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Abstract
Concept inventories are standardized assessments that evaluate
student understanding of key concepts within academic disciplines.
While prevalent across STEM fields, their development lags for ad-
vanced computer science topics like dynamic programming (DP)—
an algorithmic technique that poses significant conceptual chal-
lenges for undergraduates. To fill this gap, we developed and val-
idated a Dynamic Programming Concept Inventory (DPCI). We
detail the iterative process used to formulate multiple-choice ques-
tions targeting known student misconceptions about DP concepts
identified through prior research studies. We discuss key decisions,
tradeoffs, and challenges faced in crafting probing questions to
subtly reveal these conceptual misunderstandings. We conducted
a preliminary psychometric validation by administering the DPCI
to 172 undergraduate CS students finding our questions to be of
appropriate difficulty and effectively discriminating between differ-
ing levels of student understanding. Taken together, our validated
DPCI will enable instructors to accurately assess student mastery
of DP. Moreover, our approach for devising a concept inventory
for an advanced theoretical computer science concept can guide
future efforts to create assessments for other under-evaluated areas
currently lacking coverage.
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1 Introduction
Concept inventories are standardized assessment instruments used
in education research to evaluate student understanding of key con-
cepts within a discipline. They are typically comprised of multiple-
choice questions targeting commonmisconceptions identified. These
misconceptions are derived via education research. Concept inven-
tories have been developed and validated across many science,
technology, engineering, and math (STEM) topics. One of the first
and most widely adopted was the Force Concept Inventory (FCI)
in physics education [15, 19]. The FCI was devised based on stud-
ies of prevalent misconceptions physics students held regarding
Newtonian mechanical concepts. It has become a standard instru-
ment for measuring the effectiveness of high school and university
physics instruction on improving the conceptual understanding of
Newtonian mechanics. Following the FCI’s lead, additional concept
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inventories have been created across other natural science disci-
plines as well as engineering, including, chemistry [27], astronomy
[4], biology[3], mathematics [12], statistics[36], and geosciences
[22], among others [2].

Within computer science, concept inventories have been formu-
lated for introductory CS1/CS2 courses [9, 14], architecture [32],
operating systems [38], and cybersecurity [34]. However, concept
inventory development remains lacking for more theoretical and
advanced CS topics. An unvalidated concept inventory focused on
algorithms and data structures was proposed by Paul and Vahren-
hold [31], but no rigorously validated instrument currently exists
for the challenging concept of dynamic programming (DP).

DP is an algorithm design technique, taught in many undergrad-
uate algorithms courses, that builds solutions to problems using
optimal substructure and overlapping subproblems. As an advanced
algorithmic approach, DP is considered among the most concep-
tually difficult topics for CS students [11, 35, 40]. Prior work by
Shindler et al. [35] examined prevalent student misconceptions re-
lated to dynamic programming, suggesting the need for a concept
inventory to assess student understanding. However, despite its
reputation as a challenging topic fraught with subtleties students
struggle to grasp, and the cataloged misunderstandings they har-
bor, no concept inventory has yet been formulated and validated
to evaluate dynamic programming comprehension.

This paper discusses the development and initial validation of a
research-based Dynamic Programming Concept Inventory (DPCI).
The DPCI can be deployed by instructors to measure effectiveness
of teaching DP to undergraduate computer science majors. We
detail the iterative process of crafting valid DPCI multiple choice
questions which reveal the presence of student misconceptions
identified by prior education studies. Carefully formulating MCQs
to subtly tease out conceptual misunderstandings around the intri-
cacies of dynamic programming is difficult and time intensive. We
discuss key steps, decisions, tradeoffs and consequences, challenges
encountered in producing a high quality concept inventory and
preliminary psychometric validation administering our DPCI to
172 undergraduate computer science students.

Our validated DPCI will enable instructors to evaluate student
mastery of dynamic programmingwithin undergraduate algorithms
courses. Moreover, our experiences devising a concept inventory
to measure understanding of an advanced conceptual CS topic will
inform development of additional assessments for theoretical ar-
eas of computer science presently lacking coverage. With a broad
foundation of validated concept inventories across the CS curricu-
lum, instructors can better evaluate the efficacy of pedagogical
techniques and curricular interventions. Our contributions include:
(i) steps involved in constructing a validated DPCI, (ii) publishing
a list of questions to be administered as part of the DPCI,1 and
(iii) psychometric validation results using classical test theory. Our
study was approved as exempt by the IRB.

2 Related Work
2.1 Concept Inventories
A concept inventory (CI) is a validated assessment for a topic or
set of topics that allows researchers and instructors to measure
1DPCI link: https://us.prairielearn.com/pl/public/course/5595/questions

what students have learned. Concept inventory research started
with the Force Concept inventory, which allowed for measuring
effectiveness of pedagogical techniques against one another in
introductory physics classes, helping build the case for more active
learning in these courses [15, 19].

Recently, computing education researchers have been creating
CIs, so our discipline can also benefit from them. Despite their
relatively recent introduction in computer science, concept inven-
tories have already been useful for many purposes in computing
education research. Introductory programming concept inventories
have been used to examine the relationship between spatial abil-
ity and learning programming [7], to evaluate the effectiveness of
teaching students using both block- and text-based programming
languages [6], to understand the impact of students’ educational
background on learning topics in computer science [5], and to eval-
uate novel instructional practices [28, 39]. Concept inventories for
other topics in CS have been used to compare outcomes between dig-
ital logic courses which use differing pedagogical approaches [16],
to measure misconceptions of students learning algorithm analy-
sis [13], and to evaluate the effectiveness of ways of teaching about
the memory model of the Rust programming language [8]. This
progress in CS education afforded by the creation and existence of
concept inventories gives a strong argument for their continued
development.

Many concept inventories have been created and fully validated
for many introductory programming topics, with validated CIs for
CS1, first year computer science, middle-grades computer science,
object oriented programming, and basic data structures as well as
topic-specific CIs for recursion and Java arrays [2].

Theoretical and advanced topics in computer science have not
yet received as much coverage in concept inventories. There are
fully validated concept inventories only for digital logic and cy-
bersecurity [17, 18, 34]. Concept inventory work has begun, but
not been completed for operating systems, algorithm analysis, and
compiler construction [2]. This leaves huge gaps in many theoret-
ical and upper-level computing topics regarded as core topics in
the ACM curricular guidelines, including all types of algorithm de-
sign as well as human-computer interaction, artificial intelligence,
networking, and parallel and distributed computing [20]. Thus, we
find it important that concept inventories are developed for more
advanced and theoretical computing topics, to drive the same educa-
tional innovation and research that has happened for introductory
programming. For extensive reviews of assessment instruments
used in computing education research, see [2, 10, 26].

2.2 Work on Algorithms Education
While many students begin learning algorithms as a part of their
introductory course sequence, the ACM curricular guidelines [20]
recommend that they take a more advanced algorithms-focused
course later on in their curriculum. Such courses almost always
cover dynamic programming [25]. Dynamic programming is the
area of algorithms education with the most research about it [24].

Though there is a draft concept inventory for algorithm anal-
ysis [13], there have not been any concept inventories created to
cover the broad space of algorithm design techniques, including but
not limited to greedy algorithms, divide-and-conquer algorithms,

https://us.prairielearn.com/pl/public/course/5595/questions
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algorithmic reductions, and dynamic programming (DP) algorithms.
Many of these areas of algorithms design are so understudied that
creating a concept inventory would not yet be possible until re-
searchers first complete the foundational work of discovering com-
mon students misconceptions and struggles in those areas [24]. On
the other hand, studies have been done to understand the nature of
student difficulties in dynamic programming [23, 35, 40], making it
a good topic to design a concept inventory around at this point in
time. Specifically, prior studies have highlighted that students often
fail to recognize that DP is the best solution to a problem, and once
they do attempt a DP solution, they often fail to select the correct
base case or determine the proper overlapping subproblems.

3 Methods
When developing a Concept Inventory, researchers typically follow
a predefined set of steps established in previous research on the
topic. For our study, we followed the methodology outlined by
[1, 37]. In general, concept inventory studies typically follow a
five-step pattern:

(1) Identify the topics to be addressed in the concept inventory.
(2) Establish common misconceptions held by students in the

specific course or subject area.
(3) Create questions designed to identify these misconceptions.
(4) Conduct a validation process in which instructors assess

whether the questions effectively identify the presence of
misconceptions in the test-takers.

(5) Revise the inventory questions and repeat step 4 as neces-
sary.

Creating an effective concept inventory is a meticulous and time-
consuming process that demands a high level of attention to detail.
Therefore, our concept inventory must concentrate on fundamental
topics, rather than attempting to encompass the entirety of the
overarching subject. Given that the assessment is designed to be
completed within roughly thirty minutes, it is important to address
only a select subset of topics. This ensures that test-takers have
enough time to complete the assessment.

Most concept inventories encompass a wide range of topics. In
our case, we chose to focus on dynamic programming and thus com-
pleted step one of the process. Furthermore, step two of the process,
establishing common misconceptions about dynamic programming
has been completed by [40] and replicated by [35]. Additionally,
we have completed step three by creating questions to identify the
misconceptions highlighted by our prior work.

4 Construction of the DPCI
We attempted to write problems based on Shindler et al. [35], but
found it difficult. The problems identified in the paper were pri-
marily about what students did that was incorrect, rather than the
student beliefs that caused them to make these mistakes. With IRB
approval, we were able to obtain a copy of the 64 anonymized tran-
scripts used in that study, and relabel them to be focused on what
student misconceptions were present. We then created an initial set
of questions. Then, after testing with students, several questions
were removed from the set.

Number Description
1 2D DP solutions always traverse top left to bottom

right
2 DP always involves minimization or maximization
3 If a problem has minimization or maximization, it

must be possible to efficiently solve it with DP
4 If a problem has minimization or maximization, there

is no DP solution for it
5 Conflating recursion with DP
6 Memoization is not a DP approach
7 Aspects of greedy problems are mistakenly associated

with DP
8 Ignoring specific subproblems (and knowing which

ones to solve)
9 Polynomial number of subproblems indicates expo-

nential runtime
10 DP involves “non-adjacency” of subproblems
11 Every problem has an efficient DP solution
12 DP must memoize every permutation of decisions

made in a problem
13 DP involves tracking aspects of state to remember

how a solution was constructed
14 DP always requires a 2D array
15 DP requires nested for loops, with the inner loop solv-

ing a recurrence
Table 1: List of misconceptions found during re-analysis of
interview data, explanations of what they mean, and (maybe)
examples.

4.1 Reanalysis of Interview Data
We examined the interview transcripts to search for misconceptions.
So long as a misconception was seen at least once, it was labeled as
a misconception, and the numbers found were not quantified. The
idea was that uncommon misconceptions would prove to create
easy questions that could later be removed.

Anecdotally, the most commonmisconceptions at this stage were
misconceptions 2, 5, and 14.

4.2 Construction of Questions to Match
Misconceptions

As previously mentioned, initial work on the questions happened
before the relabeling that resulted from re-analysis of the inter-
view data. As such, some questions were left over from this initial
stage, and were later relabeled to match the updated misconception
numbers.

The rest of the questions, however, were generated after the
misconception list was identified. First, each author was given full
freedom to create as many questions as they wished, targeting at
least one misconception identified. Simultaneously, the old ques-
tions were relabeled, as mentioned previously, and then removed
if they had no match. Then, we identified which misconceptions
lacked any questions, and made a question for each of them.

After testing, some questions were rewritten, seperated into
multiple parts, or removed, leaving the current questions remaining.
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Question
ID

Misconception
ID

Answer Choice
for misconcep-
tion

% who Chose
UCI/USU

VR5 1 A 12 / 14
DV14.1 2 B — / 46
AA2 3 D 14/ 9
VR2 4 A 5 / 7
AA2 5 B 7 / 7
MF3 5 A, B, or D 16 / 39
DV14.3 7 True — / 20
DV6 8 Not A 13 / 37
MF6 11 A 37 / 31
AA2 11 A 3 / 4
ML2 13 A 7 / 30
DV10 14 A or B 10 / 5
VR2 14 B 9 / 3
DV10 15 A or C 8 / 7

Table 2: Frequency at which misconceptions were chosen.
The four questions labeled ‘other’ are questions left over
from the initial stage that don’t map to one of our core mis-
conceptions, but we found useful to gauge student difficulty
with dynamic programming. Some questions appear in mul-
tiple rows; this indicates that were were different incorrect
answer choices that mapped to different misconceptions.

4.3 What we can and cannot test with Multiple
Choice

While multiple choice questions are well-suited for probing concep-
tual understanding, there are limitations inwhat they can effectively
assess when it comes to dynamic programming. Our DPCI focuses
on evaluating mastery of the core principles and requisite reasoning
about optimal substructure and overlapping subproblems. However,
we decided against including questions that attempt to test other
skills like constructing recurrence relations or transition functions.
Such procedural tasks are better evaluated through other formats
like write-out problems or coding exercises.

4.4 Pseudocode
Nine of the questions on the DPCI ask students to answer questions
about snippets of code. For our code snippets, we used a pseudocode
which was designed to be understandable by students familiar with
any common imperative programming language, similar to the
approach taken by the SCS1 and BDSI [30, 33]. We included a pseu-
docode guide defining the language constructs at the beginning
of the assessment.2 Our pseudocode differed from the SCS1 pseu-
docode in a few key ways. Because we had no need for object
oriented constructs, we did not include these in the language. On
the other hand, we found that for defining algorithms in a clear
manner, it was useful to include various built-in functions such as
min, max, len, and floor, which have roughly the same notation
as their counterparts in Python. We defined these functions and

2Links to the pseudocode guide and DPCI questions are omitted for anonymouse
review but will be included in the final version.

their asymptotic performance behavior as a part of the pseudocode
guide.

4.5 Outside Expert Review
We had a draft of our questions by the end of January. We prepared
a draft of the questions on PrairieLearn, which would offer both
the question and prompt for feedback on each. We asked several
experts to review the questions and provide commentary. Based on
their feedback, we made many changes described below.

Most revisions primarily focused on correcting syntax errors to
adhere to our pseudocode guide, refining time complexities, clari-
fying ambiguities within questions, and ensuring accurate variable
assignments. Feedback from experts also helped us to ensure the
questions focused on testing conceptual knowledge rather than just
debugging code. We also reworded some questions so that students
could answer them correctly whether or not their instructor had
taught them that recursion with memoization is a valid form of Dy-
namic Programming (along with this, we are no longer attempting
to measure Misconception 6, since not all instructors agree that it
is a misconception).

We also had feedback that the concept inventory didn’t cover
certain classes of problems, such as dynamic programming on graph
structures, or problems where the subproblems are not defined as
a suffix or prefix. We felt that it was appropriate to omit these
advanced problem types in the interest of focusing on assessing
basic dynamic programming concepts. Future work could create a
concept inventory for more advanced topics. Finally, we also had
feedback that the DPCI did not have questions asking students
to create a recurrence for a DP problem, or perform some other
technical skill related to DP. We feel that this is appropriate, since
as a concept inventory the DPCI is designed to test conceptual
knowledge, not necessarily technical skill. Creating assessment
questions to test these skills is another avenue for future work in
DP assessment.

5 Preliminary Psychometric Validation
5.1 Methods
Two primary psychometric validation methods, Classical Test The-
ory (CTT) and Item Response Theory (IRT), have been used in prior
work on concept inventories [21, 29, 33]. CTT is utilized when sam-
ple sizes are smaller and rapid iteration is necessary. In contrast,
IRT is applied under conditions of larger datasets and far more
reliable, as it offers robust estimations less influenced by sample
specifics. We opted for CTT due to its practicality with our limited
sample size and as an initial testing of an assessment instrument.

Reliability within CTT is established using the statistical measure
of Cronbach’s 𝛼 , which reflects the internal consistency of the
assessment. A Cronbach’s 𝛼 close to 1 indicates high reliability, with
values above 0.8 considered good and above 0.7 satisfactory [21].

To assess question validity, we also calculate difficulty and dis-
crimination. Difficulty is defined as the proportion of examinees
who answer a question correctly, with an ideal range from 0.2 to
0.8, ensuring a balanced challenge. Discrimination is measured
by the point-biserial correlation between a questions score and
the total test score [21], with values above 0.2 indicating effective
discrimination between differing levels of student understanding.
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5.2 Data Collection
Students in the algorithms course at UC Irvine were provided the
DPCI as an optional practice exam. The course covered dynamic
programming in class for twoweeks, and the DPCI optional practice
exam was made available three days before an in-class quiz on the
topic. Of the 316 students in the class, 109 completed the exam, and
of those, 93 agreed to allow us to use their data for research. That
quarter, students were expected to complete 19 warm-up activities
before various lecture meetings as part of their grade; students who
took the DPCI practice exam, regardless of whether or not their
data was used for research, were allowed to drop one warm-up
activity from their course grade.

A few weeks later after some minor revisions to the DPCI ques-
tions (detailed in Section 5.3.2), students at Utah State Univer-
sity were provide the DPCI as homework assignment to complete
(graded only on completion) before their midterm on Dynamic
Programming. Out of the 73 students in the class, 63 completed the
exam, and the terms of our IRB allowed us to use all of their data.

5.3 Results
5.3.1 Round 1. Our analysis of question difficulties revealed a
range from 0.20 to 0.84, with the exception of item Q3, which
presented a notably lower difficulty of 0.09 (see Table 3). A lower
difficulty score indicates a more challenging question, and while
most items fell within the accepted difficulty range of 0.20 to 0.80,
DV14 was significantly more difficult. This variation in difficulty
levels suggests that the DPCI offers a balanced mix of easy, medium,
and hard questions, catering to students with varying proficiency
in dynamic programming concepts.

The discrimination values ranged from 0.28 to 0.56, indicating
that most questions effectively differentiate between students of
differing skill levels (see Table 3). However, questions DV13 and
DV14 were outliers, with discrimination values of -0.08 and 0.13,
respectively, falling outside the recommended minimum of 0.20.
Except for these two questions, the discrimination values provide
substantial evidence that higher question scores correlate positively
with overall proficiency as measured by total performance on the
assessment.

We obtained a Cronbach’s 𝛼 = 0.76. The Cronbach’s 𝛼 after
removing questions DV13 and DV14 was 0.78. This value is close
to Jorion et al. [21] recommendation (≥ 0.8) for good reliability and
is strong when compared to published values of other CIs.

5.3.2 Revisions based on Round 1. We made several modifications
to questions in the CI based on our initial round of validation. Our
primary focus was addressing the two problemswith discrimination
values below 20%.

Problem DV14, the most difficult problem and the second least
discriminating, was split into three new problems. Originally a
“select all" style problem with 5 possible choices, we determined it
was likely this problem had such a low correctness score simply
due to the binary grading scheme. Even if a student correctly se-
lected/didn’t select four of the five choices, they were still marked
with a zero. To rectify this, we opted to split the problem into three
new problems, with each new problem focused on a particular
theme (e.g. DP and optimization). The hope was that this would

allow us to determine which (if any) of the themes of the problem
were causing such a high difficulty metric.

For problem DV13, which was the second most difficult problem
and had a negative discrimination value, we simplified the problem
by only using asymptotic analysis in the latter part of the implica-
tion. We also referred explicitly to the number of elements filled in
in the DP table during the course of the algorithm, as opposed to
the asking about its asymptotic runtime.

In addition to our edits based on the student metrics, we also
made several changes based on student feedback (gathered through
comment boxes on PrairieLearn). These included ensuring consis-
tent capitalization of variable names and adding clarifying details.

5.3.3 Round 2. The results of the second round of validation can
also be seen in Table 3. The results were largely similar, with some
variation that is expected when using the same questions on a
different student population from a different university. While the
newly created questions DV14.1 and DV14.3 performed well, DV13
and DV14.2 had very poor discrimination measures.

For the second round, we obtained a Cronbach’s 𝛼 = 0.76. The
Cronbach’s 𝛼 after removing questions DV13 and DV14.1 was also
0.76. This value is similar to that previously obtained, close to Jorion
et al. [21] recommendation for good reliability and is strong when
compared to published values of other CIs.

Round 1 Round 2 Round 1 Round 2
Q Dif. Dis. Dif. Dis. Q Dif. Dis. Dif. Dis.

MF1 0.46 0.31 0.48 0.33 DV4 0.80 0.48 0.81 0.43
MF3 0.83 0.28 0.62 0.41 DV5 0.70 0.57 0.73 0.47
MF6 0.62 0.29 0.68 0.35 DV6 0.70 0.56 0.64 0.36
AA2 0.76 0.52 0.78 0.29 DV7 0.31 0.42 0.29 0.32
AA3 0.46 0.46 0.44 0.49 DV8 0.27 0.40 0.27 0.37
ML2 0.53 0.37 0.48 0.46 DV9 0.24 0.31 0.40 0.39
RH1 0.25 0.34 0.41 0.38 DV10 0.84 0.53 0.91 0.65
VR2 0.74 0.43 0.86 0.49 DV11 0.81 0.40 0.82 0.68
VR3.2 0.47 0.46 0.33 0.31 DV12 0.59 0.45 0.70 0.30
VR2 0.40 0.38 0.43 0.16 DV13 0.20 -0.08 0.21 0.09
VR5 0.83 0.34 0.81 0.38 DV14 0.09 0.13 — —
DV1 0.63 0.40 0.59 0.34 DV14.1 — — 0.13 0.40
DV2 0.35 0.43 0.17 0.37 DV14.2 — — 0.81 0.11
DV3 0.75 0.46 0.82 0.51 DV14.3 — — 0.79 0.37

Table 3: Difficulty and Discrimination numbers for data col-
lection at UC Irvine (Round 1) and Utah State University
(Round 2). Most of our questions fall within the preferred
range of discrimination greater than 0.2 and difficulty be-
tween 0.2 and 0.8.

6 Discussion
6.1 Overall Question Quality
Overall, our questions performed well with 9 out of the 15 miscon-
ceptions being selected by 40% or more of the students. However, as
the results indicated, DV13 and DV14.2 continued to perform poorly
even after revisions. Consequently, we removed these questions
from the concept inventory, as they proved to be outliers.
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Figure 1: Difficulty and discrimination for both rounds of
validation.

6.2 Evidence that the Misconceptions Are
Measured by the Questions

Misconceptions chosen by 15% or more of the students provide
strong evidence that the misconception both targets and accurately
measures the intended misunderstanding, thus validating our hy-
pothesis about its prevalence. Highly prevelant misconceptions
were:

• Misconception 2: DP always involves minimization or maxi-
mization

• Misconception 5: Conflating recursion with DP
• Misconception 7: Aspects of greedy problems are mistakenly
associated with DP

• Misconception 8: Ignoring specific subproblems (and know-
ing which ones to solve)

• Misconception 11: Every problem has an efficient DP solution
• Misconception 13: DP involves tracking aspects of state to
remember how a solution was constructed

Low-prevalence misconceptions (less than 15%) may suggest
questions that fail to present the misconception clearly, or that our
hypothesized misconception is less widespread than anticipated.
Low-prevalence misconceptions were:

• Misconception 1: 2D DP solutions always traverse top left
to bottom right

• Misconception 3: If a problem has minimization or maxi-
mization, it must be possible to efficiently solve it with DP

• Misconceptions 4: If a problem has minimization or maxi-
mization, there is no DP solution for it

• Misconception 14: DP always requires a 2D array
• Misconceptions 15: DP requires nested for loops, with the
inner loop solving a recurrence

By analyzing selection rates across all categories, we evaluate
each question’s construct validity, assessing its ability to measure
the intended misconception genuinely. This analysis helps guide
refinements to ensure our concept inventory reliably identifies and
distinguishes between various misconceptions.

7 Conclusions and Future Work
In this work, we detail our process of developing and validating
the first Dynamic Programming Concept Inventory (DPCI). We
administered the DPCI to 172 undergraduate computer science
students across two large public universities in the U.S., and our
psychometric validation revealed that the majority of difficulty
and discrimination values across questions fell within acceptable
parameters. This indicates that the questions part of the DPCI
were of appropriate difficulty and effectively distinguished between
students of varied levels of conceptual understanding.

Future research could extend the DPCI’s validation across addi-
tional universities, broadening our understanding of student mis-
conceptions in dynamic programming. This initial step in identi-
fying misconceptions will inform future research on targeted ped-
agogical interventions. Ultimately, by identifying and evaluating
these interventions’ impact on learning outcomes, we can refine
instructional methodologies to enhance student comprehension of
dynamic programming concepts.
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