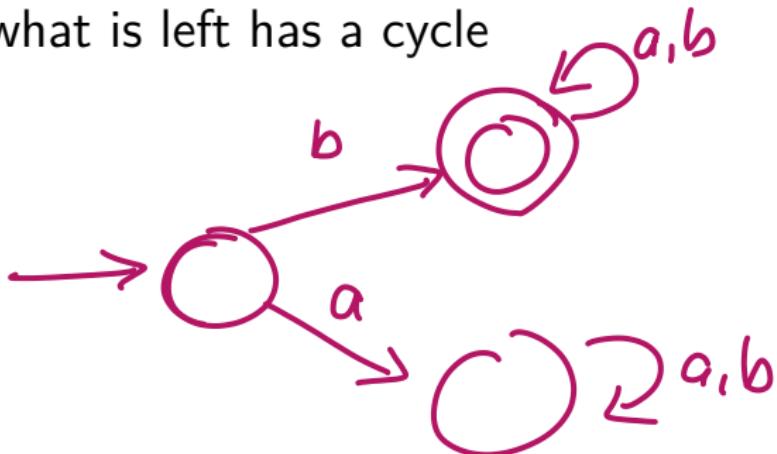


CompSci 162
Spring 2023 Lecture 6:
~~Closures and~~ Infinite Regular
Languages

Questions 28 and 29


How to tell if regular language L is *infinite*?

Look at DFA; $n = \# \text{ states}$
 $w \in L$ and $|w| > n$? strings len $\geq p$, can be
 Some vertex repeated "pumped"

Determining a regular language is infinite

- ▶ Eliminate states not reachable from start
- ▶ Eliminate states that cannot reach an accept
- ▶ Test if what is left has a cycle

Qs 30 & 31: The Pumping Lemma

For every regular language L

- ▶ There is an $n \in \mathbb{N}$ such that
 - ▶ for every string $w \in L$ with $|w| \geq n$
We can write $w = xyz$ such that:
 1. $|xy| \leq n$
 2. $|y| > 0$
 3. For all $i \geq 0$, $xy^i z \in L$

$\{a^n b^n \mid n \geq 1, n \in \mathbb{N}\}$ is **not** regular.

Applying the pumping lemma

$L = \{a^n b^n \mid n \geq 1, n \in \mathbb{N}\}$ is **not** regular.

FSOC suppose L is regular.

Let p be the pumping length.

$w = a^p b^p \in L$ and $|w| \geq p$

By Pumping Lemma, we can write $w = xyz$.

w/ $|xy| \leq p$ and $|y| > 0$ and $\forall i: xy^i z \in L$

So $xyyz \in L$ x, y only a .
 z is maybe as, plus all b s

But that means $xyyz$ is $a^{p+|y|} b^p \notin L$

Supplemental #1

no. Give a specific

 ~~$W = \{a, b\}^P$~~

$$L_1 = \{ww \mid w \in \{a, b\}^*\}$$

$$w = a^p b a^p b \in L$$

$$|xy| \leq p \quad |y| > 0 \quad \begin{array}{l} \text{Tell me about } y. \\ \text{It is } a^r. \end{array}$$

$$x : a^*$$

Tell me about $xgyz$

$$a^{|p|+|y|} b a^p b \notin L \rightarrow \leftarrow$$

Supplemental #2

$L_2 = \{a^{n^2} \mid n \geq 0\}$

attempt over weekend.
We'll discuss Monday.

Supplemental #3

$$L_3 = \{a^i b^k \mid i > k\}$$

See last slide. 11