

1 EQ_{TM} is undecidable

$EQ_{TM} = \{\langle M_1, M_2 \rangle :$
 M_1 and M_2 are TMs and $L(M_1) = L(M_2)\}$

$E_{TM}(M)$

{

Def M_{err} = TM that always rejects
(immediately)

IF $E_{TM}(M, M_{\text{err}})$
return true / "accept"
else reject

3

CompSci 162
Spring 2023 Lecture 19:
Computational Histories

Reductions via Computational Histories

- ▶ Computational History of a Turing Machine
 - ▶ Accepting Computational History
 - ▶ Rejecting Computational History
- ▶ These are finite sequences.

Linear Bounded Automata

- ▶ Like a Turing Machine
- ▶ R/W head restricted to input region
- ▶ Which deciders that we saw can be LBAs?

A_{DFA}

A_{CFG}

E_{DFA}

E_{CFG}

Configurations for LBAs

- ▶ Let M be an LBA
 - ▶ q states
 - ▶ g symbols in tape alphabet
 - ▶ Tape length n
- ▶ M has qng^n distinct configurations

g^n config of tape
 n places over tape R/W
head can be
 q machine in any of q states

6. A_{LBA} is decidable (Turing decidable)

$A_{LBA} = \{\langle M, w \rangle :$
 M is an LBA that accepts string $w\}$

Simulate M on w until one of:

- M accepts. Then ^{we} accept.
- M rejects. Then we reject
- We perform $l^g \cdot n \cdot g$ steps.
Then reject
(b/c we know we are ⁱⁿ an infinite loop)

7 E_{LBA} is undecidable

$$E_{LBA} = \{\langle M \rangle : M \text{ is an LBA where } L(M) = \emptyset\}$$

ATM (M, w) decider:

build LBA B that recognizes
Accepting computational histories on M

if $E_{LBA}(B)$, reject

else accept

See Ed Discussion for more...