CompSci 162
Spring 2023 Lecture 20:
Introduction to Computational
Complexity

TM M, for L = {a*b* : k > 0}

L= Sige X Tput
1. Scan across and reject if any a right of a b }O’[n)
2. Repeat while any a, b still on tape: .
3. Scan across, cross off one a, one b } O(m)}o@‘>
4

. If only one letter type remains, reject }D(Vl)
Otherwise, accept if neither a nor b remain

06°)

TM M, for L = {a*b* : k > 0}

. Scan across and reject if any a right of a b}o(" \

. Repeat as long as some of each remain: lxﬂlr‘)
If total a + b is odd, reject. } O(h)

Cross off every other a, every other b} 0(")

. If none of each remain, accept. Z o(n)

T~

o(n 13

TM Ms for L = {a*b* : k > 0}

1. Scan across and reject if any a right of a b} o(n)

2. Scan across the as on tape 1 until first b.} 0()
While doing so, copy the as onto tape 2. "

3. Cross off a and b, 1 :1 via two tapes O(")
If all a crossed off after and b remain, reject

4. If all a crossed off, accept. Else reject. } ()(I\\
—

O(n)

Non-deterministic Running Time

» Running time is maximum steps, any branch
» Not intended as model of real world
computation

» Relationship deterministic and
non-deterministic:

Every t(n) time nondeterministic single-tape
Turing Machine has an equivalent 29(t(") time
deterministic single-tape Turing Machine

. The Class P

P: languages that are decidable in polynomial time
on a deterministic single-tape Turing machine.

P = JTIME(n¥)

» Polynomial differences are not important?

. The Class P

P: languages that are decidable in polynomial time
on a deterministic single-tape Turing machine.

P = [J TIME(n*)

» Polynomial differences are not important?

1. P is invariant for all equivalent models
2. P = realistically solvable on a computer.

. HAMPATH

1. Best currently known algorithm's running time?&¥
2. Anything related polynomial time solvable?

verifiet

. COMPOSITES

COMPOSITES = {x:x=pq, p,g>1,p,q e Z}

» Needed for verifier?
[allegeil divisor
» Polynomially verifiable?
do 'HA! d.iVl'SiOV\

» When was PRIMES known to be in P?

D(Cloy x> —> 0l1es’)

9

What is a Verifier?

A verifier for language A is an algorithm V such
that A= {w : V accepts (w, c) for some string c}.
We measure the running time of a verifier as a
function of the length of w.

» c is the certificate

. The Class NP

» NP languages with polynomial time verifiers.

» NP: “non-deterministic polynomial”

. HAMPATH is in N'P

via non-deterministic Turing Machine.

Input: (G, s, t,), where G is a directed graph with nodes s

and t
1.

Write a list of m numbers, pq, ..., pm, where m is the
number of vertices in G.
Each number in the list is nondeterministically selected
to be between 1 and m.

Check for repetitions in the list. If any are found, reject.
Check whether s = p; and t = p,,,. If either fail, reject.

For each i between 1 and m — 1, check whether
(pi, piv1) is an edge of G. If any are not, reject.

If we reach this line, all tests have passed, so accept.

The CLIQUE Problem

@

()

()

@

O

13

Boolean Satisfiability

¢ = (XQVX3VX4)(72VX3 V74)(71VX3VX5)
XX VxoVx)(EVxVxs)(aVXgVxs)

X VxVXE)(x1Vxe V)1V x Vxz)

(
§x1 VXV xs)(xs VX5V xs)(xVXsVXs)
(

X1 VxVxs) (X VxVXg)

X1
X2
X3
X4
X5

Jrue / False
True
True_) False
True alse
rue)False

14

Why care about Boolean Satisfiability?

» Some problems have an efficient solution

» Some problems are literally impossible
» Some do not have an efficient solution
» j.e., list all subsets of a set

» Some do not have a known efficient solution

« Why care about Boolean Satisfiability?

» Some problems have an efficient solution

» Some problems are literally impossible
» Some do not have an efficient solution
> i.e., list all subsets of a set

» Some do not have a known efficient solution

» For every problem in N/'P:

» You can convert it to SAT
» Size of ¢ is polynomial of original
> Details in “handout 4.2" (reading)
» Therefore, a poly solution to SAT gives you ...

» This was discovered by Cook and Levin in 1971

