1 & C SCI 46 Fall 2022 Lectures 22-26: Fundamentals of Sorting

What is sorting? Why discuss sorting?

e Standard library has sorting

Input: sequence of n comparable values
e Why not use that and move on?

Reorder the input to be non-descending.

In this class, sorting is:

Ttems we wish to sort are called “keys”

e a good intro for techniques

Not here: retain associated information e a good intro to comparative algorithms

SelectionSort

Idea: Swap min into first spot, second-min to second, etc.

fori < 1ton—1do 8524163451731 /96 |50

min < 7

for j < i+ 1tondo
if A[j] < A[min] then

min < j

end if

end for

Swap A[i] and A[min]

end for

Let’s talk about SelectionSort.

Does it waste memory?

Does it only work for numbers?

What other info do we need?

Are there inputs that are sorted faster?

Is there a lot of data movement?

© I & C SCI 46 Fall 2022— Michael Shindler— University of California, Irvine
This handout may not be reposted without the express written permission of the professor teaching this course.

1 & C SCI 46 Fall 2022 Lectures 22-26: Fundamentals of Sorting

Bubble Sort

Idea: Think globally act locally

for i —1ton—1do 852416345 |1731196 |50

for j < 1ton—ido
if A[j + 1] < A[j] then
Swap A[j] and A[j + 1]
end if
end for
end for

InsertionSort

for j « 2 to n do 85124163145 |17]31]96 |50

key < A[j]

1 3j7—1

while ¢ > 0 and A[i] >key do
Ali + 1] + A[i]
1=1—1

end while

Ali + 1] < key

end for

e What is the worst-case running time of InsertionSort?

e Why is InsertionSort correct?

e What is true every time we check the for loop?
(including the time we find j > n and stop)

© I & C SCI 46 Fall 2022— Michael Shindler— University of California, Irvine
This handout may not be reposted without the express written permission of the professor teaching this course.

1 & C SCI 46 Fall 2022 Lectures 22-26: Fundamentals of Sorting

HeapSort

Idea 1: Insert all n elements into an (initially empty) max heap. Then, repeatedly extract and place the
maximum element from the heap into the last spot of the vector into which we have yet to place.

How long does this take?

Idea 2: Bottom-up heap construction. We know which locations will be leaf nodes.

[(4]1[3]2]16]9]10[14[8][7]

Question: Once we have the array turned into a max-heap, what do we do? Where do you place the result
of a remove-max operation?

MergeSort

Associated reading: §11.1, Goodrich/Tamassia text.

Suppose we have two sorted lists. How do we combine them into a single sorted list?

List 1: List 2:

A1 148 |51 |66 |68 |84 |87 |89 | |14 123 |37 43|52 |62 |96 | 98

© I & C SCI 46 Fall 2022— Michael Shindler— University of California, Irvine
This handout may not be reposted without the express written permission of the professor teaching this course.

1 & C SCI 46 Fall 2022 Lectures 22-26: Fundamentals of Sorting

We don’t always start with two sorted lists, though. How can we make use of the previous part to sort?

4814115166 |84 8987683723196 |98|52|14 |62 43

QuickSort

Associated reading: §11.2, Goodrich/Tamassia text.

MergeSort is a paradigm of algorithm called Divide and Conquer. You can imagine what two main things
such an algorithm does. In MergeSort, the divide step happens first and the results of dividing are then
combined (conquered).

QuickSort goes the other direction: first we're going to divide the array into two parts, hopefully halves. We
then recursively sort each half. The key operation is partition, which is based on a pivot. Different flavors
of QuickSort differ primarily on how they select the pivot.

4814115166 |84 89|87 683712319698 |52|14 |62 43

© I & C SCI 46 Fall 2022— Michael Shindler— University of California, Irvine
This handout may not be reposted without the express written permission of the professor teaching this course.

1 & C SCI 46 Fall 2022 Lectures 22-26: Fundamentals of Sorting

Selecting pivots for QuickSort

Let’s discuss some common ways to select a pivot for QuickSort:

e Deterministic, single-spot. For example, always select the first element in the array.
e Randomized. Select uniformly at random.

o Median-of-3.

Question: Suppose I am going to sort a vector of n comparable objects by QuickSort. All n! initial
permutations are equally likely. What is the expected average case running time for the algorithm? For
simplicity, assume all n keys are distinct.

Let P; ; be probability we compare S; and S;. What is P; ;.

Let X;; be an indicator random variable for whether or not i, j get compared. Because that is a binary
outcome, Xi,j =1- Pi,j =+ O . (1 — Pi,j) = P)i,j

E(Y . > Xi;)=>_ > BE(Xi;)
i=1 j=i+1 i=1 j=i+1
n n 2
N ;J;l j—i+1
n n—i+l

i=1
n

Do

2

S =
I|

A
El N

@
I
-
£l
Il
-

© I & C SCI 46 Fall 2022— Michael Shindler— University of California, Irvine
This handout may not be reposted without the express written permission of the professor teaching this course.

1 & C SCI 46 Fall 2022 Lectures 22-26: Fundamentals of Sorting

Aside: Decision Trees

Draw a decision tree to determine the smallest from three distinct keys, x,y, and z.

Lower Bound for Sorting

We have seen algorithms that take O(n?) time. We saw algorithms take O(nlogn) time.
Are there algorithms which are strictly better than O(nlogn) time for a general comparison-based sort?
To answer this question, we will build a decision tree that represents any comparison based sorting algo-

rithm. Such an algorithm will ask questions of the form “is z; < ;7"

e What are leaf nodes of decision tree?
e What are internal nodes?
e What is height of the tree?

e What does this tell us about any such algorithm?

Many years ago, when he was a student, Professor Shindler worked for Middle Earth housing, here at UCI.
One year, as we were preparing for move-in, a co-worker dropped a basket of key cards. Each was a small
envelope with incoming residents’ names listed on them, one per envelope. The students were going to
be arriving in less than half an hour, and we needed to put the cards back in sorted order. Did we run
QuickSort?

© I & C SCI 46 Fall 2022— Michael Shindler— University of California, Irvine
This handout may not be reposted without the express written permission of the professor teaching this course.

