I & C SCI 46 Fall 2022 Lectures 13-16: [Balanced] Binary [Search] Trees

A rooted tree T is a set of nodes storing elements in a parent-child relationship with the following
properties:

e If T is nonempty, it has a designated root node, which has no parent.
e Every node v other than the root has a unique parent

e Every node with parent w is a child of w.

A binary search tree is a type of rooted tree. If the tree is non-empty, then the first node is a root of the
tree (drawn at the top for some reason). You might think of a binary search tree like a linked list with two
“next” pointers: one for the list that has only smaller values and one for only larger values. We call those
“left” (smaller) and “right” (larger) pointers in this context.

Question 1. Starting with an initially empty binary search tree, insert the keys 50, 25, 75, 60, 55, 90, 65,
37

Question 2. From the following tree, what is the result if we delete node 627 What if we instead deleted

177 787
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Question 3. Write a function that will output each key of a binary search tree from smallest to largest.
You may assume you start with a pointer to the root.

Question 4. Write a function that will output each key of a binary search tree. Do so in such an order
that if T insert each element of your output into an initially empty binary search tree, the result will be a
tree that matches the tree we started with.

Question 5. Write code to evaluate a mathematical expression, represented as a syntax tree, such as the
one below. A syntax tree will be a binary tree, but not a binary search tree. You may assume a function
eval (operator, left, right) that evaluates any mathematical operator and lookup(variable) that
looks up the value of a variable. You may also assume that if you call lookup with a constant as a parameter,
it returns that constant.
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Reinforcement

After the first lecture, you should be able to define and use the following terms with respect to a binary
search tree: parent, child, sibling nodes, leaf node, internal node, in-order traversal, pre-order traversal,
post-order traversal. You should be able to describe the procedure to insert a new key into a binary search
tree, how to delete from a binary search tree, and how to search a binary search tree for a particular key.
Given a list of keys, you should be able to insert them into an initially empty binary search tree.

Randomized Binary Search Trees

In this section, we will evaluate what happens when a set of keys are to be added to an initially empty binary
search tree and are added in a random order; that is, each permutation of the n keys to be added is equally
likely. For convenience, assume the keys to be inserted are 1...n. Do you see why that is a reasonable
assumption?

Ultimately, we want to know: what is the average depth of a node? That is, how far is it from the root?

Define D; to be the depth of node i, and X;; to be an indicator random variable representing whether or
not i is an ancestor of j. For convenience, let X;; =1

Question 6. In the example above, what are the values of X3, X31, and X477

Example:

Question 7. We insert keys 1...n in some random order. What event has to happen for 7 to be an ancestor
of j7 If all permutations of the input keys are equally likely, what is the probability that i is an ancestor of
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We can now find the expected depth of a node.
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AVL Trees

We say that a tree is an AVL Tree if the following two conditions both hold:

e The binary search tree property holds for all nodes.

e For every node v of T, the heights of the children of v differ by at most 1. This is referred to as the
height-balance property.

Note that this means that any subtree of an AVL tree is itself an AVL tree.

Question 8. What is the height of each node? Is each node height balanced?
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Insert Operations

Question 9. Consider the example AVL tree from earlier, and consider what would happen if we were to
insert the key 14 into it. Is it still an AVL tree? If it is not, what if we instead insert key 547

Question 10. Suppose we insert 99 to the result of the previous operation. What should happen now?

Question 11. Suppose we insert 30 to the result of the previous operation. What should happen now?
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Maintaining the Height-Balance Property

After inserting a node to a binary search tree, we apply the following procedure:

Start at the newly-inserted node and walk up to the root, checking if each node is balanced (the height-
balance rule applies to this node). If a node is unbalanced, rotate the subtree rooted at that node. If all are
balanced, we're done. Otherwise, rotate the following three nodes:

1. Let z be (a pointer to) the first unbalanced node on the way up.

2. Let y be the child of z with greater height (hint: this is always an ancestor of the node you inserted.
Why?).

3. Let x be the child of y with greater height. In the event of a tie, choose x to be an ancestor of the
node you inserted.

When z,y, z form a zig-zag pattern, we do a double rotation. Otherwise we do a single rotation. The
rotations are pictured on the last page of this packet. Each of these is considered a single update operation.

Question 12. Draw the smallest (fewest node) AVL Tree you can that has height 1.

Question 13. Draw the smallest (fewest node) AVL Tree you can that has height 2.

Question 14. What is the minimum number of internal nodes an AVL tree can have if it has height h?

Let nj, be the minimum number of tree nodes for a height-balanced binary search tree with height h. What
are ng and n{?

Question 15. What does this tell you about the running time needed for a find operation on an AVL
Tree? For an insert operation?
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Deleting from an AVL Tree

Question 16. What if we delete 32 from the left AVL Tree below?

Question 17. What if we delete 80 from the AVL tree on the right of the two above?

Question 18. What is the running time for a delete operation on an AVL Tree?

Question 19. Starting with an empty AVL tree, insert the following keys into the tree, in sequence:
1,2,3,12,9,4,7,5,13,15,6,16,14,17. Note that there is not enough room on this paper to complete this
here.
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Before After

Table 1: Figure 10.10 from the textbook of Goodrich/Tamassia
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