
CompSci 162
Spring 2023 Lecture 20:

Introduction to Computational
Complexity



2 TM M1 for L = {akbk : k ≥ 0}

1. Scan across and reject if any a right of a b
2. Repeat while any a, b still on tape:
3. Scan across, cross off one a, one b
4. If only one letter type remains, reject

Otherwise, accept if neither a nor b remain



3 TM M2 for L = {akbk : k ≥ 0}

1. Scan across and reject if any a right of a b
2. Repeat as long as some of each remain:
3. If total a + b is odd, reject.
4. Cross off every other a, every other b
5. If none of each remain, accept.



4 TM M3 for L = {akbk : k ≥ 0}

1. Scan across and reject if any a right of a b
2. Scan across the as on tape 1 until first b.

While doing so, copy the as onto tape 2.
3. Cross off a and b, 1 : 1 via two tapes

If all a crossed off after and b remain, reject
4. If all a crossed off, accept. Else reject.



5 Non-deterministic Running Time

▶ Running time is maximum steps, any branch
▶ Not intended as model of real world

computation
▶ Relationship deterministic and

non-deterministic:

Every t(n) time nondeterministic single-tape
Turing Machine has an equivalent 2O(t(n)) time
deterministic single-tape Turing Machine



6 The Class P

P : languages that are decidable in polynomial time
on a deterministic single-tape Turing machine.

P =
⋃
k

TIME(nk)

▶ Polynomial differences are not important?



6 The Class P

P : languages that are decidable in polynomial time
on a deterministic single-tape Turing machine.

P =
⋃
k

TIME(nk)

▶ Polynomial differences are not important?
1. P is invariant for all equivalent models
2. P ≈ realistically solvable on a computer.



7 HAMPATH

s t

1. Best currently known algorithm’s running time?
2. Anything related polynomial time solvable?



8 COMPOSITES

COMPOSITES = {x : x = pq, p, q > 1, p, q ∈ Z}

▶ Needed for verifier?

▶ Polynomially verifiable?

▶ When was PRIMES known to be in P?



9 What is a Verifier?

A verifier for language A is an algorithm V such
that A = {w : V accepts ⟨w , c⟩ for some string c}.
We measure the running time of a verifier as a
function of the length of w .

▶ c is the certificate



10 The Class N P

▶ N P languages with polynomial time verifiers.

▶ N P : “non-deterministic polynomial”



11 HAMPATH is in N P

via non-deterministic Turing Machine.

Input: ⟨G , s, t, ⟩, where G is a directed graph with nodes s
and t

1. Write a list of m numbers, p1, . . . , pm, where m is the
number of vertices in G .
Each number in the list is nondeterministically selected
to be between 1 and m.

2. Check for repetitions in the list. If any are found, reject.

3. Check whether s = p1 and t = pm. If either fail, reject.

4. For each i between 1 and m − 1, check whether
(pi , pi+1) is an edge of G . If any are not, reject.

5. If we reach this line, all tests have passed, so accept.



12 The CLIQUE Problem



13 Boolean Satisfiability

ϕ = (x2 ∨ x3 ∨ x4)(x2 ∨ x3 ∨ x4)(x1 ∨ x3 ∨ x5)
(x1 ∨ x2 ∨ x5)(x3 ∨ x4 ∨ x5)(x2 ∨ x4 ∨ x5)
(x1 ∨ x2 ∨ x5)(x3 ∨ x4 ∨ x5)(x1 ∨ x3 ∨ x5)
(x2 ∨ x4 ∨ x5)(x1 ∨ x2 ∨ x4)(x1 ∨ x2 ∨ x3)
(x1 ∨ x2 ∨ x5)(x1 ∨ x2 ∨ x4)

x1 True False
x2 True False
x3 True False
x4 True False
x5 True False



14 Why care about Boolean Satisfiability?

▶ Some problems have an efficient solution
▶ Some problems are literally impossible
▶ Some do not have an efficient solution

▶ i.e., list all subsets of a set
▶ Some do not have a known efficient solution



14 Why care about Boolean Satisfiability?

▶ Some problems have an efficient solution
▶ Some problems are literally impossible
▶ Some do not have an efficient solution

▶ i.e., list all subsets of a set
▶ Some do not have a known efficient solution

▶ For every problem in N P :
▶ You can convert it to SAT
▶ Size of ϕ is polynomial of original

▶ Details in “handout 4.2” (reading)
▶ Therefore, a poly solution to SAT gives you ...

▶ This was discovered by Cook and Levin in 1971


