
Investigating the Capabilities of Generative AI in Solving Data
Structures, Algorithms, and Computability Problems

Nero Li
yimil31@uci.edu

University of California, Irvine
Irvine, USA

Shahar Broner
sbroner@uci.edu

University of California, Irvine
Irvine, USA

Yubin Kim
yubk1@uci.edu

University of California, Irvine
Irvine, USA

Katrina Mizuo
kmizuo@uci.edu

University of California, Irvine
Irvine, USA

Elijah Sauder
esauder@uci.edu

University of California, Irvine
Irvine, USA

Claire To
clairt2@uci.edu

University of California, Irvine
Irvine, USA

Albert Wang
alberw5@uci.edu

University of California, Irvine
Irvine, USA

Ofek Gila
ogila@uci.edu

University of California, Irvine
Irvine, CA, USA

Michael Shindler
mikes@uci.edu

University of California, Irvine
Irvine, USA

Abstract
There is both great hope and concern about the future of Computer
Science practice and education concerning the recent advent of
large language models (LLMs).

We present the first study to extensively evaluate the ability
of such a model to solve problems in Computer Science Theory.
Specifically, we tested 165 exam-level problems across 16 specific
topics related to computer science theory, ranging from prelimi-
nary data structures to algorithm design paradigms to theory of
computation (automata and complexity). Our results use the recent
popular models (GPT-4 and GPT-4o). This is a rapidly evolving
field, with model performance continuously improving. We present
our results primarily as an indication of what they can already
achieve—equivalently how they can already be useful—today, fully
expecting them to improve even further in the near future.

Our results show that what was very recently a state-of-the-art
model (GPT-4) can solve 77% of free-response problems in data
structures and algorithms with little to no guidance. The latest
model, GPT-4o, can solve around 46% of the Theory of Computation
problems we posed, with predictable categories for which problems
it could not solve. When broken down by topic, the model can
solve 80% of problems in 4 out of the 15 topics and at least half in 8
other topics. Other problems, namely more visual problems, either
require more substantial coaching or seem to still be beyond the
capabilities of the language model–for now.

By understanding the strengths and limitations of these mod-
els for solving theory problems, we can open the door to future
work, ranging from human educational assessment on the topic to
automated tutors for learners of the subject.

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0531-1/25/02
https://doi.org/10.1145/3641554.3701957

CCS Concepts
• Theory of computation→ Algorithm design techniques; • Social
and professional topics→Computational thinking; •Applied
computing → Computer-assisted instruction.

Keywords
algorithm design techniques, data structures, computational think-
ing, computer-assisted instruction, ChatGPT, generative AI, large
language models, GPT-4, GPT-4o
ACM Reference Format:
Nero Li, Shahar Broner, Yubin Kim, Katrina Mizuo, Elijah Sauder, Claire
To, Albert Wang, Ofek Gila, and Michael Shindler. 2025. Investigating the
Capabilities of Generative AI in Solving Data Structures, Algorithms, and
Computability Problems. In Proceedings of the 56th ACM Technical Sym-
posium on Computer Science Education V. 1 (SIGCSE TS 2025), February
26-March 1, 2025, Pittsburgh, PA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3641554.3701957

1 Introduction
The past few years have seen significant improvement in the ability
of AI systems, trained on large amounts of data, to tackle a wide
array of complex tasks and challenges, revolutionizing various
domains across academia and industry. This progress is especially
notable in problems that can be stated and solved primarily using
words, as observed in domains like code completion and word
problem-solving.

Given a natural language prompt for a problem, systems such
as GitHub Copilot [14] can produce code that, in many cases, will
either solve the problem or make significant progress toward doing
so. Similarly, some systems, such as ChatGPT, can produce natural
language solutions to problems with varying degrees of correctness,
similar to what an undergraduate student might be expected to
produce in an algorithms course. There has been significant re-
cent work in evaluating these systems as they relate to Computer
Science Education, particularly at the level of first-year undergrad-
uate programming courses. The work related to CS1/CS2 is largely
programming-related, as befits these classes. The only previous

https://orcid.org/0009-0003-1590-5881
https://orcid.org/0009-0009-8176-1752
https://orcid.org/0009-0006-1003-4484
https://orcid.org/0009-0004-7563-3045
https://orcid.org/0009-0007-3048-8501
https://orcid.org/0009-0008-9102-2219
https://orcid.org/0009-0005-5361-6858
https://orcid.org/0009-0005-5931-771X
https://orcid.org/0000-0002-3365-1729
https://creativecommons.org/licenses/by-nc/4.0/ 
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3641554.3701957
https://doi.org/10.1145/3641554.3701957


SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Nero Li et al.

work we are aware of that examines the performance of LLMs in
upper-division computer science courses in detail is by Golesteanu
and Vowinkel and Dougherty [15], who determined that GPT-4
performs at an average level equivalent to a B- student on under-
graduate theory questions. Our study differs from theirs in three
main ways: (1) we emphasize open-ended, free-response questions;
(2) we incorporate feedback, allowing GPT to refine its answers;
and (3) we use the GPT-4o model in part of our experiment.

In this project, we extend the state of understanding of these
systems by investigating their ability to solve more advanced prob-
lems in the CS Theory curricula. We summarize our work with the
following guiding research question:

RQ How does ChatGPT perform on more advanced data
structures, algorithms, and Theory of Computation
free-response questions?

This is effectively 16 research questions. With GPT-4, we studied
the performance on some simpler data structures (stacks, queues,
binary trees), elementary and fundamental graph algorithms (tra-
versals, Dijkstra’s single-source shortest path algorithm, minimum
spanning trees), and algorithm design techniques (graph reductions,
divide-and-conquer, dynamic programming, greedy, network flow).
After we investigated this, GPT-4o has been released, so we used
GPT-4o to study the performance of more advanced topics, such
as Theory of Computation, regular and context-free languages,
and NP-completeness. In total, we evaluated GPT-4 on 62 free re-
sponse questions and GPT-4o on 103 free response questions, with
an emphasis on material that tends to appear in more advanced
undergraduate Data Structures and Algorithms, along with Theory
of Computation courses.

Unlike much previous work, the entirety of this project studied
problems that require human expertise to grade at each step; unlike
programming problems, there was no auto-grader option here.

2 Background and Literature Review
Large Language Models (LLMs) are a recent advent from the field of
Artificial Intelligence / Machine Learning. Among them are Chat-
GPT [28], which interacts with the user in a manner similar to
text communication with another human would appear. Another
is GitHub Copilot [14], based on OpenAI’s Codex [27], which is
prompted by natural language and produces (typically usable, some-
times correct) program code as a result.

2.1 Generative AI Performance on Class
Assignments

There has been much recent research towards the abilities of LLMs
to solve programming assignments at various levels, ranging from
CS1 to advanced courses. On one hand, this can raise academic
integrity concerns if a student can “solve” a homework problem
entirely by use of LLM; on the other hand, these can open opportu-
nities in education that were not present until very recently.

The first research to investigate the use of LLMs to solve in-
troductory course assignments was Finnie-Ansley et al. [11], who
also showed that Codex could not only solve introductory course
assignments in Python, but also summative exam questions. Their
investigation showed that Codex out-performed 80% of the stu-
dents in the class. Denny et al. [6] conducted a more exhaustive

study and found that Copilot could get a very large number of such
assignments fully correct either on the first try or with minimal
natural-language prompting. Another exhaustive study by Piccolo
et al. [32] observed similar results in an introductory-level Python
course with an eye towards Bioinformatics, using 184 programming
exercises. Savelka et al. [39] evaluated the davinci model, which
was, at the time, the largest and most powerful model of GPT1, on
599 exercises from three Python courses, consisting of 69 program-
ming assignments and the remainder multiple-choice questions,
some of which required reasoning about code. That model did not
do well enough to pass the course. Shortly thereafter, Savelka et al.
[38] demonstrated that the use of GPT-4 led to the models being
able to pass, although some limitations still held.

LLMs have also been shown to be effective for solving assign-
ments in introductory courses taught in Java by Ouh et al. [29] and
Destefanis et al. [9].

Not all studies focused on artifacts that lend themselves to fast
automatic grading. Malinka et al. [25] evaluated, with an eye to-
wards information security, the ability of GPT to handle not only
programming assignments, but also written artifacts including ex-
ams and even short research papers. Furthermore, this study was
conducted in Czech, indicating that the models are not limited to
the English language.

Perhaps surprisingly, for all the success at introductory level
free-form programming problems, Codex had less success with
Parsons problems [34]. Parsons problems, invented by Parsons and
Haden [30], are a scaffolding method in teaching introduction to
programming wherein students solve a puzzle whose solution is
working code and where unsuccessful attempts indicate common
errors. These avoid some difficulties for novice programmers while
allowing some benefits that writing code for practice would provide.
Tuning the difficulty via faded Parsons problems exists as well [13,
43]. It is interesting to note that while Parsons problems are easier
than free-form code to write for a human learner, Reeves et al. [34]
discovered that Codex was more successful with the latter than the
former. Poulsen et al. [33] found that GPT-3.5 had a poor success
rate with solving Proof Block Problems, which can be thought of
as applying the concept of Parsons Problems to proofs. They also
found that GPT-4 was significantly better.

There have been three previous investigations that included data
structures and algorithms problems. The work of Wang et al. [42]
found most of their sample of algorithms problems, of which 13
were short answer questions, to be either unsolvable or partially
solvable by these models. However, the breakdown of which of
these were solvable, and whether they came from the short answer
section, from programming assignments (4), or frommultiple choice
questions (13), is neither available nor the point of their study.
Similarly, most of their data structures problems (8PR, 4 SA, 18 MC)
were solvable by the models, but the breakdown by category did
not appear. However, the goal of that work was to broadly review
capabilities across many courses, so this is reasonable.

Finnie-Ansley et al. [12] looked into Codex performance on CS2
questions, a topic that includes preliminary algorithms (sorting and
searching) and simpler data structures (lists, stacks, queues, binary

1For a description of the various models of OpenAI’s GPT, see https://platform.openai.
com/docs/models. For older models, check “Deprecation history”

https://platform.openai.com/docs/models
https://platform.openai.com/docs/models


Investigating the Capabilities of Generative AI in Solving Data Structures, Algorithms,
and Computability Problems SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

heaps, hashing, and binary search trees). They compared the Codex
to students taking their class and found it performed in the upper
quartile.

Golesteanu, Vowinkel and Dougherty [15] analyzed ChatGPT’s
performance on exams for their Theory of Computation course,
noting its ability to write proofs was largely predictable by whether
the problem, or one like it, had been present in the training cases.

Our work extends [12] by covering more advanced data struc-
tures and algorithms topics, as well as investigating the ability of
GPT-4 to design algorithms using core paradigms that are common
to algorithms courses [23]. We extend [15] with GPT-4o by explor-
ing a larger number of ToC questions that were drawn from our
university’s class problem sets and exams.

2.2 Educational Opportunities Afforded By
LLMs

There are many prospective benefits to LLMs in an educational
setting. Ross et al. [36] used Copilot to develop a prototype Pro-
grammer’s Assistant, making progress on an idea whose vision
had been described in 1990 [35]. Other prospective benefits are in
curricular design [40], course programming assistants [22], person-
alized assignments [8, 37], and code explanations to programming
learners [20, 26].

There are risks of these in the educational setting too; for an
excellent discussion of these risks, and more information about
the opportunity they present, see [7]. For information about the
trustworthiness of AI in these settings, see [4, 18]. With this in
mind, for adoption plans to programming classes, see [2, 19]; for
uses of GPT to provide feedback on programming assignments, see
[1]; and [5, 16, 20, 21, 24, 31, 41] for other topics about LLMs in
education.

In short, the effect on the educational setting of LLMs is that of a
powerful tool. For an in-depth look at Copilot as an educational tool,
both in what it can achieve in a CS1 classroom (beyond producing
code for a programming assignment) and a discussion of the effect
on the educational landscape, see the work of Wermelinger [44].

There is much more work about generative AI, but our focus in
this project is as it relates to educational and classroom issues.

3 Method
As of the time of writing this paper, ChatGPT by OpenAI is one of
the predominant general purpose large language models (LLMs).
Since ChatGPT is continuously being updated, we performed our
testing on its underlying model directly, invoking the GPT-4 API.
Specifically, our results can be replicated by invoking the gpt-4-0613
version of the model, which we refer to simply as GPT-4 within
this paper, for data structures and algorithms topics, and GPT-4o
for Theory of Computation. As of this writing, GPT-4o (omni) is
OpenAI’s most advanced model, allowing multimodal input, such
as PDF, which we extensively utilized.

At a high level, our methodology is as follows. We selected
representative free response questions from sub-topics within data
structures, algorithms, and Theory of Computation.

For each topic, we chose two “graders” to evaluate the system
on that topic. For GPT-4 or older versions, the grader copied and
pasted the questions into a new chat. For GPT-4o, the grader first

sent the PDF file containing the questions to the model directly
and then asked the model to give a brief answer for all the papers’
problems. In both protocols, after the model responded, the grader
may have needed to ask sub-questions or provide hints, acting like
a student trying to guide the model to reach the correct answer
through varying degrees of assistance. Graders also did this when
the answers were ambiguous. This process was repeated several
times per grader in order to reach an accurate assessment of the
results. Since GPT-4 often was inconsistent in its responses, graders
compared their scores for each problemwith each other. When both
verdicts matched, the result was accepted, and when they differed,
the lower grade was picked.

The problems were selected from three of our institution’s core
theory courses: a second-year post-CS2 Data Structures course, an
upper division course covering the Design and Analysis of Algo-
rithms, and an upper division elective about Theory of Computation.
Each of the selected problems appeared either in a homework as-
signment (as a required or suggested question) or on an exam (as
an in-class exam given for credit or a practice one intended to help
students prepare for the former). The problems are available at
https://ics.uci.edu/~mikes/papers/TheoryGPT2025/.

The topics for which we provided questions are as follows:

• Stacks and Queues
• Binary Trees
• Graph Algorithms, such as Dijkstra’s Single Source Shortest
Path Algorithm and Minimum Spanning Trees

• Graph Reductions, wherein a problem is posed whose solu-
tion is to create a graph and use a traversal or fundamental
algorithm upon that graph to solve the original problem.

• Network Flow, wherein a problem is posed whose solution
is to create a graph and use maximum flow or minimum cut
upon that graph to solve the original problem.

• Divide and Conquer, wherein a problem is posed to be solved
via that algorithm design technique.

• Dynamic Programming, wherein a problem is posed to be
solved via that algorithm design technique.

• Greedy Algorithms, wherein we either design an algorithm
using this technique with a proof of correctness, adapt an
existing greedy algorithm, or prove that a greedy algorithm
is incorrect by providing a counter-example.

• Regular Languages, involving designing and analyzing finite-
state machines and using proof techniques, such as closure
properties and the pumping lemma, to verify membership
and non-membership in the class of regular languages.

• Context-Free Languages, involving designing and analyzing
pushdown automata and using proof techniques, such as
closure properties and the pumping lemma, to verify mem-
bership or non-membership of context-free languages.

• Turing Machines, involving designing and analyzing Turing
machines.

• Decidability, using proof techniques, such as reduction, to
prove decidability and undecidability.

• Computational Complexity, using proof techniques, such as
reduction, to prove a problem to be NP-complete.

With adequate help, GPT-4 was able to solve nearly all the prob-
lems in the topics related to data structures and algorithms. We

https://ics.uci.edu/~mikes/papers/TheoryGPT2025/


SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Nero Li et al.

define help as guidance provided to the model by the testers. This
guidance became increasingly more significant if the model could
not correctly solve the problem. For example, if the model pro-
vided an incorrect response, a tester might give it a small hint by
highlighting a specific part of the problem or pointing out a minor
mistake. Then, if the model was still incorrect, the tester could
provide more assistance in the form of a more meaningful hint,
such as a small part of the solution or the correct approach. Our
goal was to distinguish the severity of "help" that GPT-4 required.
Problems were then graded on a 5-point scale, with scores 4 to
5 corresponding to questions where a naive student could easily
solve the problems using GPT-4, and scores 1 to 3 corresponding to
questions where more experience and thoughtful guidance were
required to lead GPT-4 to a correct answer.2

In contrast, the LLM performed relatively poorly on the more ad-
vanced topics, where we used GPT-4o instead of GPT-4. We believe
this is primarily due to the inherent difficulty of these problems,
rather than to differences of capabilities in these models.

A more detailed breakdown of these scores can be found in
Table 1.

Score Meaning
1 Unable to solve the problem without explicitly being

told the solution.
2 Solves the problem in a way that seems believable but

has errors, requiring specific suggestions that could
only be identified by an astute student or teaching
assistant.

3 Solves the problem correctly after pointing out several
problems that an average student would be able to
identify.

4 Solves the problem correctly after pointing out a clear
problem that even a naive student would be able to
identify.

5 Solves the problem correctly and consistently with
no dialogue.
Table 1: Scoring Criteria for responses

4 Results and Discussion
As discussed in Section 3 (Method), our final results were grouped
into questions with scores of 4 to 5, where a very naive student
equipped with ChatGPT would be able to trivially solve, and into
questions with scores from 1 to 3, where more experienced and
thoughtful guidance was required. The results are in Table 2.

It is worth noting that some of GPT’s answers are strikingly
similar to online solutions. However, there are many ways to cir-
cumvent this, such as making minor changes to the API’s system
message3, using a different version of the model, or simply asking

2While grading, we added a score of 6 for questions where GPT-4 solved consistently
without a normal hint that would be given to students, provided with the question.
For simplicity, we consolidated the score of 5 and 6 within this paper.
3The API allows adding ‘system’ messages which dictate the ‘personality’ that GPT
embodies in its responses. A slightly different system message can correspond to
significant prompt rewording.

Topic # Trivially
Solvable

Total #
Questions

Binary Trees 2 5
Greedy Algorithms 5 7
Dynamic Programming 7 9
Network Flow 7 9
Graph Algorithms 11 14
Graph Reductions 7 8
Divide and Conquer 7 8
Stacks and Queues 2 2
Aggregated Results from GPT-4 48 62
Turing Machines 0 8
Context-Free Languages 1 28
Regular Languages 5 10
Decidability 6 10
Proofs for Regular 4 6
Computational Complexity 19 26
Proofs for Context-Free 12 15
Aggregated Results from GPT-4o 47 103

Table 2: Results comparing the number of trivially solvable
questions (obtaining scores of 4 or 5) versus the total number
of questions for each topic. The results are ordered from
worst to best performing topics for each model.

GPT to reword its response. As such, we do not think storing a data-
base of GPT responses or any similar method to identify cheating
is viable long-term.

Another observation is the relative ease for a human does not
reflect in the relative difficulty for the system. Dynamic program-
ming is reported to be a difficult topic for undergraduates [10], yet
the system was able to solve most of these with ease. By contrast,
binary tree questions are easier for students to solve, yet the system
struggled with over half of the problems we posed to it. This is
consistent with the findings from [17] that GPT performance and
relative human difficulty are not necessarily correlated.

An interesting incident occurred with a binary tree question. We
asked the system to count how many binary search trees have a
particular property. The system answered correctly using the prod-
uct of Catalan numbers. When asked to answer without using that
method, as an undergraduate studying binary search trees for the
first time is unlikely to know about these, it gave several incorrect
answers involving similar combinatorics. Ultimately, we treated
this as an incorrect answer, as it could not solve it using techniques
we would expect a student to use, which limits its usefulness for
many important applications.

The system can accurately respond to questions about the con-
ceptual aspects of languages and automata. However, it frequently
struggles with designing an automata or grammar to represent
languages. While the system showed capability in creating graphs
using LATEX and the TikZ package, the system could ultimately only
solve the simplest, most common problems. With more complicated
questions, the generated graphs often contained logical, syntactical,
and visualization errors.

When asked to provide different derivations of a string in a given
language from a context-free grammar (CFG), a question students



Investigating the Capabilities of Generative AI in Solving Data Structures, Algorithms,
and Computability Problems SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

generally consider easy, the generated derivations do not adhere
to the defined grammar, and the steps taken in the derivations
are seemingly random. Interestingly, when producing context-free
grammars (CFGs) and pushdown automata (PDAs) for a language,
GPT often defaults to providing the representation for the language
of palindromes, regardless of the requested language.

While GPT-4o has image recognition capabilities, there are still
mistakes with reading graphs. When asked to find a Hamiltonian
path in the graph, the initial reading of the edges was incorrect, but
after providing feedback, the model generated a valid Hamiltonian
path.

The system is capable of generating pumping lemma proofs for
regular and context-free languages. Initially, the generated proofs
were often incomplete, failing to demonstrate that the selected
string would break the language when pumped. After receiving
feedback, the system was able to provide fully correct and com-
prehensive proofs to straightforward problems. When faced with
more complex problems, the selected string was not initially part of
the language, rendering the proof invalid. Additionally, the system
demonstrated the ability to prove the closure of a language under
various operations through closure properties.

In the following two sub-sections, we will discuss successful
and unsuccessful attempts by the model to solve a subset of our
problems. While we are describing the problems for context, the
de-anonymized version of the paper will include a link to the full set
of questions we used to test this. That will allow for more context
of the results and also be available for any desired replication or
extension studies.

4.1 Successful Responses from the Model
An interesting success for the model is for a hard dynamic program-
ming problem from an algorithm design class. This is an original
question and does not, to our knowledge, appear in a textbook.
While general dynamic programming problems only have one or
two cases in their recurrence relations, the solution to this problem
requires three—involving either one, two, or a variable number of
terms. This problem is question 5 in the dynamic programming
portion of our problem set.

The prompt was provided and the system provided a neatly ar-
ranged but incorrect answer involving a 2D array, complete with a
reasonable attempt at a Python implementation. The system cor-
rectly determined that this solution has running time 𝑂 (𝑛3). The
grader alerted the system that this is incorrect, that a 2D array is
not needed, that it can be solved in𝑂 (𝑛) time, and emphasized key
parts of the problem statement.

From this, the system was able to figure out the correct recur-
rence for each of the three cases and the order in which the iterative
algorithm should memoize solutions.

4.2 Unsuccessful Responses from the Model
4.2.1 Binary Tree Traversals. A surprising unsuccessful attempt by
the model involved a classic binary tree problem, where a student
must draw the unique binary tree described by a provided in-order
and post-order traversal. In the instructor’s experience, most un-
dergraduates taking CS2 can and do successfully solve a problem
like this during exams.

While the system successfully drew a binary tree, even contain-
ing all the requisite letters, the tree itself was very incorrect. The
system provided a tree where a top to bottom, left to right reading
of the labels matched the required in-order traversal, but of course
this is a very simplistic and incorrect understanding of the layout
of binary trees.

Further adding to our surprise is the model’s explanation. The
narrative was largely accurate: it correctly stated that the label of
the root can be determined from the post-order traversal, and that
each subtree’s contents can then be identified based on the other
traversal. However, the values used in these were not correct. One
researcher on the team described the response as one we might
expect from a student who knows what a correct explanation to
how to solve this problem looks like but did not know how to solve
this particular instance and wanted to try for partial credit.

Unfortunately, hints did not lead the model to a solution. Even
when told the label of the root, the model gave a tree consistent
with that hint and the set of labels, but still was not better than
random guessing.

4.2.2 Context-Free Grammars. As stated previously, the model
significantly struggled when dealing with context-free grammars
(CFGs), in stark contrast to humans who tend to find such questions
easier. The model answered almost every question, including rela-
tively simple ones, entirely incorrectly. What we found interesting,
however, was one problem where the model answered a major-
ity of the question correctly, while it provided entirely irrelevant
explanations.

In one example, we asked the model to generate the CFG for a
language that consist of some number of ‘a’s, followed by ‘b’s, and
finally followed by ‘c’s, with the following condition—the number
of ‘b’s must match either with the number of ‘a’s or the number of
‘c’s. Stated formally, the language 𝐿 can be defined as: 𝐿 = {𝑎𝑖𝑏 𝑗𝑐𝑘 |
𝑖 == 𝑗 or 𝑗 == 𝑘}. We also provided the model with the same hint
that we provide the students, namely that it should start by splitting
off into two disjoint paths, one for each possibility (either the ‘b’s
match the ‘a’s or the ‘c’s).

The model surprised us by not only correctly splitting the prob-
lem into two parts (𝑆 → 𝐴𝐵 | 𝐶𝐷), but also by correctly accounting
for the second possibility, when the ‘b’s match the ‘c’s. This in-
volved first allowing any number of ‘a’s (𝐶 → 𝑎𝐶 | 𝜖) and then only
allowing an equal amount of ‘b’s and ‘c’s (𝐷 → 𝑏𝐷𝑐 | 𝜖). For the
first possibility, the model also correctly restricted the number of
‘a’s to match the number of ‘b’s (𝐴 → 𝑎𝐴𝑏 | 𝜖). Quizzingly, however,
the model failed to correctly allow an unrestricted number of ‘c’s,
instead allowing more ‘b’s (𝐵 → 𝑏𝐵𝑐 | 𝜖), essentially allowing the
case where 𝑗 == 𝑖 + 𝑘 .

Despite pointing this out, the model is unable to correct this
seemingly simple error, opting to either break more parts of the so-
lution or assert that the solution is correct as-is. Numerous attempts
to re-prompt yielded similar or worse results. These responses fur-
ther suggest that while the model is excellent at understanding
the structure of answers, problems that involve, even simple, novel
reasoning [3] prove elusive to the model.

4.2.3 Dominating Set is NP-complete. A subset of vertices of a
graph are a Dominating Set if every vertex is either included in that
set or adjacent to one that is. This contrasts with a Vertex Cover, in



SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Nero Li et al.

which we seek a set of vertices such that each edge of the graph
has at least one of its endpoints in the set. If our graph has no
isolated vertices, then a valid vertex cover is trivially a dominating
set, but not every dominating set constitutes a vertex cover. In both
cases, the decision version of the problem is to determine if a set of
vertices of size 𝑘 exists for the metric.

In the context of the class, students see that Vertex Cover is
NP-complete and, on their homework, are asked to prove that this
is also true of Dominating Set. The system correctly began with
a proof that Dominating Set is in NP. It then correctly gets the
direction of the reduction: we begin with an instance of Vertex
Cover, and want to create an equivalent instance of Dominating
Set. However, the system gives us a poor reduction: adding a single
vertex to the graph and then seeking a Dominating Set of size𝑘+1 in
the resulting (modified) graph. The system’s response completes by
attempting to demonstrate that this produces neither false positives
nor false negatives.

Like the binary tree traversals problem earlier, this has a familiar
feel to it: the system knows the shape of what an answer looks like,
but cannot fill in any particulars.

5 Threats to Validity
One potential threat to the validity of our study is the potential
presence of solutions to the problems we used in the LLM’s training
data. To address this concern, a replication or extension of our
work could encompass similar problems from various universities,
as well as attempts to obfuscate the problem without modifying
its solution. This approach would lead to a more comprehensive
evaluation of the model’s generalization abilities, providing insights
into its proficiency across a broader array of problem variations
and sources. [15] noted this also.

As we were working on this project, new versions of GPT, as well
as other large language models, were regularly released. When we
began collecting data for data structures and algorithm questions,
GPT-4 was the latest model, and we were using the API version with
text response only. When we moved to Theory of Computation,
GPT-4o was released, and we also started using 4o’s ability to read
PDF files and images. These updates could impact the types of prob-
lems the models are capable of solving, and the result of accuracy
between two models does not mean one model is necessarily better
than another. Due to time constraints and the limitations of request
availability, our team could not revise all prior questions with the
newer model. Given the continuous evolution of large language
models, evaluating the performance of the latest model remains a
valuable subject for future research and discussion.

Additionally, there is a potential issue regarding variability among
graders, especially for problems involving proofs. The results might
have differed if different individuals had graded a particular prob-
lem. This variability is similar to the desire for vertical grading
consistency with respect to student artifacts.

A final issue is that the problems utilized may not be sufficient
to completely represent the performance of the model on a given
topic. We attempted to test multiple types of questions within each
general area of study, but it could be the case that the model would
perform differently on different kinds of problems regarding the
same topic. To address this concern, a larger variety of questions

could be tested, and the general topics could be subdivided into
types of problems so that they can all be experimented with.

6 Future Work
Replication work is an important endeavor in science, as are exten-
sions of existing work. The de-anonymized version of this paper
will include a link to the problems we used. Another research group
should consider not only replicating this work, but extending it
with similar problems of their own.

One of the motivations for conducting evaluations of the capac-
ity of LLMs to tackle classroom-level problems is the potential to
lay the groundwork for an AI-powered tutoring system. Consider-
ing the initial achievements demonstrated by GPT-4 in resolving
advanced algorithms problems, there is an appealing prospect of
the development of an AI tutorial system for algorithmic topics.

Several LLMs offer the capability of fine-tuning the model to
address specific problem types or adjusting model parameters, such
as ‘system’ messages in the case of GPT-4 and GPT-4o. These fine-
tuning approaches fall beyond the purview of this paper, as our
focus here is on gauging the extent to which a naive student can
leverage these tools to solve problems, under the assumption that
a naive student is less likely to engage in extensive model tuning.
Nonetheless, evaluating the performance of amore optimizedmodel
remains an intriguing research question in its own regard.

7 Conclusion
The foundational large language model (LLM) driving OpenAI’s
widely used chatbot, ChatGPT, has demonstrated an impressive
aptitude in the realm of Computer Science Theory. Notably, even
an unseasoned student can leverage GPT-4 to successfully tackle
over 77% of problems across nine distinct theory topics, but we
are not yet at the stage where even the most advanced GPT model
can guarantee a passing grade in these classes. As time progresses,
this performance is anticipated to enhance further, showcasing
its potential to become a pivotal resource for tutoring computer
science students with an unprecedented level of accuracy.

These findings underscore the profound implications of such
capabilities. They extend to the realm of educational tools, where
GPT’s prowess can potentially transform the landscape of Com-
puter Science Education. Additionally, the insights drawn from this
study prompt an exploration of adapting courses in related disci-
plines to accommodate the possibility of students utilizing such
tools for assistance in assignments where general computer access
is available. Such a consideration could lead to a thoughtful reeval-
uation of assignment structures to ensure equitable assessment
while embracing the benefits of AI-powered support.

References
[1] Rishabh Balse, Bharath Valaboju, Shreya Singhal, JayakrishnanMadathilWarriem,

and Prajish Prasad. 2023. Investigating the Potential of GPT-3 in Providing
Feedback for Programming Assessments. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1. 292–298.

[2] Brett A Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming is hard-or at least it
used to be: Educational opportunities and challenges of ai code generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1. 500–506.

[3] François Chollet. 2019. On the Measure of Intelligence. arXiv:1911.01547 [cs.AI]

https://arxiv.org/abs/1911.01547


Investigating the Capabilities of Generative AI in Solving Data Structures, Algorithms,
and Computability Problems SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

[4] Paul Denny, Hassan Khosravi, Arto Hellas, Juho Leinonen, and Sami Sarsa. 2023.
Can We Trust AI-Generated Educational Content? Comparative Analysis of
Human and AI-Generated Learning Resources. arXiv preprint arXiv:2306.10509
(2023).

[5] Paul Denny, Hassan Khosravi, Arto Hellas, Juho Leinonen, and Sami Sarsa. 2023.
Human vs Machine: Comparison of Student-generated and AI-generated Educa-
tional Content. arXiv preprint arXiv:2306.10509 (2023).

[6] Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with Copilot:
Exploring Prompt Engineering for Solving CS1 Problems Using Natural Language.
In Proceedings of the 54th ACM Technical Symposium on Computer Science Educa-
tion V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing Machin-
ery, New York, NY, USA, 1136–1142. https://doi.org/10.1145/3545945.3569823

[7] Paul Denny, James Prather, Brett A Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N Reeves, Eddie Antonio Santos,
and Sami Sarsa. 2023. Computing Education in the Era of Generative AI. Commun.
ACM 51, 1 (2023).

[8] Paul Denny, Sami Sarsa, Arto Hellas, and Juho Leinonen. 2022. Robosourcing
Educational Resources–Leveraging Large Language Models for Learnersourcing.
In The Proceedings of The First annual workshop on Learnersourcing: Student-
generated Content @ Scale.

[9] Giuseppe Destefanis, Silvia Bartolucci, and Marco Ortu. 2023. A Preliminary
Analysis on the Code Generation Capabilities of GPT-3.5 and Bard AI Models for
Java Functions. arXiv preprint arXiv:2305.09402 (2023).

[10] Emma Enström and Viggo Kann. 2017. Iteratively intervening with the “most
difficult” topics of an algorithms and complexity course. ACM Transactions on
Computing Education (TOCE) 17, 1 (2017), 1–38.

[11] James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The robots are coming: Exploring the implications of openai
codex on introductory programming. In Proceedings of the 24th Australasian
Computing Education Conference. 10–19.

[12] James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A Becker. 2023. My AI Wants to Know if This Will
Be on the Exam: Testing OpenAI’s Codex on CS2 Programming Exercises. In
Proceedings of the 25th Australasian Computing Education Conference. 97–104.

[13] Flynn Fromont, Hiruna Jayamanne, and Paul Denny. 2023. Exploring the Diffi-
culty of Faded Parsons Problems for Programming Education. In Proceedings of
the 25th Australasian Computing Education Conference. 113–122.

[14] GitHub. 2022. Github Copilot - Your AI pair programmer.
https://github.com/features/copilot.

[15] Matei A. Golesteanu, Garrett B. Vowinkel, and Ryan E. Dougherty. 2024. Can
ChatGPT Pass a Theory of Computing Course?. In Proceedings of the 2024 ACM
Virtual Global Computing Education Conference V. 1 (SIGCSE Virtual 2024) (Virtual
Event). Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3649165.3690116

[16] Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpää,
and Juha Sorva. 2023. Exploring the Responses of Large Language Models to
Beginner Programmers’ Help Requests. In Proceedings of the 2023 Conference on
International Computing Education Research.

[17] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. 2020. Measuring Massive Multitask Language Un-
derstanding. In International Conference on Learning Representations.

[18] Tyson Kendon, Leanne Wu, and John Aycock. 2023. AI-Generated Code Not
Considered Harmful. In Proceedings of the 25th Western Canadian Conference on
Computing Education. 1–7.

[19] Sam Lau and Philip J Guo. 2023. From “Ban It TillWe Understand It” to “Resistance
is Futile” : How University Programming Instructors Plan to Adapt as More
Students Use AI Code Generation and Explanation Tools such as ChatGPT and
GitHub Copilot. In Proceedings of the 2023 Conference on International Computing
Education Research.

[20] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing code explanations created
by students and large language models. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education, Vol. 2.

[21] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A Becker. 2023. Using large language models to enhance programming
error messages. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. 563–569.

[22] Jenny T Liang, Chenyang Yang, and Brad A Myers. 2023. Understanding the
Usability of AI Programming Assistants. In Proceedings of the ACM/IEEE 46th
International Conference on Software Engineering (ICSE).

[23] Michael Luu, Matthew Ferland, Varun Nagaraj Rao, Arushi Arora, Randy Huynh,
Frederick Reiber, Jennifer Wong-Ma, and Michael Shindler. 2023. What is an
Algorithms Course? Survey Results of Introductory Undergraduate Algorithms
Courses in the US. In Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1. 284–290.

[24] StephenMacNeil, Joanne Kim, Juho Leinonen, Paul Denny, Seth Bernstein, Brett A
Becker, Michel Wermelinger, Arto Hellas, Andrew Tran, Sami Sarsa, et al. 2023.
The Implications of Large Language Models for CS Teachers and Students. In

Proceedings of the 54th ACM Technical Symposium on Computer Science Education,
Vol. 2.

[25] Kamil Malinka, Martin Peresíni, Anton Firc, Ondrej Hujnák, and Filip Janus. 2023.
On the educational impact of ChatGPT: Is Artificial Intelligence ready to obtain
a university degree?. In Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1. 47–53.

[26] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad
Myers. 2023. In-IDE Generation-based Information Support with a Large Lan-
guage Model. arXiv preprint arXiv:2307.08177 (2023).

[27] OpenAI. 2021. OpenAI Codex. https://openai.com/blog/openai-codex.
[28] OpenAI. 2023. ChatGPT: Optimizing Language Models for Dialogue.

https://openai.com/blog/chatgpt.
[29] Eng Lieh Ouh, Benjamin Kok SiewGan, Kyong Jin Shim, and SwavekWlodkowski.

2023. ChatGPT, Can You Generate Solutions for my Coding Exercises? An
Evaluation on its Effectiveness in an undergraduate Java Programming Course.
In Proceedings of the 2023 Conference on Innovation and Technology in Computer
Science Education V. 1.

[30] Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: a fun
and effective learning tool for first programming courses. In Proceedings of the
8th Australasian Conference on Computing Education-Volume 52. 157–163.

[31] Tung Phung, Victor-Alexandru Pădurean, José Cambronero, Sumit Gulwani, To-
bias Kohn, Rupak Majumdar, Adish Singla, and Gustavo Soares. 2023. Generative
AI for Programming Education: Benchmarking ChatGPT, GPT-4, and Human
Tutors. International Journal of Management 21, 2 (2023), 100790.

[32] Stephen R Piccolo, Paul Denny, Andrew Luxton-Reilly, Samuel Payne, and Perry G
Ridge. 2023. Many bioinformatics programming tasks can be automated with
ChatGPT. arXiv preprint arXiv:2303.13528 (2023).

[33] Seth Poulsen, Sami Sarsa, James Prather, Juho Leinonen, Brett A. Becker, Arto
Hellas, Paul Denny, and Brent N. Reeves. 2024. Solving Proof Block Prob-
lems Using Large Language Models. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1 (Portland, OR, USA) (SIGCSE
2024). Association for Computing Machinery, New York, NY, USA, 1063–1069.
https://doi.org/10.1145/3626252.3630928

[34] Brent Reeves, Sami Sarsa, James Prather, Paul Denny, Brett A Becker, Arto Hel-
las, Bailey Kimmel, Garrett Powell, and Juho Leinonen. 2023. Evaluating the
Performance of Code Generation Models for Solving Parsons Problems With
Small Prompt Variations. In Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1. 299–305.

[35] Charles Rich and Richard C Waters. 1990. The programmer’s apprentice. ACM.
[36] Steven I Ross, Michael Muller, Fernando Martinez, Stephanie Houde, and Justin D

Weisz. 2023. A Case Study in Engineering a Conversational Programming Assis-
tant’s Persona. In Joint Proceedings of the ACM IUI Workshops 2023, March 2023,
Sydney.

[37] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
generation of programming exercises and code explanations using large language
models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research-Volume 1. 27–43.

[38] Jaromir Savelka, Arav Agarwal, Marshall An, Chris Bogart, and Majd Sakr. 2023.
Thrilled by Your Progress! Large Language Models (GPT-4) No Longer Struggle
to Pass Assessments in Higher Education Programming Courses. In Proceedings
of the 2023 Conference on International Computing Education Research.

[39] Jaromir Savelka, Arav Agarwal, Christopher Bogart, Yifan Song, and Majd Sakr.
2023. Can Generative Pre-trained Transformers (GPT) Pass Assessments in
Higher Education Programming Courses?. In Proceedings of the 54th ACM Tech-
nical Symposium on Computer Science Education, Vol. 2.

[40] Pragnya Sridhar, Aidan Doyle, Arav Agarwal, Christopher Bogart, Jaromir
Savelka, and Majd Sakr. 2023. Harnessing LLMs in Curricular Design: Using GPT-
4 to Support Authoring of Learning Objectives. arXiv preprint arXiv:2306.17459
(2023).

[41] Tamara Tate, Shayan Doroudi, Daniel Ritchie, Ying Xu, and Mark Warschauer.
2023. Educational research and AI-generated writing: Confronting the coming
tsunami. (2023).

[42] Tianjia Wang, Daniel Vargas-Diaz, Chris Brown, and Yan Chen. 2023. Towards
Adapting Computer Science Courses to AI Assistants’ Capabilities. Visual Lan-
guages / Human-Centric Computing (2023).

[43] Nathaniel Weinman, Armando Fox, and Marti A Hearst. 2021. Improving instruc-
tion of programming patterns with faded parsons problems. In Proceedings of the
2021 chi conference on human factors in computing systems. 1–4.

[44] Michel Wermelinger. 2023. Using GitHub Copilot to solve simple programming
problems. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. 172–178.

https://doi.org/10.1145/3545945.3569823
https://doi.org/10.1145/3649165.3690116
https://doi.org/10.1145/3649165.3690116
https://doi.org/10.1145/3626252.3630928

	Abstract
	1 Introduction
	2 Background and Literature Review
	2.1 Generative AI Performance on Class Assignments
	2.2 Educational Opportunities Afforded By LLMs

	3 Method
	4 Results and Discussion
	4.1 Successful Responses from the Model
	4.2 Unsuccessful Responses from the Model

	5 Threats to Validity
	6 Future Work
	7 Conclusion
	References

