

CompSci 162

Spring 2023 Lecture 20:

Introduction to Computational
Complexity

2

TM M_1 for $L = \{a^k b^k : k \geq 0\}$

$n = \text{Size of input}$

1. Scan across and reject if any a right of a b } $\Theta(n)$
2. Repeat while any a, b still on tape:
3. Scan across, cross off one a , one b } $O(n)$ } $O(n^2)$
4. If only one letter type remains, reject
Otherwise, accept if neither a nor b remain } $O(n)$

$O(n^2)$

TM M_2 for $L = \{a^k b^k : k \geq 0\}$

1. Scan across and reject if any a right of a b } $O(n)$
2. Repeat as long as some of each remain: } $O(n \lg n)$
3. If total $a + b$ is odd, reject. } $O(n)$
4. Cross off every other a , every other b } $O(n)$
5. If none of each remain, accept. } $O(n)$

$O(n \lg n)$

TM M_3 for $L = \{a^k b^k : k \geq 0\}$

1. Scan across and reject if any a right of a b } $O(n)$
2. Scan across the a s on **tape 1** until first b .
While doing so, copy the a s onto **tape 2**. } $O(n)$
3. Cross off a and b , 1 : 1 via two tapes
If all a crossed off after and b remain, reject } $O(n)$
4. If all a crossed off, accept. Else reject. } $O(n)$

 $O(n)$

Non-deterministic Running Time

- ▶ Running time is maximum steps, any branch
- ▶ Not intended as model of real world computation
- ▶ Relationship deterministic and non-deterministic:

Every $t(n)$ time nondeterministic single-tape Turing Machine has an equivalent $2^{\mathcal{O}(t(n))}$ time deterministic single-tape Turing Machine

The Class \mathcal{P}

\mathcal{P} : languages that are decidable in polynomial time on a deterministic single-tape Turing machine.

$$\mathcal{P} = \bigcup_k \text{TIME}(n^k)$$

- ▶ Polynomial differences are not important?

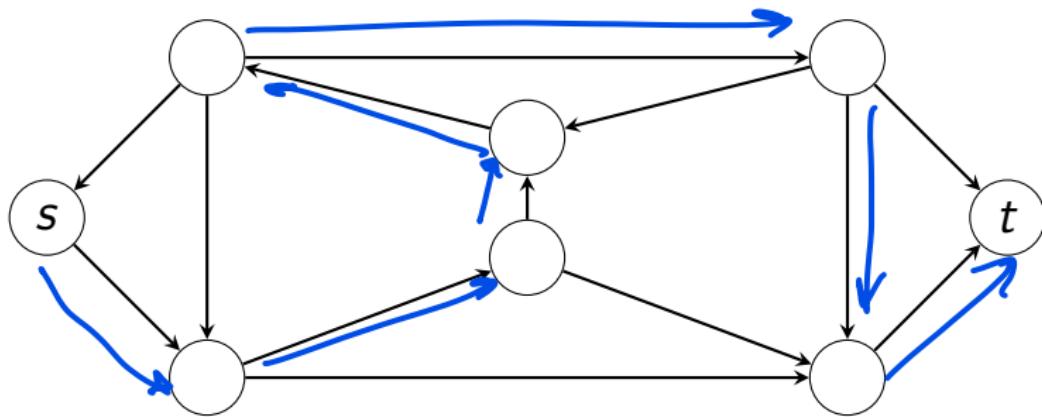
The Class \mathcal{P}

\mathcal{P} : languages that are decidable in polynomial time on a deterministic single-tape Turing machine.

$$\mathcal{P} = \bigcup_k \text{TIME}(n^k)$$

- ▶ Polynomial differences are not important?
 1. \mathcal{P} is invariant for all equivalent models
 2. $\mathcal{P} \approx$ realistically solvable on a computer.

HAMPATH



1. Best currently known algorithm's running time? *exp*
2. Anything related polynomial time solvable?

Verifier

COMPOSITES

$$\text{COMPOSITES} = \{x : x = pq, p, q > 1, p, q \in \mathbb{Z}\}$$

- ▶ Needed for verifier?

[alleged] divisor

- ▶ Polynomially verifiable?

do the division

- ▶ When was PRIMES known to be in \mathcal{P} ?

$O(\log^{12} x) \rightarrow O(\log^6 x)$

What is a Verifier?

A **Verifier** for language A is an algorithm V such that $A = \{w : V \text{ accepts } \langle w, c \rangle \text{ for some string } c\}$. We measure the running time of a verifier as a function of the length of w .

- ▶ c is the *certificate*

The Class \mathcal{NP}

- ▶ \mathcal{NP} languages with polynomial time verifiers.
- ▶ \mathcal{NP} : “non-deterministic polynomial”

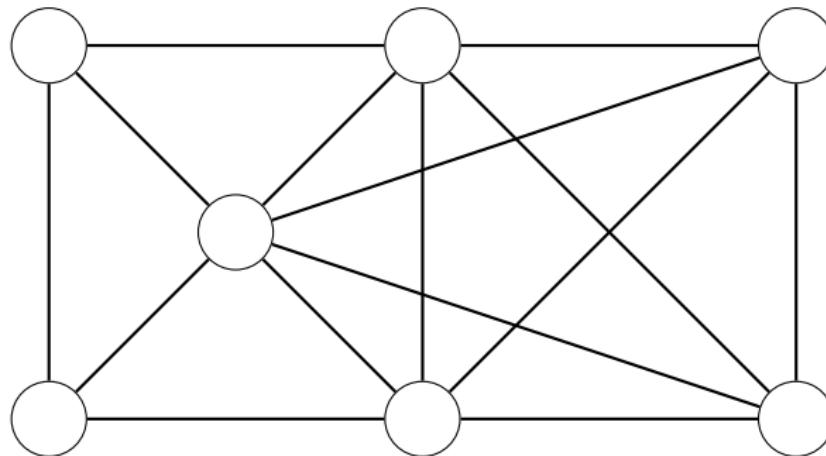
HAMPATH is in \mathcal{NP}

via non-deterministic Turing Machine.

Input: $\langle G, s, t, \rangle$, where G is a directed graph with nodes s and t

1. Write a list of m numbers, p_1, \dots, p_m , where m is the number of vertices in G .
Each number in the list is nondeterministically selected to be between 1 and m .
2. Check for repetitions in the list. If any are found, reject.
3. Check whether $s = p_1$ and $t = p_m$. If either fail, reject.
4. For each i between 1 and $m - 1$, check whether (p_i, p_{i+1}) is an edge of G . If any are not, reject.
5. If we reach this line, all tests have passed, so accept.

The CLIQUE Problem



Boolean Satisfiability

$$\phi = (x_2 \vee x_3 \vee x_4)(\overline{x_2} \vee x_3 \vee \overline{x_4})(\overline{x_1} \vee x_3 \vee x_5) \\ (\overline{x_1} \vee x_2 \vee x_5)(\overline{x_3} \vee x_4 \vee x_5)(\overline{x_2} \vee \overline{x_4} \vee \overline{x_5}) \\ (x_1 \vee \overline{x_2} \vee x_5)(x_3 \vee \overline{x_4} \vee x_5)(x_1 \vee \overline{x_3} \vee \overline{x_5}) \\ (\overline{x_2} \vee x_4 \vee \overline{x_5})(x_1 \vee x_2 \vee \overline{x_4})(\overline{x_1} \vee x_2 \vee x_3) \\ (\overline{x_1} \vee \overline{x_2} \vee x_5)(\overline{x_1} \vee x_2 \vee \overline{x_4})$$

x_1	True	False
x_2	True	False
x_3	True	False
x_4	True	False
x_5	True	False

Why care about Boolean Satisfiability?

- ▶ Some problems have an efficient solution
- ▶ Some problems are literally impossible
- ▶ Some do not have an efficient solution
 - ▶ i.e., list all subsets of a set
- ▶ Some do not have a *known* efficient solution

Why care about Boolean Satisfiability?

- ▶ Some problems have an efficient solution
- ▶ Some problems are literally impossible
- ▶ Some do not have an efficient solution
 - ▶ i.e., list all subsets of a set
- ▶ Some do not have a *known* efficient solution
- ▶ For every problem in \mathcal{NP} :
 - ▶ You *can* convert it to SAT
 - ▶ Size of ϕ is polynomial of original
 - ▶ Details in “handout 4.2” (reading)
 - ▶ Therefore, a poly solution to SAT gives you ...
- ▶ This was discovered by Cook and Levin in 1971