I&C SCI 46 Lecture Fall 2022 Project 5: Lewis Carroll revisited

Due November 16 at 7:30 AM. This is eligible for late submissions.

Introduction

We’'re going to revisit the word ladder puzzle from project three, using a different data structure
to try a different type of search. This one is neither breadth-first nor depth-first. We will see how
a priority queue helps make this a more informed search than those two.

Choosing a project partner

You have the option to work with a second person for this assignment. If you do so, | expect
you to work via pair programming. That is, you may not split the assignment, such as by having
one person implement the priority queue and the other person write code for the search code.

Similarly, any academic dishonesty arising from a group will be treated as an offense by both
partners.

To declare a partnership, both partners need to fill out the following form by November 10 at
7:30 AM. There will be no exceptions granted. Be sure you fill it out correctly and that you
know what your UCINetID is and how it is not your UCI ID number or your UCI email address.
Be sure your partner has submitted it.

https://docs.qgoogle.com/forms/d/e/1FAIpQL Sf4we2njYHzsS-FexGUfouHhalaQYkp-7biSTB8wY
wcMnPK3w/viewform

Requirements

Part 1: Priority Queue

In this project you will be implementing the priority queue data structure as a class named
MyPriorityQueue. The implementation must be an array-based binary min-heap (as shown
in class). The MyPriorityQueue class consists of the following functions which you are
responsible for implementing and have been started for you in MyPriorityQueue.hpp:

MyPriorityQueue()

This is the constructor for the class. You should initialize any variables you add to the
class here. Namely, you'll want to consider what structure you’ll use to store the
elements of your priority queue (hint: some kind of indexable array-like structure) and
how it will be initialized.


https://docs.google.com/forms/d/e/1FAIpQLSf4we2njYHzsS-FexGUfouHhalaQYkp-7bjSTB8wYwcMnPK3w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSf4we2njYHzsS-FexGUfouHhalaQYkp-7bjSTB8wYwcMnPK3w/viewform
https://en.cppreference.com/w/cpp/language/constructor

~MyPriorityQueue()

This is the class destructor. You are responsible for freeing any allocated memory here.
You will most likely be allocating memory to store the elements in the priority queue
themselves. You are allowed to use std: : vector in this project, which does allocate
and free memory for you. If you decide to use a dynamically allocated array you will be
responsible for freeing that yourself.

size_t size() const noexcept

This function returns the number of elements stored in the priority queue. It returns the
count as a size_t. Itis marked const (also known as a constant member function)
because it should not modify any member variables that you’ve added to the class or call
any function functions that are not marked const as well. The advantage of marking this
function as const is that it can be called on constant MyPriorityQueue instances. It
also allows the compiler to make additional optimizations since it can assume the object
this function is called on is not changed. This is a fairly good StackOverflow answer that
goes into additional detail.

bool isEmpty() const noexcept

This function simply returns whether or not the priority queue is empty, or in other words,
if it does not contain any elements. Marked const because it should not change any
member data. Marked noexcept because it should not throw any exceptions.

void insert(const Object & elem)

Insert an element of type Object into the priority queue. Recall from lecture that
min-heaps have two properties:

1) They are a complete binary tree (not necessarily a binary search tree).
2) No parent has a value greater than either of its children.

We went over the insert procedure in the lecture, but section 8.1 of the Zybook does a
decent job explaining it as well. The key idea is to insert the element in the bottom-most,
left-most empty position (hence violating min-heap property #2 above, but preserving
tree completeness), and then “percolating” the element up until the min-heap property is
restored. Note that this should happen in O(log n) time where n is the number of nodes.

IMPORTANT: Just like the AVL tree, for comparing keys use the “natural” comparison
offered by <.


https://en.cppreference.com/w/cpp/language/destructor
https://www.learncpp.com/cpp-tutorial/const-class-objects-and-member-functions/
https://stackoverflow.com/questions/3141087/what-is-meant-with-const-at-end-of-function-declaration

const Object & min() const

Simply returns a constant reference to the minimum element in the priority queue. This

should be pretty easy if you implemented the min-heap correctly. Note that this function
is marked const because it should not modify any internal data of the MyPriorityQueue

instance. Namely, it should not alter the structure of your heap. This function should run
in O(7) time. Note: there is not a non-const version of min() for this project.

void extractMin()

Removes the minimum element from the priority queue. This interface is similar to the
C++ container interface where top() is used to get the top-most element, and pop()
is used to remove it, but pop() does not actually return the element itself. Just replace
top() withmin() and pop() with extractMin() conceptually. Note that because the
heap invariants must be maintained, this function should also “fix” the heap after the
minimum element has been removed. We went over this “fix” procedure as well in
lecture. The key ideas are to replace the removed node with the bottom-most, rightmost
filled node (preserves tree completeness property), and the “push down” this node until
it’s in a spot that no longer violates the min-heap property. A “push-down” involves a
swap with the smallest child (value-wise, not height-wise). This function should run in
O(log n) time.

Part 2: Word Ladder (revisited)

std::vector<std::string> convert(const std::string & sl1, const std::string &
s2, const std::unordered_set<std::string> & words)

Read this part carefully.

o Just like project three, this function will return the conversion between s1 and s2,
according to the lowest Lewis Carroll distance. The first element of the vector
should be s1, the last s2, and each consecutive should be one letter apart. Each
element should be a valid word. If there are two or more equally least Lewis
Carroll distance ways to convert between the two words, you may return any of
them.

o If there is no path between s1 and s2, or if they are the same string, return an
empty vector.

o Unlike project three, however, we are going to require a different algorithm.
Read this carefully; reusing the algorithm from project three will be treated
as academic dishonesty and sanctioned accordingly. Reusing your code



and algorithm from project three is particularly egregious.

o In project three, you wrote this via a Breadth-First Search; a key component of
that BFS was your queue. Your code started at s1, enqueued every “adjacent”
(differing by one letter) word to s1 that appeared in the wordset, then dequeued
whichever word had been in that queue the longest. That word was one of the
words in the queue whose Lewis Carroll distance from s1 was the smallest.

o In this project, instead of using a standard (FIFO) queue, we are going to instead
use a Priority Queue. When we want to look for the next word to process, instead
of taking the unexplored word with a minimal Lewis Carroll distance from the
start, we are instead going to select the node with the smallest sum of two
values: the first is the Lewis Carroll distance from the start and the second is the
number of letters in the word that still differ from s2.

m You can think of the latter value as an optimistic estimate of how many
changes remain to convert the word in its current form to the end; if every
change were a valid word, this would be the exact distance. If not, then it
will take more than that many. Either way, there is no way to make fewer
changes to reach s2.

o Use your priority queue to prioritize nodes with that sum of values. There are
many ways to do this; we will leave it to you to choose how to do so.

o If you are going to have a struct as the object in your priority queue in this part --
which is definitely allowed -- you may want to “overload” the less-than operator
instead of changing your priority queue code (which should rely on the < operator
existing). For more on how to do that, please read

https://en.cppreference.com/w/cpp/language/operators and/or talk to the
professor about this.

Restrictions

You are explicitly allowed to use std: :vector, std::unordered set, std::stack
and similar in your solution. In addition, you may use parts of the C++ standard library that solve
small/trivial parts of the assignment (ex. std: :max, std::swap) that you could implement
yourself if you needed to. You may NOT use parts of the standard library that would do
significant parts of the assignment for you (ex. Std: :priority queue or

std::make heap ()). If you are unsure if something is considered a trivial part of the
assignment, please ask.

There is one additional restriction: you may not declare any global functions or variables in
MyPriorityQueue.hpp


https://en.cppreference.com/w/cpp/language/operators

Can | submit after the deadline?

Yes, it is possible, subject to the late work policy for this course, which is described in the
section titled Late work in the course reference and syllabus.

Grading

Your grade for this project will be graded on correctness: | will run some number of test cases
using Google test. Each is worth some number of points and is graded based on whether or not
your code causes the test case to pass; this may test whether the priority queue works correctly
or whether the word ladder was solved correctly. We also reserve the right to assign or deduct
points for memory leaks as appropriate. If it is determined that your program does not make an
attempt to solve the problem at hand, you will not get these points, regardless of the result from
testing. The tests will look a lot like the tests in your Google Test starting directory for this
assignment; if you pass those, you're off to a good start, but it’'s not a guarantee.

The same caveats that applied to previous assignments apply here as well. Make sure you test
your project extensively, including at least one test for every function in your priority queue and
for multiple types. For best results, write Google Tests instead of relying on main.



