule is
automatically determined and it is used for the interference
analysis. (Note, this is not a limitation of the approach but
of the implementation.) We assume the data cache is direct
mapped of size 16KB.

5.1 Case A: SWIM-SPEC 2000

The first application is swim from SPEC 2000. It has a main
loop with four function calls. Each function has a loop nest
for which the loop bounds are parameters introduced at
runtime. We present results for two of these loop nests.

In Fig. 4, we present one of the loop nests in C
language. We analyze the interference for two different
matrix sizes, the reference size 1; 335� 1; 335 and the
power of two 1; 024� 1; 024. Our analysis states that, for
the former, there is no interference for any cache-line size,
but, for the latter, there is interference among all
references and all cache-line sizes.

Due to the number of equations, it is very difficult to
verify the accuracy of the analysis by hand. We simulate 10
of the 800 calls to the calc1 routine using cachesim5 from
Shade [23]. The routine is compiled with gcc=3:1 with the
�O2 flag on. The simulation results for matrix size 1; 335�
1; 335 confirm our analysis as shown in Table 1.

The case for power of two matrices is confirmed as well,
but not reported here.

A more interesting case is in procedure calc2(), see Fig. 5.
STAMINA determines that reference 16, CUðI þ 1; JÞ,
interferes with reference 8, HðI þ 1; JÞ, when the line size
is larger than 128B. The software determines the trade off
between spatial locality exploitation and interference, but,
even though only two references are interfering, the optimal
line size proposed is 128B. Note that the analysis is able to
indicate which references are involved and when there is
interference.

Using the Shade simulator, we validate our analysis as
shown in Table 2.

The execution of SWIM with reference input (matrices of
size 1; 335� 1; 335) takes 1 hour on a Sun Ultra 5, 450MHz.
Any full simulation takes at least 50 times more. In contrast,
our analysis takes less than one minute for each loop nest,
whether or not there is interference (i.e., for SWIM, our
analysis takes less than 5 minutes).
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Fig. 4. SWIM: calc1() in C code. We introduce comment lines above and
below any instructions; those comment lines present STAMINA
assumptions on the memory references. The comment above an
instruction presents the reference numbers (RN) and the comment
below an instruction presents the order in which the memory references
are issued.

TABLE 1
Simulation of the Data-Cache Misses Due to 10 Calls to calc1();
L = Cache-Line Size in Bytes, DCMR = Data Cache Miss Rate

Spatial locality is fully exploited in calc1().



5.2 Case B: Self-Interference

We now consider the case when an application has self-

interference. Self-interference happens when two references

of the samearray, or the same reference indifferent iterations,

interfere in cache. The example, Fig. 6, is the composition of

six loops with only one memory reference in each.
Each memory reference has a different spatial reuse and

the reuse vector is long. Each loop accesses a matrix by row

and updates a small part of it. Even though the matrix

access is done by row, instead of by column, spatial locality

may be exploited because of the matrix size. In practice, the

number of columns for each matrix is chosen so that each

loop has a different optimal line size.
For example, in LOOP 0, a cache-line size of 8 Bytes does

not have any self-interference and a cache-line size of 16B

has spatial reuse; for larger line size, there is always

interference because elements in two contiguous rows share

the same cache line.
STAMINA recognizes that the spatial reuse goes across

one iteration of the outermost loop. In the current

implementation, it fixes the value of the interference density
at � ¼ 1 (STAMINA assumes that there is a capacity miss
because, in general, the distance is not a constant and it
cannot be compared to the cache size). For this particular
case, we achieve a tight estimation. In general, we achieve
an overestimation. Notice that the existence of interference
plays the main role; it discriminates when there is
interference and when to count the interferences. In
Table 3, we report the results of the analysis.

5.3 Case C: Matrix Multiply

In the previous cases (Sections 5.1 and 5.2), the optimal
cache-line size is set at compile time and, therefore, the
analysis returns a numeric-form result. In this section, we
present a case where the analysis returns a symbolic-form
result to comply with the dynamic behavior of the
application.

The examples are simple and we check the accuracy of
the analysis manually. At the same time, the problem size is
large and it is not practical in an exhaustive collection of
simulations.

We analyze a variation of the common ikj-matrix-multi-
ply algorithm [24], see Fig. 7. Matrices A, B, and C are
square matrices and, in particular, matrices B and C are
power of two. We choose the size of the matrices so that, if
there is interference due the reference to A, it is rare. The
index computation for A is parameterized (0 � n � 64).16

Due to the upper bounds of the parameters, A does not
interfere with any other matrix. Even if it could, the
interference density would be small. We distinguish two
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Fig. 5. SWIM: calc2() in Fortran. We introduce comment lines above and
below any instructions, those comment lines present STAMINA
assumptions on the memory references. The comment above an
instruction presents the reference numbers (RN) and the comment
below an instruction presents the order in which the memory references
are issued.

16. Note that we can handle larger cases; this is to yield a clearer
example.

TABLE 2
Simulation of the Data-Cache Misses Due to 10 Calls to calc2();
L = Cache-Line Size in Bytes, DCMR = Data Cache Miss Rate

Optimal cache-line size is 128B.

Fig. 6. Case B: self-interference.



different contributions: at compile time, �ctðLÞ, at runtime,
�rtðLÞ. We have �rtðLÞ ¼ 0 for any L and

�ctðf8; 16; 32; 64; 128; 256gÞ ¼
f2:00;1:00; 2:00; 2:00; 2:00; 2:00g:

The reference to A does not interfere with the references
to C and to B for 0 � n;m � 64. It would only if we use
larger values for the parameters. The suggested optimal
cache-line size is 16 Bytes. We simulate the number of cache
misses for some values of m, n (only a subset of the possible
642 pairs is presented) and for different cache-line sizes. The
experimental results are in Table 4.

STAMINA proposes 16B as optimal cache-line size
because it currently assumes the interference density as
� ¼ 1 for every line size. However, � is 1=2 for L = 32B and
the two cache-line sizes (16B and 32B) are equally good and
a larger cache line may improve overall performance. In
practice, simulation results suggest that a cache-line size of
32B is optimal for a negligible difference (Table 4). A
solution to this problem is presented shortly, in the next
example, where we represent the cache misses as a
symbolic expression of the cache-line size.

We analyze the blocked version of matrix multiplication,
see Fig. 8. We analyze only the loop nest in the procedure
ikj_mm and we find that �ctðLÞ ¼ 0 for any L and

�rtðf8; 16; 32; 64; 128; 256gÞ ¼
f2:00; 2:00; 2:00; 2:00; 2:01; 2:03g:

Every reference interferes with every other reference. The
interference due to matrix A is negligible since the matrix
access is an invariant for the inner loop. The interference
between C and B can be at every iteration point. There is no
interference whenever jm� nj mod C ¼ L. This example is
very peculiar because the cache-line size is not set once per
loop nest, it is determined at runtime.

We expect to have a symbolic form of the type
�ðLÞ ¼ �RC

ðLÞ þ �RB
ðLÞ þ �RA

ðLÞ. We know that, in this
particular case, �RA

< L=16; 384 � 2 
 0. STAMINA pro-
duces a symbolic output where C0 is 16; 384, � is
j8n� 8mj%C0, and 11ðxÞ is 1 is x 	 0 and 0 otherwise
(where % is the C-language remain operator):

�ðLÞ ¼ 2min 1; 11ð�� LÞ 8
L
þ 11ð8��Þ 8��

L

� �
; ð19Þ

which has minimum when L is 16B and 32B. In fact,
reference C has spatial reuse and it may interfere with B,
mainly: �RC

ðLÞ ¼ 11ðL��Þ L��
L þ 8

L . For example, when
n ¼ m ¼ 0, references RC and RB interfere at any iteration
and no optimal line size exists; otherwise, if m ¼ 3 and

D’ALBERTO ET AL.: LINE SIZE ADAPTIVITY ANALYSIS OF PARAMETERIZED LOOP NESTS FOR DIRECT MAPPED DATA CACHE 11

Fig. 7. Matrix multiply. There are two parameters: n and m. The first

affects the loop bounds and the latter affects the access offset on matrix

A. We assume that 0 < n;m < 64.

TABLE 4
Data Cache Misses for Matrix Multiply, Fig. 7, Using shade

Cache Simulator

We present cache misses only for cache-line size 16B, 32B, and 64B
(cache-line size 8B and 128B are omitted).

Fig. 8. Tiling matrix multiplication. We have six parameters: x, i, and k

are used to specify the loop bounds, m, n, and p are used to modify the

access to matrices C, A, and B, respectively.

TABLE 3
STAMINA’s Result for Self-Interference Example

Loops 4 and 5 have no interference for any line size, the output is set to
zero. In bold face, we present the optimal � per cache-line size and loop.



n ¼ 0 (notice that this is the example in Fig. 7), the optimal

line size is 32B. Automatically, the symbolic form and the

numerical form are used to insert a function driving

adaptation in the source code before the loop nest.
For the example in Fig. 7, the analysis takes up to two

minutes. For the blocked matrix multiplication in Fig. 8, the

analysis takes more than 8 hours on a Sun Ultra 5 450MHz.

The difference of the execution times is expected. For the

former case, the existence test has to investigate a relatively

small iteration space. For the latter case, the search for the

existence of the integer solution is extremely time consum-

ing because we need to search a space of 2; 0489 points.17

6 CONCLUSION

We present a fast approach to statically determine the effect

of the data cache-line size on the performance of scientific

applications. We use the static cache model introduced by

Ghosh et al. [6] and we present an approach to analyze

parameterized loop bounds and memory references. The

approach is designed to investigate the trade off between

spatial reuse and interferences of perfect loop nests on

direct mapped cache. Experimental results demonstrate the

accuracy and efficiency of our approach.
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17. The deployment of watch-dogs may be advised at this time, arguably,
if a solution is difficult to find, then the interference density should be small
and negligible.
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