

What we have seen is \mathcal{NP} -complete

- ▶ Boolean Satisfiability
- ▶ 3-SAT
- ▶ Independent Set
- ▶ Vertex Cover

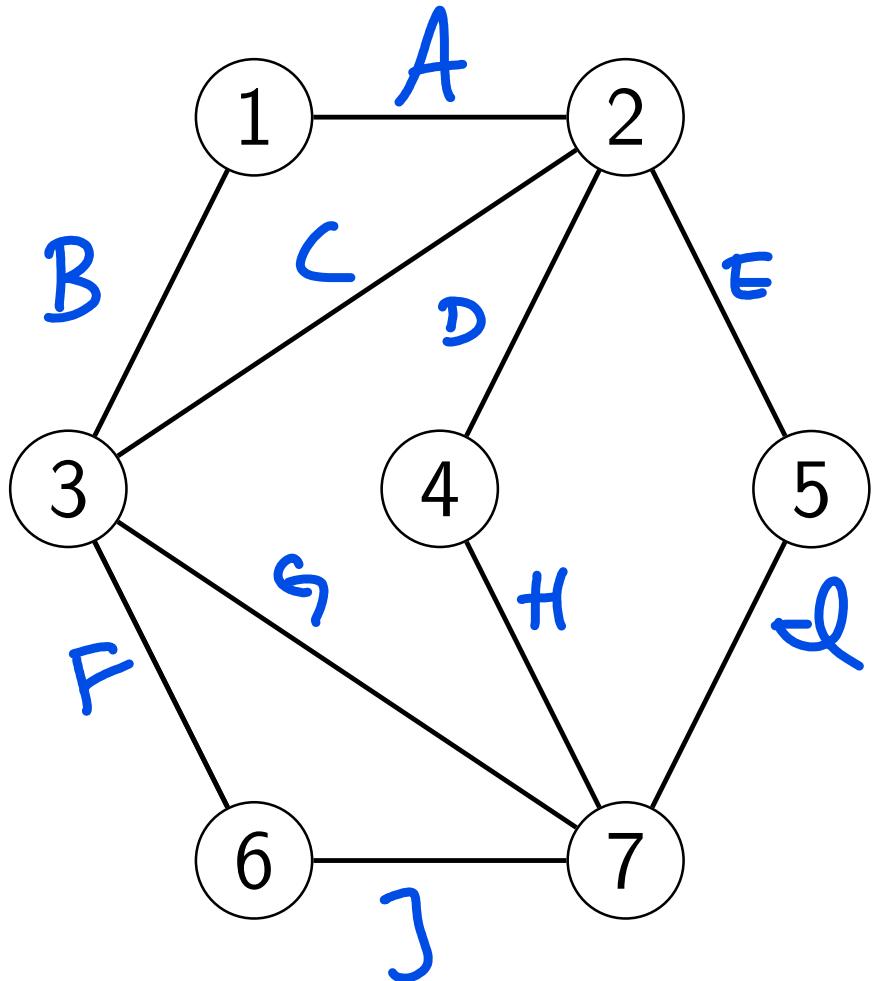
Test will include a list
and definitions

Set Cover

Set Number	Elements
1	A B
2	A C D E
3	B C F I
4	D G
5	E H
6	I J
7	F G H J

Prove Set Cover
is in NP
(left as to-do
at home)

Idea For Reduction



Vertex-Cover (G, k)
 { Create $|V|$ empty sets
 Let E be elements
 for each edge $e = (u, v)$
 add e to sets
 u, v .
 return SetCover(sets, k)

CompSci 162
Spring 2023 Lecture 22:
Graph Coloring is \mathcal{NP} -complete

3-COLOR is in \mathcal{NP}

DTM :

Certificate: mapping $V \rightarrow \{\text{blue, gold, pink}\}$

Verifier:

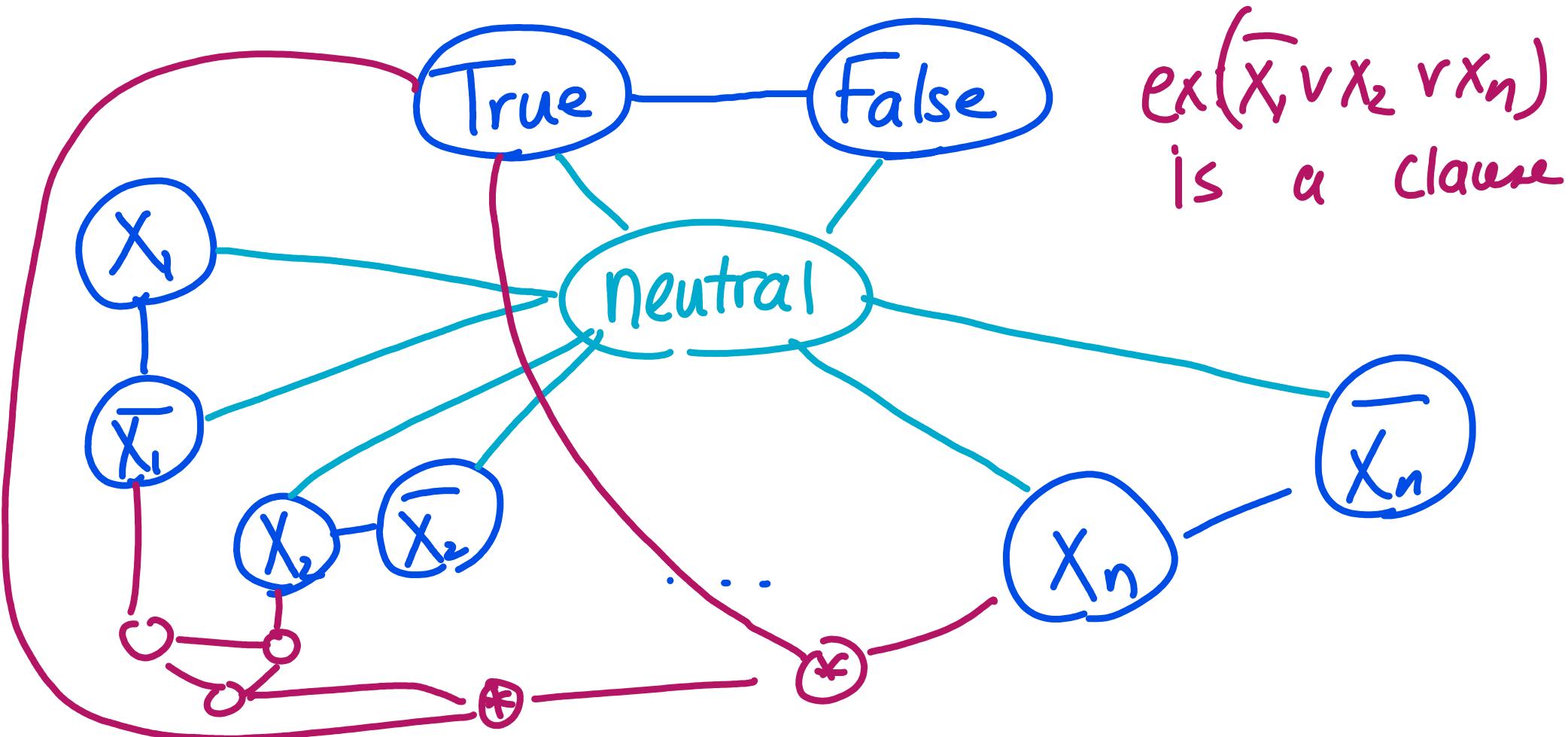
1. ensure every vertex mapped validly

2. for each $e = (u, v)$ if $\text{color}(u) = \text{color}(v)$
reject

3 accept

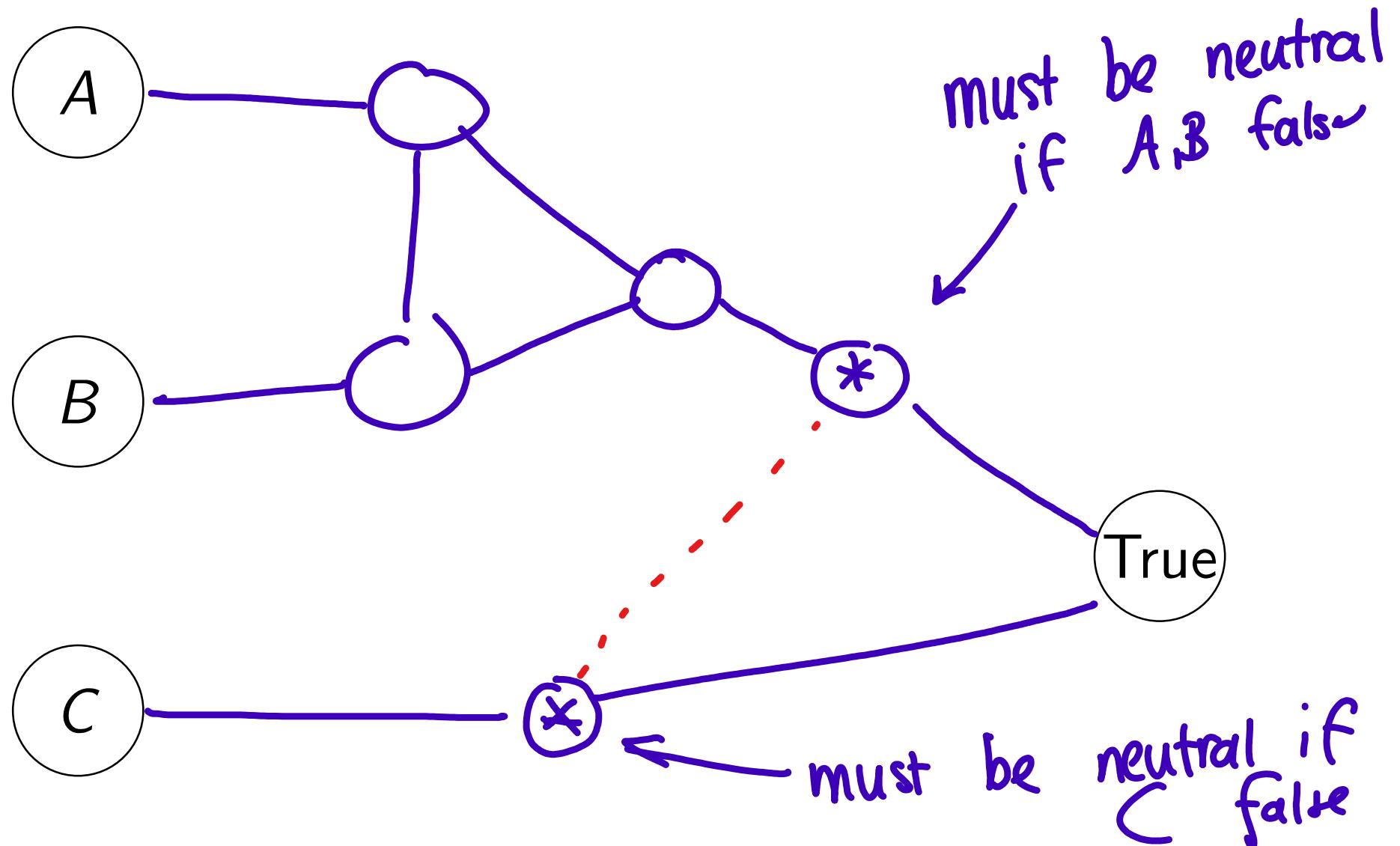
Use 3-COLOR to get a truth value assignment on n variables

- ▶ Remember, all 2^n TVAs should be possible.
- ▶ Running time polynomial plus call to 3-COLOR

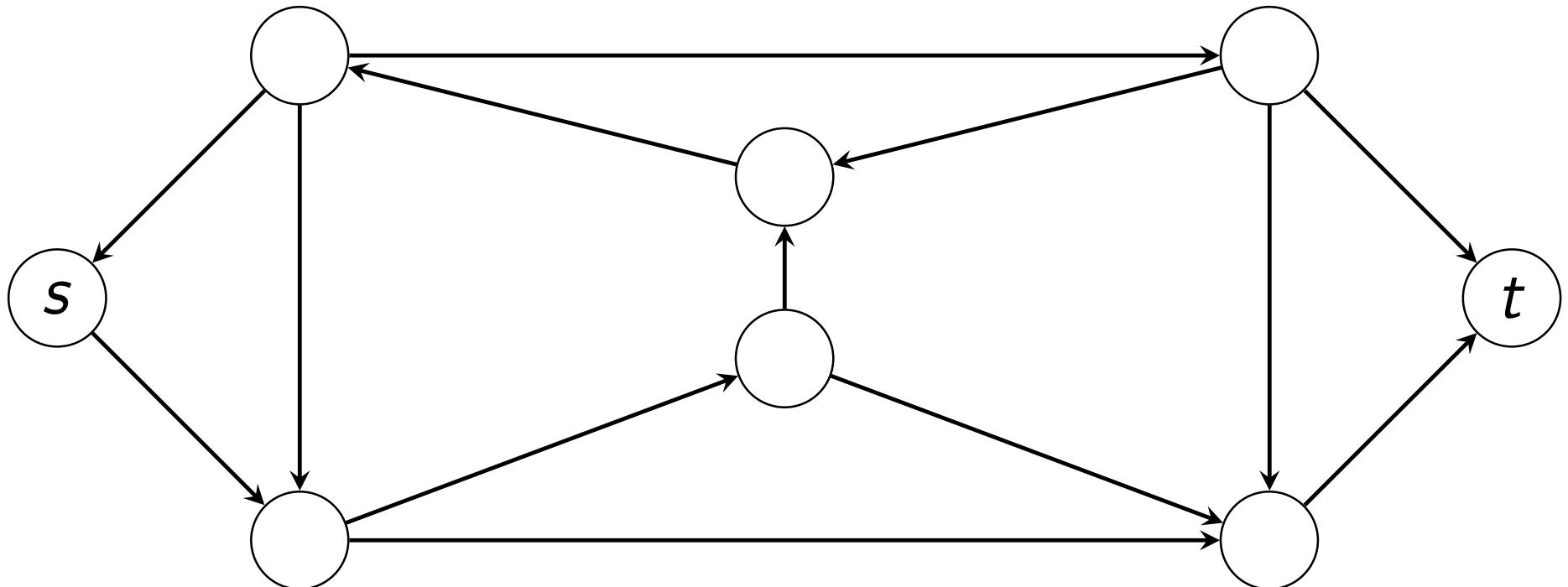


Amend the 3-COLOR usage to get a satisfying truth value assignment on n variables.

For each clause $A \vee B \vee C$, add as follows:



Hamiltonian Path Problem



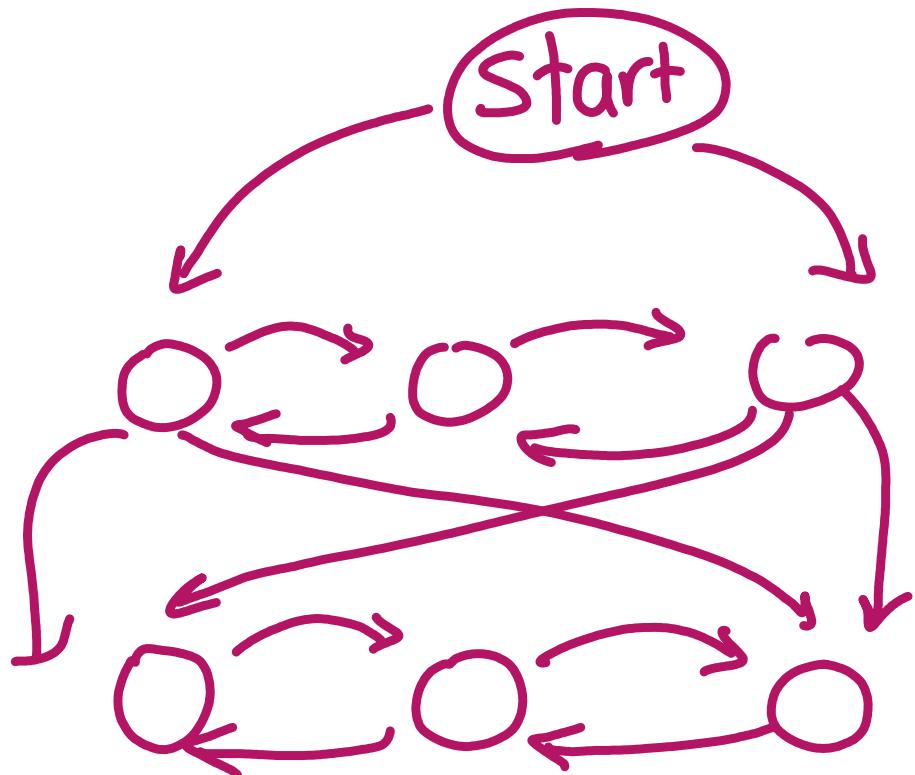
G has a path that visits each vertex exactly once?

(Start/End may or may not be specified)

Creating a truth value assignment

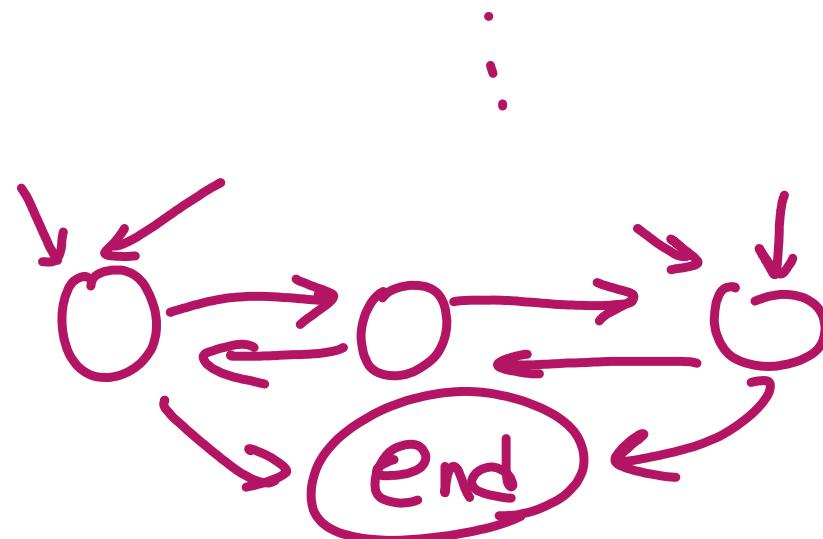
- ▶ Design a graph so that any Hamiltonian Path in it will correspond to a truth value assignment on n variables. Do not (yet) worry about *satisfying* assignments.
- ▶ How many Hamiltonian Paths are in your graph?
- ▶ What does any given Hamiltonian Path mean as a truth-value assignment?

Creating a truth value assignment



$x_1 \xrightarrow{L \rightarrow R: T}$
 $x_1 \xrightarrow{R \rightarrow L: F}$

x_2



x_n