

CompSci 162
Spring 2023 Lecture 24:
Subset Sum is \mathcal{NP} -complete

Definition and Start

Problem Statement: given a set S of numbers and a target T , does a subset of S add up to T ?

Example: $\langle \{4, 11, 16, 21, 27\}, 25 \rangle \in \text{SUBSET-SUM}$

Prove that Subset Sum is \mathcal{NP} -complete.

Start: it is in \mathcal{NP}

do not forget!

Plan for the Proof

- ▶ We know 3-SAT is \mathcal{NP} -complete.
- ▶ We want to show SUBSET SUM is also.

Make solver for 3-SAT that uses SUBSET SUM

- ▶ Must be polynomial time
(not including time for SUBSET SUM)
- ▶ Create set S and target T
- ▶ Step 1: any TVA possible by interpretation
- ▶ Step 2: Make a TVA that satisfies each clause
 - ▶ First we did if \oplus
 - ▶ Then we will fix for \vee

Start of Reduction

Use SUBSET SUM to get a truth value assignment on n variables

	x_1	x_2	x_3	x_4	x_5	v_i
v_1	1	0	0	0	0	0
v'_1	1	0	0	0	0	0
v_2	0	1	0	0	0	1
v'_2	0	1	0	0	0	0
v_3	0	0	1	0	0	1
v'_3	0	0	1	0	0	0
v_4	0	0	0	1	0	1
v'_4	0	0	0	1	0	0
v_5	0	0	0	0	1	0
v'_5	0	0	0	0	1	0
T	1	1	1	1	1	1

C_1

0

0

1

0

1

0

0

1

- ▶ Keep v_i means $X_i = T$
- ▶ Keep v'_i means $X_i = F$
- ▶ Cannot keep both

We want a satisfying assignment

$$\phi = (x_2 \vee x_3 \vee x_4)(\overline{x_2} \vee x_3 \vee \overline{x_4})(\overline{x_1} \vee x_3 \vee x_5) \dots$$

Suppose instead of \vee we wanted exactly one

How to convert to \vee ?

- ▶ Previous setup makes each clause 1T and 2F
- ▶ We want any non-zero T
- ▶ Idea 1: each column target in C_i is 1, 2, or 3
 - ▶ If any of these are satisfied, done
 - ▶ Problem: that's 3^k calls to SUBSET SUM
- ▶ Idea 2: Introduce some “slack variables”
 - ▶ Effect: variable target

But it is \vee

added #s

$$\phi = (x_2 \vee x_3 \vee x_4)(\bar{x}_2 \vee x_3 \vee \bar{x}_4)(\bar{x}_1 \vee x_3 \vee x_5) \dots$$

	x_1	\dots	x_5	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8
s_1	0	0	0	1	0	0	0	0	0	0	0
s'_1	0	0	0	2	0	0	0	0	0	0	0
s_2	0	0	0	0							
s'_2	0	0	0	0							
s_3	0	0	0	0							
s'_3	0	0	0	0							
s_4	0	0	0	0							
s'_4	0	0	0	0							
T	1	1	1	4							

T is $n+k$ digits long

Putting it together...

Remember, our algorithm is:

- ▶ We are given an instance of 3-SAT
- ▶ Create the $2n$ “boolean variables” v_i, v_i'
- ▶ Create $2k$ “clause variables” s_i, s_i'
- ▶ Create a value T
- ▶ Call any correct SUBSET SUM algorithm

Could this produce *false negatives* or *false positives*?

Running time

- ▶ You maybe saw $\mathcal{O}(nT)$ for Subset Sum
 - ▶ n : size of vector of numbers S
 - ▶ T : **value** of target number
- ▶ We started with 3-SAT, n variables, k clauses
 - ▶ What is $|S|$? $2^n + 2^k$
 - ▶ What is \approx value of T ? $\approx 10^{n+k}$
- ▶ What is the running time of our 3-SAT solver?

$$\mathcal{O}((n+k) \cdot 10^{n+k})$$

Problems with Subset Sum

You might have seen $\mathcal{O}(nT)$ time algorithm.

- ▶ Suppose T is `std::uint8_t`, 1 second timing.
- ▶ How long with `std::uint16_t`? *4.2 minutes*
- ▶ How long with `std::uint32_t`? *≈ 192 days*
- ▶ How long with `std::uint64_t`? *$\approx 4B \times 192$ days*
 $\approx 2B$ years