

CompSci 162
Spring 2023 Lecture 21:
Independent Set and Vertex Cover
are \mathcal{NP} -complete

Brief Review

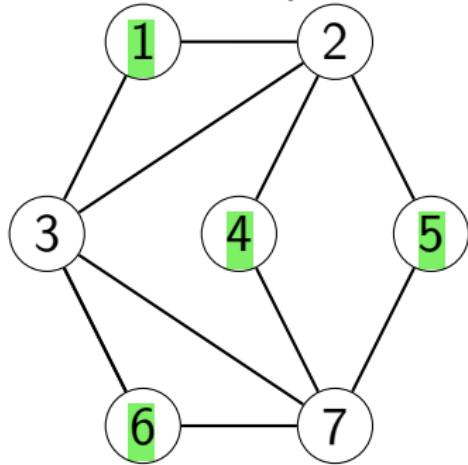
decision ↗ *whose "yes" instances*

- ▶ \mathcal{NP} : problems that can be verified efficiently
- ▶ $\text{SAT} = \{\langle \phi \rangle : \phi \text{ is a satisfiable Boolean formula.}\}$
Ex: $(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6})$
- ▶ Every SAT can be one with 3 literals per clause
- ▶ SAT and 3-SAT are \mathcal{NP} -complete
 - ▶ A solver exists for every $X \in \mathcal{NP}$:
 1. Set up X as instance of SAT
 2. Instance size is polynomial function of X
 3. Solve that SAT instance = solve X

poly time solution for SAT
 = poly time solver
 for ALL $X \in \mathcal{NP}$

Independent Set

Find an Independent Set of size $k = 4$ in this graph:



Independent Set is \mathcal{NP} -complete

- ▶ Always prove $\in \mathcal{NP}$ first.
- ▶ Then use Independent Set to solve an \mathcal{NP} -complete problem
 - ▶ Right now, 3-SAT
 - ▶ In general, any known one is fine
 - ▶ For this class, use one shown in class (lecture or discussion)
- ▶ Solver must be polynomial (not including call to Independent Set)

Independent Set is in \mathcal{NP}

1. ► NTM polynomial-time decider ←
- DTM polynomial-time verifier ←

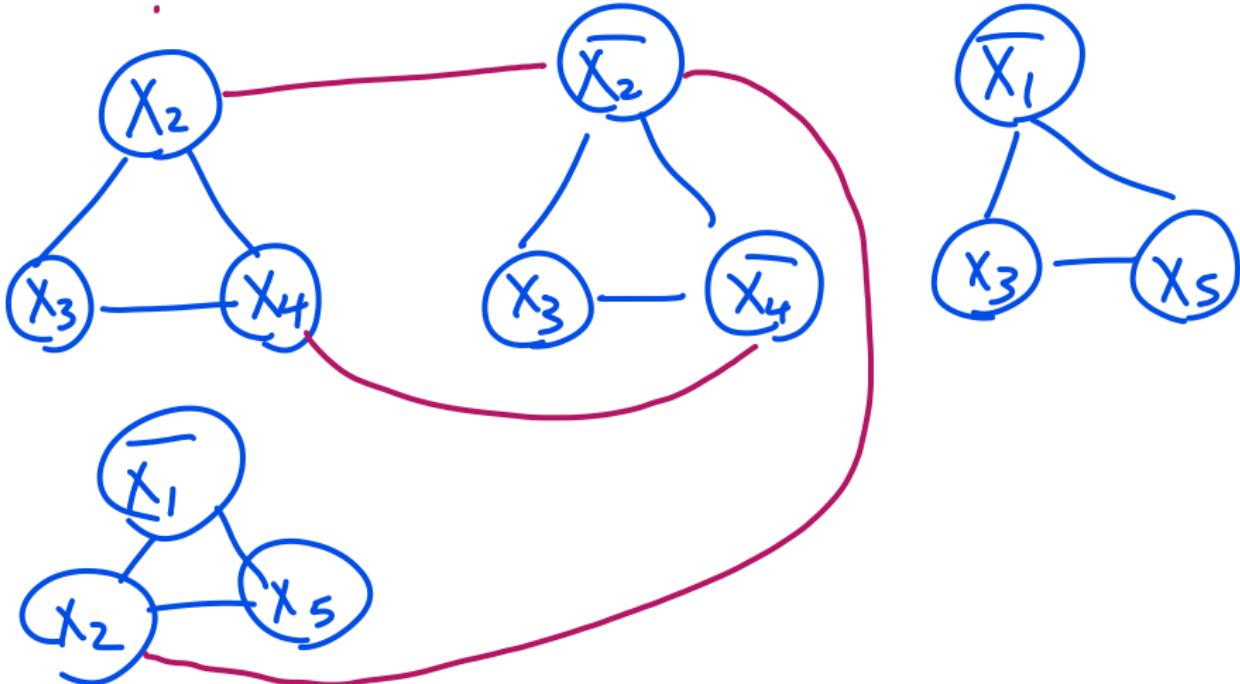
1. Non-det select K vertices
2. Verify each is vertex $\#$ in G
3. Verify K distinct chosen
4. for each $e = (u, v)$ in G
 Verify $!(u, v \text{ both chosen})$

1. Certificate:
 K vertices

3-SAT Solver via Independent Set

Input: 3-Sat instance ϕ

Ex: $(x_2 \vee x_3 \vee x_4)(\bar{x}_2 \vee x_3 \vee \bar{x}_4)(\bar{x}_1 \vee x_3 \vee x_5)(\bar{x}_1 \vee x_2 \vee x_5) \dots$



Reduction

3-SAT(n variables, k clauses)

for each clause $A \vee B \vee C$ **do**

 Create 3 vertices // one each A, B, C

 Add edges $(A, B), (B, C), (A, C)$

for each variable x_i **do**

 Connect any “ x_i ” node to all \bar{x}_i nodes

return INDEPENDENT SET(G, k)

Could we get false positives?

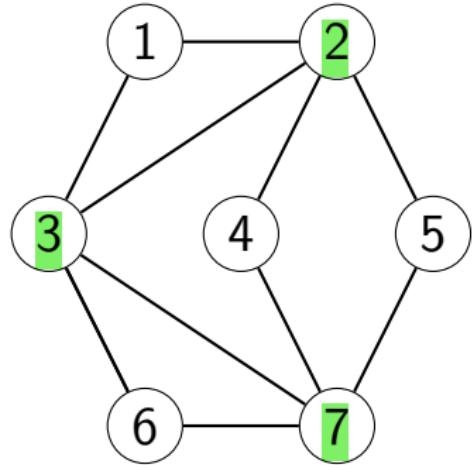
Show that, if that graph G has an independent set of size k , then the 3-SAT instance truly has a satisfying assignment.

Could we get false negatives?

Show that, if the 3-SAT instance we have as input has a satisfying assignment, the graph we build will have an independent set of size k .

Vertex Cover

Find a Vertex Cover of size $k = 3$ in this graph:



Prove Vertex Cover is \mathcal{NP} -complete

- ▶ Always prove $\in \mathcal{NP}$ first. *do as reinforcement.*
- ▶ Then use Vertex Cover to solve an \mathcal{NP} -complete problem

{ Indep-Set (G, k)
 }
 { Vertex-Cover $(G, |G.v| - k)$
 }

Correctness of Reduction

Claim: A graph G has an independent set of size $n - k$ if and only if it has a Vertex Cover of size k

do as reinforcement

Set Cover

Set Number	Elements
1	A B
2	A C D E
3	B C F I
4	D G
5	E H
6	I J
7	F G H J

Will start lecture with this.
 Try to prove this is NP-complete before class.

Idea For Reduction

