 Warm Up

- Linked list is sorted
- Linked list has $-\infty$ and ∞
- Want largest key whose value is at most k.

```plaintext
find(k)
    t ← front // t.key ≤ k always
    while (t.next.key ≤ k)
        t = t.next
    return t
```
Improved running time

- Add a layer. Does it help?
- Which get added to higher layer?
- How about another layer?

New Find Function

old-find(k) // for reference
 t ← L.first
 while t.next.key ≤ k do
 t ← t.next
 return t.key

How does find change for layered list?

 t ← t[0]-left // invariant: t.key ≤ k
 while (t.next.key ≤ k)
 if t.down ≠ null then
 t ← t.down
 while (t.next.key ≤ k)
 t ← t.next

 return t
Inserting into a Skip List

Insert\((k, v)\)

// assume we have insertAbove\((p, q, k, v)\)
// and no new levels needed

\[p = \text{find}(k) \]
\[q = \text{iAA}(p, \text{nullptr}, k, v) \]
While \(\text{coinflip}(\cdot) \) is heads.
\[p = p \rightarrow \text{up} \]
\[q = \text{iAA}(p, q, k, v) \]

Running time for find

► Suppose skip list has height \(h \)
► How long does a find take?

► We added key. Probability stored \(i \) levels up?

\[\left(\frac{1}{2} \right)^i \]
7. **Height of a skip list**

- Insert n keys to initially empty list
- P_i = prob level i has at least one item?

$$P_i \leq \frac{n}{2^i}$$

- Probability height at least $3 \log n$?

$$P \leq \frac{n}{2^{3\log n}} = \frac{n}{(2^{\log n})^3} = \frac{1}{n^3}$$

8. **Time for find?**

```
find(k)
    t ← topmost left node of list
    while t.below ≠ nullptr do
        t ← t.below
        while t.after.key ≤ k do
            t ← t.after
        return t
```

- How many drops?
 - height
 - 50% each
- How many scan forward?
Size of a skip list

- $E[\# \text{ items}]$ at level i is $n/2^i$