

CompSci 162
Spring 2023 Lecture 18:
Reducibility

Review

- ▶ Turing Recognizable and co-Turing Recognizable

both: *Turing decidable*

- ▶ Barber Paradox:
 - ▶ A town has exactly one barber
 - ▶ The barber cuts the hair of exactly whoever does not cut their own hair.
 - ▶ Who cuts the barber's hair?

Does this Turing Machine Accept?

$$A_{TM} = \{\langle M, w \rangle : M \text{ is a Turing Machine and } M \text{ accepts } w\}$$

- ▶ This language is a set of strings
 - ▶ Every string in the language is a TM and a string, such that if you run that TM on that string, the result is the TM accepts.
- ▶ This is **undecidable**
- ▶ Suppose it were decidable. Then H decides it
- ▶ But then I could build D
 - ▶ Input: TM M
 - ▶ Behavior: If $H(M, M)$ accepts, reject
 - ▶ If $H(M, M)$ rejects [*or loops forever*], accept
- ▶ What happens if I call $D(D)$?

The Halting Problem

$$HALT_{TM} = \{\langle M, w \rangle : M \text{ is a TM and } M \text{ halts on input } w\}$$

- ▶ Suppose FSOC $HALT_{TM}$ is decidable.
- ▶ Then \exists TM R that decides HALT_{TM}
- ▶ // Use R to create S , which decides A_{TM} (which we know is undecidable)

Run R on $\langle M, w \rangle$

if R rejects $\langle M, w \rangle$, S rejects $\langle M, w \rangle$
else run M on input w
 IF M accepts w , S accepts $\langle M, w \rangle$
 else S rejects

E_{TM} is undecidable

$$E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$$

Suppose FSOC that E_{TM} is decidable and I want to decide A_{TM} given input $\langle M, w \rangle$

- ▶ Let R be the TM that decides E_{TM}
- ▶ // Use R to create S to decide A_{TM}
(which we know is undecidable)

- ▶ We could run R on M
- ▶ If accept, $L(M)$ is empty.
- ▶ If reject, we don't know if M accepts w

E_{TM} is undecidable

$$E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$$

Suppose FSOC that E_{TM} is decidable and I want to decide A_{TM} given input $\langle M, w \rangle$

M' accepts either nothing or just w

- ▶ Let R be the TM that decides E_{TM}
- ▶ // Use R to create S to decide A_{TM} (which we know is undecidable)
- ▶ Create M' which has input x
 - ▶ If $x \neq w$, reject // hard coded
 - ▶ Else run M on w
- ▶ Run R on M'
 - If R accepts: A_{TM} rejects $\langle M, w \rangle$
 - Else A_{TM} accepts $\langle M, w \rangle$

Caution: do not run M'

EQ_{TM} is undecidable

$EQ_{TM} = \{\langle M_1, M_2 \rangle :$
 M_1 and M_2 are TMs and $L(M_1) = L(M_2)\}$

General strategy: Undecidable proof

Problem: prove X is undecidable

- ▶ Suppose I had a TM that decides X
- ▶ Pick an undecidable problem Y
- ▶ Write a TM to decide Y
 - ▶ Must be a valid TM **EXCEPT** it assumes existence of TM to decide X
- ▶ But that would decide Y
- ▶ By contradiction, no TM for X

I consider “**wrong direction**” to be major error