

What have we seen?

- ▶ $\mathbb{N} = \{0, 1, 2, \dots\}$
- ▶ $|\mathbb{N}| = \aleph_0$
- ▶ There are this many odds, integers (\mathbb{Z})
- ▶ There are this many triples of naturals
- ▶ There are this many rational numbers

And now \mathbb{R}

- $\delta(k, x)$: k th digit of x after decimal point

FSOC ► ex: $\delta(2, \pi) = 4$ *# I'm thinking of*

- I claim $f : \mathbb{N} \rightarrow \mathbb{R}$ is bijective.
- To disprove: find $r \in \mathbb{R}$ s.t. $\exists y f(y) = r$
 is $\lfloor f(0) \rfloor = 6$? If so, $\lfloor r \rfloor = 7$
 else $\lfloor r \rfloor = 6$

for all $k \in \mathbb{N}, k \geq 1$?

set $\delta(k, r) = 7$ if $\delta(k, y) = 6$
 else set = 6

Cantor's Theorem

Claim: $|\mathcal{P}(A)| > |A|$

Suppose FSOC it is not. Then there is some $f : A \rightarrow 2^A$ that is surjective.

$$\text{def } B = \{x \in A \mid x \notin f(x)\}$$

$$B \subseteq A \text{ so } B \in \mathcal{P}(A)$$

$$B \in 2^A$$

$$\exists b \quad f(b) = B ?$$

is $b \in B$?

Yes? $\rightarrow \leftarrow$

No? $\rightarrow \leftarrow$

CompSci 162
Spring 2023 Lecture 3:
Formal Languages, Automata

Five Languages

$L_1 = \{a, abb, aaaa\}$ finite

$L_2 = \{a^n \mid n \in \mathbb{N} \text{ is prime}\}$

$L_3 = \{b^n a^n b^m \mid n, m \in \mathbb{N} \text{ and } n \equiv m \pmod{3}\}$

$L_4 = \text{The set of all } w \in \Sigma^* \text{ with at most three a's}$

$L_5 = \{a^n \mid n \in \mathbb{N} \text{ and } \exists x, y, z \in \mathbb{N} - \{0\} \text{ such that } x^n + y^n = z^n\} = \{a, aa\}$

all possible strings over an alphabet

Question 9 Which of these languages are infinite?

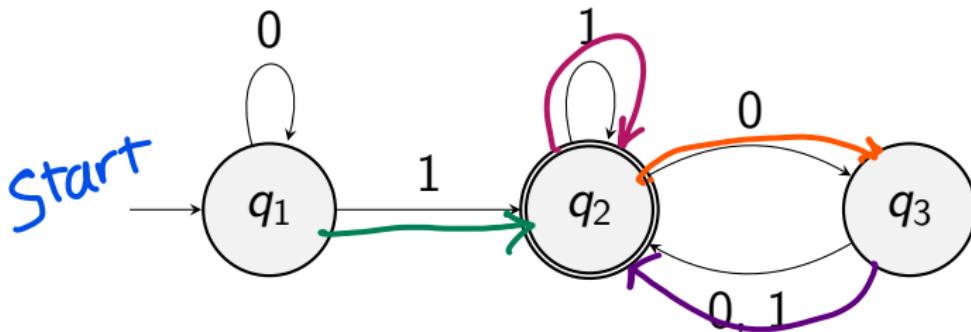
Question 10

Are all languages (over a given alphabet) defined by some string in a suitable meta-language?

See Ed
discussion

Question 11

What happens when input is “1101”?



\bigcirc = "accept" state

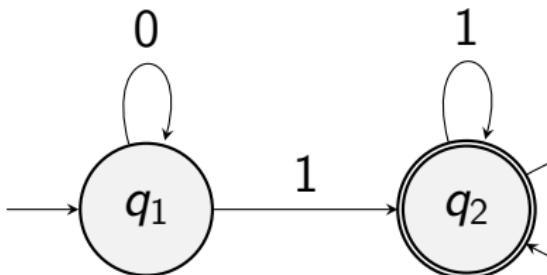
\bigcirc = "reject" state (implicit)

This machine accepts 1101

Formal Definition

Q = set of states

q_0 = start state



$$Q = \{q_1, q_2, q_3\}$$

$$q_0 = q_1$$

$$\delta : Q \times \Sigma \rightarrow Q :$$

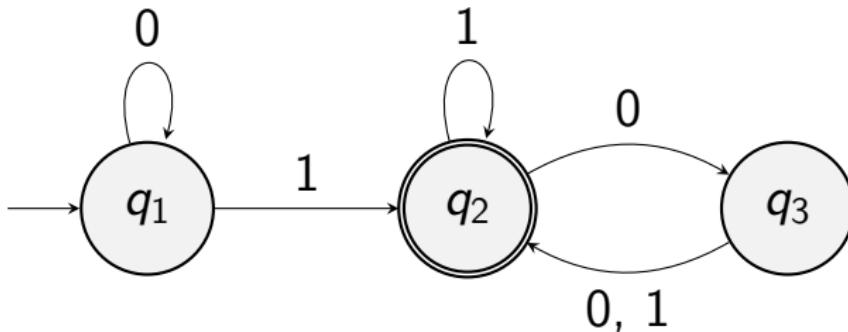
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2

input alphabet

$$\Sigma = \{0, 1\}$$

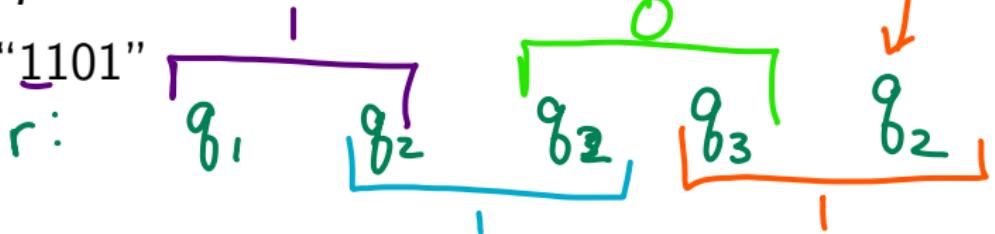
$$F = \{q_2\}$$

Formal Definition of Computation



- $r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1}$ for $i = 0 \dots n - 1$
- $r_n \in F$

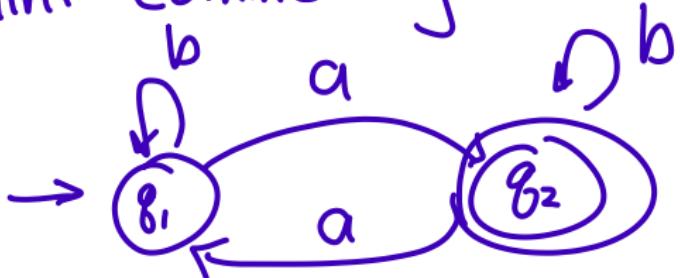
Input = "1101"



Question 13

Design a DFA over the language $\Sigma = \{a, b\}$ that accepts all strings with an odd number of instances of the letter a .

hint: comment your "code"!



// q_1 : even #as

q_2 : odd # as