
I&C SCI 46 Fall 2022 Project 3: Lewis Carroll Distance
Due Wednesday October 26 7:30 AM. This project is eligible for late submissions.

Introduction

In 1879, Lewis Carroll proposed the following puzzle to the readers of Vanity Fair: transform
one English word into another by going through a series of intermediate English words, where
each word in the sequence differs from the next by only one substitution. To transform head to
tail, one can use four intermediates, assuming we are using a standard English dictionary to
determine words: head → heal → teal → tell → tall → tail. We refer to the smallest number of
substitutions necessary to transform one word to another as the Lewis Carroll distance between
the two words.

[Optional] Choosing a project partner

You have the option to work with a second person for this assignment. If you do so, I expect
you to work via pair programming. That is, you may not split the assignment, such as by having
one person implement the Wordset while the other person implements the function that does the
substitutions, and the two are stitched together later. I reserve the right to ask one or both
project partners about the implementation and adjust the score accordingly. Similarly, any
academic dishonesty arising from a group will be treated as an offense by both partners.

To declare a partnership, both partners must fill out this form by Saturday, October 22, 11:59
PM Irvine time. Failure to fill out the form by one or both partners, or an incorrect filling out of
the form, may be grounds for the partnership to be voided or for one or both partners to have a
reduced or zeroed grade for the project. The form will ask for your UCINetID. For most of you,
that is the prefix of your UCI email address. It is not your ID number. It is not the email address
that includes @uci.edu. If you do not know what your UCI Net ID is, please find out before filling
out the form.

https://docs.google.com/forms/d/e/1FAIpQLScGcVtKAG_sy5q8pVLZ0RgRZsj9mHUcrvaggMO9
ZMfpj7MXaA/viewform

Please refer to the “Partnerships” section of the class lab manual
(https://www.ics.uci.edu/~mikes/ics46/Projects/ICS46_Lab_Manual_F22.pdf) for information on
adding a partner to your Gitlab project. The project specified in the partnership form is the one
that will be graded.

https://docs.google.com/forms/d/e/1FAIpQLScGcVtKAG_sy5q8pVLZ0RgRZsj9mHUcrvaggMO9ZMfpj7MXaA/viewform
https://docs.google.com/forms/d/e/1FAIpQLScGcVtKAG_sy5q8pVLZ0RgRZsj9mHUcrvaggMO9ZMfpj7MXaA/viewform
https://www.ics.uci.edu/~mikes/ics46/Projects/ICS46_Lab_Manual_F22.pdf

Requirements
● Fill in WordSet.cpp

○ You will need to fill in the function polynomialHashFunction, which takes
three parameters.

■ This function will interpret the string parameter, which will contain only
lower-case letters, as coefficients for a polynomial of degree equal to the
length of the string. You will evaluate it at the point “base,” which can be
thought of (if you prefer) as interpreting the string as a base-that integer.
Treat ‘a’ as 1, ‘b’ as 2, and so on. It returns the smallest positive integer
that is a representation of that string, in that base, mod the given
modulus.

● For example, polynomialHashFunction(“abz”, 5, 10) should
return the result of (1 * 52 + 2 * 5 + 26) % 10.

■ Be careful about when you take the modulus within the hash function.
■ Be careful about when you take the modulus outside the hash function.
■ Do not assume any parameters match the named constants in the file --

we will use those later.
■ The provided code DOES NOT accurately compute this function, but it

does show you how to easily access numeric values for the letters.
○ Your implementation must be done via a Cuckoo hash table, as described in

lecture. Note that we are not creating a Cuckoo filter.
○ The first table’s hash function is to be done with base=BASE_H1, with a similar

rule for the second hash function for BASE_H2.
○ You must use a dynamically-allocated C-style array, not a std::vector or

similar container, as the basis in your WordSet.
■ You should start your array at size initialCapacity.
■ Resize only when the element about to be inserted cannot be added to

the existing structure. An element cannot be inserted when
evictionThreshold evictions have been made during its attempted
insertion. That value is an optional second parameter to the constructor.

■ When you resize and rehash, the next table size should be the smallest
prime number that is no smaller than twice the current table size. For
example, if your current table size is 11, your next one is 23. If your
current table size were somehow 13, your next one would be 29.

○ Your implementation must fit the interface given.
○ Your implementation does not need to be templated -- nor should it be, for the

purposes of this assignment.
■ In fact, doing so will cause an issue for some of our provided tests.

○ You do need to implement the destructor. Memory leaks will cause a grade
penalty.

○ Do not hard code your table for the uses we’ll have in the next section.

● Write function std::vector<std::string> convert(const std::string & s1, const
std::string & s2, const WordSet & words) in convert.cpp

○ This function will return the conversion between s1 and s2, according to the
lowest Lewis Carroll distance. The first element of the vector should be s1, the
last s2, and each consecutive should be one letter apart. Each element should
be a valid word. If there are two or more equally least Lewis Carroll distance
ways to convert between the two words, you may return any of them.

○ If there is no path between s1 and s2, return an empty vector.

○ It is recommended that you compute the distance via a breadth-first search. To
visualize this, imagine a graph where the words are vertices and two vertices
share an (undirected) edge if they are one letter apart.

■ If you do not know what this means, please ask -- Shindler would be
happy to explain.

■ You may use std::queue -- you do not need to write your own

○ A good thing to do the first time you see a word in the previous part is to place it
into a std::unordered_map<string, string>, where the key is the word you just saw
and the value is the word that you saw immediately before it. This will allow you
to later produce the path: you know the last word, and you know the prior word
for each word in the path except the first. Furthermore, if the key isn’t in that map,
this tells you that you haven’t seen it before.

○ Your implementation does not have to be the most efficient thing ever, but it
cannot be “too slow.” In general, any test case that takes over a minute on the
grader’s computer may be deemed a wrong answer, even if it will later return a
correct one.

You may not use any classes that are part of the C++ standard template library in implementing
your Wordset. You may use simple functions, such as std::swap or computing a logarithm if you
so choose.
You may use std::queue, std::map, std::stack, and/or std::set in convert.cpp, but you may not
use them in place of your WordSet: you must use that in the appropriate places. A solution for
convert.cpp that does not use WordSet to determine if something is a word will receive no
credit.

