I&C SCI 46 Fall 2022 Project 4: Finding Balance in Nature

Due November 7 at 7:30 AM

Checkpoint is due November 1 at 7:30 AM.

There is a “checkpoint” portion: you must commit and push at least partial code by November 1
at 7:30 AM. The first four test cases provided, marked as checkpoint, will be the only four
graded for this checkpoint. This is worth one-fifth of your “correctness” grade for this
assignment. The most recent copy of your repository (or the one being graded, if you are part
of a partnership) will be collected at that time and graded for this.

For the November 7 full submission deadline, you may use late submissions as usual.

Introduction
AVL Trees are cool. | used to say more about here but | don’t anymore.

Choosing a project partner

You have the option to work with a second person for this assignment. If you do so, | expect
you to work via pair programming. That is, you may not split the assignment, such as by having
one person implement the Binary Search Tree while the other person implements the function
that does the balancing, and the two are stitched together later. | reserve the right to ask one or
both project partners about the implementation and adjust the score accordingly.

Similarly, any academic dishonesty arising from a group will be treated as an offense by both
partners.

To declare a partnership, both partners need to fill out the following form by Monday, October
31 at 11:59 PM. There will be no exceptions granted. Be sure you fill it out correctly and that
you know what your UCINetID is and how it is not your UCI ID number. Be sure your partner
has submitted it. Be sure you are providing your and your partner’s UCINetID and not your
email addresses. Make sure you know which repository you will want graded.

https://docs.google.com/forms/d/e/1FAIpQLSdBPcMicGUmMPRXSeYot73vUwbeg3b8SZG8gekZ

DZLRwvCqgogQ/viewform
Reviewing related material

I encourage you to read your textbook; the section for AVL Trees is clearly marked in the
Zybook, and for the Goodrich/Tamassia book’s second edition, section 10.1 covers Binary
Search Trees and 10.2 talks about AVL Trees. Both books are good at getting to the point, so
this should not be a long read. Furthermore, you should look at your notes from the associated
lectures.

https://docs.google.com/forms/d/e/1FAIpQLSdBPcMicGUmPRXSeYot73vUwbeg3b8SZG8gekZDZLRwvCqogQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSdBPcMicGUmPRXSeYot73vUwbeg3b8SZG8gekZDZLRwvCqogQ/viewform

Requirements

In this project you will be implementing the AVL tree data structure as a class named
MyAVLTree. The class consists of the following functions which you are responsible for
implementing and have been started for you in MyAVLTree.hpp:

MyAVLTree()

This is the constructor for the class. You should initialize any variables you add to the
class here.

~MyAVLTree()

This is the class destructor. You are responsible for freeing any allocated memory here.
You will most likely be allocating memory to store the nodes within the AVL tree. Since
these allocations need to be dynamic, as we don’t know how large the tree will be, they
should be freed here in the destructor. It's your job to come up with a traversal algorithm
to accomplish this. Note, if you elect to use shared pointers or unigue pointers the
compiler will generate code to deallocate the memory for you if certain conditions are
met. You should only use these features of the standard library if you already understand
them or are willing to put in extra effort. In most industry settings features like these will
be used as opposed to explicitly implemented destructors.

size t size() const noexcept

This function returns the number of keys stored in the AVL tree. It returns the count as a
size t. Itis marked const (also known as a constant member function) because it not
modify any member variables that you've added to the class or call any function
functions that are not marked const as well. The advantage of marking this function as
const is that it can be called on constant MyAvVLTree instances. It also allows the
compiler to make additional optimizations since it can assume the object this function is
called on is not changed. This is a fairly good StackOverflow answer that goes into
additional detail.

bool isEmpty() const noexcept
This function simply returns whether or not the AVL tree is empty, or in other words, if the

tree contains zero keys. Marked const because it should not change any member data.
Marked noexcept because it should not throw any exceptions.

https://en.cppreference.com/w/cpp/language/constructor
https://en.cppreference.com/w/cpp/language/destructor
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://www.learncpp.com/cpp-tutorial/const-class-objects-and-member-functions/
https://stackoverflow.com/questions/3141087/what-is-meant-with-const-at-end-of-function-declaration

bool contains(const Key & k) const noexcept

Simply checks to see if the key k is stored in the AVL tree. True if so, false if not. Once
again, this function does not modify any member data, so the function is marked const.
Since this is an AVL tree, this function should run in O(log N) time where N is the number
of keys in the tree. This is accomplished through the on-demand balancing property of
AVL trees and a consequence of the height of the tree never exceeding O(log N).
IMPORTANT: when comparing keys, you can only assume that the < operator has

been defined. This means you should not use any other comparison operators for
comparing keys.

Value & find(const Key & k)

Like contains(), this function searches for key k in the AVL tree. However, this function
returns a reference to the value stored at this particular key. Since this function is not
marked const, and it does not return a const reference, this value is modifiable through
this interface. This function should also run in O(log N) time since it is bound by the
height of the tree. If the key k is not in the AVL tree, a ElementNotFoundException
should be thrown.

const Value & find(const Key & k) const

Same as the constant version of find, but returns a constant reference to the stored
value, which prevents modification. This function is marked const to present the find
(or “lookup”) interface to instances of MyAvVLTree which are marked const themselves.
This means that member data should not be modified in this function. For example, the
following code would call the version of find() marked constant:

MyAVLTree<int, int> avl;
const MyAVLTree<int, int> & avlRef = avl;

avlRef.find(1);

Warning: this function will not be compiled until you explicitly call it on a constant
MyAVLTree as in the example above.

void insert(const Key & k, const Value & v)

Adds a (key, value) pair to the AVL tree. If the key already exists in the tree, you may do
as you please (no test cases in the grading script will deal with this situation). The key k
should be used to identify the location where the pair should be stored, as in a normal

binary search tree insertion. Since this is an AVL tree, the tree should be rebalanced if

std:

std:

std:

this insertion results in an unbalanced tree. Recall that an AVL tree is “balanced” if the
heights of the node's left and right subtrees differ by only 0 or 1. If the insertion causes
some subtree to become unbalanced, then an AVL rotation needs to be performed to
re-establish balance. The Zybook goes into significant detail in Section 7.

Note: this is by far the most difficult part of this project. Consider decomposing this
into subproblems: finding the height of a subtree, finding the balance factor of a node,
performing one rotation, etc.

:vector<Key> inOrder() const

Returns a vector consisting of the keys in the order they would be explored during an
in-order traversal as mentioned in class. Since the traversal is “in-order”, the keys should
be in ascending order.

:vector<Key> preOrder() const

Returns a pre-ordering of the tree as described in Section 7.2.2 of the textbook and in
class. For the purpose of this assignment, the left subtree should be explored before the
right subtree.

:vector<Key> postOrder() const

Returns a post-ordering of the tree as described in Section 7.2.3 of the textbook and in
class. For the purpose of this assignment, the left subtree should be explored before the
right subtree.

Additional Notes

Your implementation must be templated as provided.

o Be sure yours works for non-numeric types! char is a numeric type.

o Review the warnings in the lab manual, the grading policies, and the project two

description about templates.

You do not need to write a copy constructor or an assignment operator on this project,
but knowing how to do so is generally a good thing.
As stated in the contains () function: for comparing keys, use the “natural” comparison
offered by <.
Any test cases provided will have something for the key that has this defined.
The project will not build by default because a reference to a local variable is returned in
the find() functions. You will need to write an implementation that doesn’t do this.

Restrictions

Your implementation must be implemented via linked nodes in the tree format from the lecture.
That is, you may not have a “vector-based tree.” This means you will probably need to create a
new structure inside of your MyAVLTree class which will represent the nodes.

You may not use parts of the C++ standard template library in this assignment except for
std::vector. Furthermore, std: :vector may only be used when implementing the three
traversals (in-order, pre-order, post-order). For what it's worth, you won’t miss it for this
assignment. As always, if there’s an exception that you think is within the spirit of this
assignment, please let me know.

Your implementation does not have to be the most efficient thing ever, but it cannot be “too
slow.” In general, any test case that takes over a minute on the grader’s computer may be
deemed a wrong answer, even if it will later return a correct one.

Additional Grading Note

In project two, there were many issues with student code not compiling. This is an additional
warning that the public tests are not comprehensive. Remember that the compiler does not
compile functions which are not used. Thus, at the bare minimum you should add additional unit
tests which get all of your code to compile. Using different template types will help to make sure
you don’t accidentally bake in assumptions about the type of the Key or Value. Always commit
your unit tests with your code. Going forward, if your code does not compile, and you submit a
regrade, the first thing the grader is going to check is the unit tests that were included in your
commit. If this does not show evidence of comprehensively testing your code, the grader will
inform you of this and close the regrade request accordingly.

