
I & C SCI 46 Fall 2022 Problem Set 1

The goal of these problem sets is to get you to explore concepts from class. This should help prepare
you for the exams and, more importantly, for understanding the big ideas from ICS 46. These are
not “repeat the steps from lecture” or “answer questions from the reading” problems.

Due date: October 3, 7:30 AM. You will need to submit this via GradeScope. For instructions
on how to get access to the course GradeScope, consult the syllabus.

For this assignment, your response to each question must be contained within a single piece of
paper (or digital equivalent). When you submit to GradeScope, you will need to inform the system
which page of your PDF contains the answer. Do this even if your submission is a single page.

If you choose to hand-write this, you will need to scan your work to a PDF. Taking a picture and
embedding in a document is not okay for this. If the grader cannot reasonably read your work,
you might receive diminished or zero credit. If your uploaded document is not a PDF, you might
receive diminished or zero credit, regardless of other considerations.

Please review the syllabus and course reference for the expectations of assignments in this class.
Remember that problem sets are not online treasure hunts and that copying from external sources,
including a previous quarter’s posted solutions, is unacceptable. You are welcome to discuss matters
with classmates, but remember the Kenny Loggins rule. Remember that you may not seek help
from any source where not all respondents are subject to UC Irvine’s academic honesty policy.

1. In the reading, we saw how to make a Stack data structure. Suppose we have a Stack that
can grow indefinitely (for example, the push method has been fixed to double the size of
the array when at capacity instead of throwing a StackFullException). We want to create a
second Stack data structure, which I promise will always contain only comparable items (e.g.,
integers, strings, although you may not assume anything about the data other than that it
is a comparable type). We also want to add a function findMin to the Stack interface that
will return the smallest element currently in the stack. We could implement this by searching
the array, but that takes time linear in the number of elements in the Stack.

Explain how you would change the Stack data structure to allow for this function to run
in O(1) time. If you are storing additional private member data, state what else you are
storing. If you are changing existing functions push, pop, or top (or the constructor/size
functions), explain briefly how you are changing them. Their running times must still be
O(1); for example, you cannot search the full stack for the newest minimum value at every
push and pop. You should also explain in a few sentences how the change works and how it
achieves the goal.

Your explanation should be sufficient that if, six months from now, you had to write the nec-
essary modifications to a Stack data structure written in your favorite programming language,
using only your written description, you could do so.

You may assume that there will never be a duplicate item pushed to the Stack.

© I & C SCI 46 Fall 2022– Michael Shindler– University of California, Irvine
This problem set may not be reposted without the express written permission of the professor teaching this course.



I & C SCI 46 Fall 2022 Problem Set 1

2. Suppose I want to implement the public member functions of a Stack (push, pop, top, size,
isEmpty). However, instead of the private member data we had in class, I have only a single
Queue. The Queue has unbounded capacity

Explain how you would implement each of those functions using just that Queue. You may
use O(1) additional space within each function. The only Queue functions you may call are
enqueue, dequeue, front, size, and isEmpty.

Your explanation should be sufficient that if, six months from now, you had to write the nec-
essary modifications to a Stack data structure written in your favorite programming language,
using only your written description, you could do so.

For each function, give the running time in O notation in terms of n, the number of elements
currently in the stack.

3. Give the asymptotic complexity for the worst case run-time of the following function foo()

with respect to its input N . Function bar() runs in constant time with respect to N . For
full credit you should show how you arrived at your answer. An answer that solely provides
a value in Big O notation without reason will receive zero points. Answers that include
variables other than N will receive fewer points.

1 void foo(unsigned int N) {

2 unsigned int S = 0;

3

4 for (unsigned int i = 1; i <= N; i++) {

5 S += i;

6 }

7

8 for (unsigned int j = 1; j <= S; j++) {

9 bar();

10 }

11 }

Not Collected Questions

These questions will not be collected. Please do not submit your solutions for them. However, these
are meant to help you to study and understand the course material better. You are encouraged to
solve these as if they were normal homework problems.

The textbook of Goodrich and Tamassia has excellent practice problems available. This homework
(approximately) covers chapters 5.1 and 5.2, plus portions of 3.1 and 3.2 (including not-collected
questions).

If you need help deciding which problems to do, consider trying these problems from the second
edition of the textbook: R-5.3, R-5.4, R-5.5, R-5.6, R-5.9, R-3.4, R-3.7, R-3.10, C-3.6, C-3.13,
C-3.17, C-3.19, C-3.20

If you want a larger project related to this, try P-5.2 and/or P-5.12.

© I & C SCI 46 Fall 2022– Michael Shindler– University of California, Irvine
This problem set may not be reposted without the express written permission of the professor teaching this course.


