

$$L_2 = \{a^i b^j c^k \mid 0 \leq i \leq j \leq k\}$$

- ▶ FSOC suppose L_2 is context free
- ▶ Let p be the pumping length.
- ▶ Select $s = a^p b^p c^p$
 - ▶ $s \in L_2$ and also $|s| \geq p$
- ▶ Partition $s = uvxyz$

if v,y
single
type
of symbol

- ▶ Do v, y have no a s?
- ▶ uxz has more a than b or c
- ▶ Do v, y have no b s?
as
- ▶ Are any in v, y ? uv^2xy^2z
- ▶ Else uxz has lost c s not b s
- ▶ Do v, y have no c s?

UV^2XY^2Z has
more a or b than c

multiple symbols
in v and/or y

UV^2XY^2Z is
out of order

$$L_3 = \{ww \mid w \in \{a, b\}^*\}$$

- ▶ FSOC suppose L_3 is context free
- ▶ Let p be the pumping length.

$$|vxy| \leq p$$

- ▶ Select $s = \underline{a^p b^p}, a^p b^p$
- ▶ $s \in L_3$ and also $|s| \geq p$

- ▶ Partition $s = uvxyz$

IS vxy entirely ^{contained} _{1st within} half?

$uv^2x^2y^2z^2$ begins a,
2nd half begins b

entirely ^{contained} _{2nd within} half?

$uv^2x^2y^2z^2$ ends b,
1st half ends a

if vxy is "in middle"?

uxz is $a^p b^i a^j b^p$
 $i \neq p$ or $j \neq p$ (or both)

CompSci 162
Spring 2023 Lecture 13:
Closures of Languages
Regular and Context Free

Regular Languages: Closed under Union

If L_1 and L_2 are regular, so is $L_3 = L_1 \cup L_2$

- ▶ Take NFAs N_1 and N_2
- ▶ Create a new start state
- ▶ ϵ transition this to $N_1.start$ and $N_2.start$

*We will build an
NFA for N_3*

Regular Languages: Closed under Concatenation

If L_1 and L_2 are regular, so is

$$L_4 = \{w_1 w_2 : w_1 \in L_1, w_2 \in L_2\}$$

- ▶ Take NFAs N_1 and N_2
- ▶ N_1 's accept states stop being accept states
- ▶ N_1 's accept states gain ε to $N_2.\text{start}$
- ▶ $L_4.\text{start} = N_1.\text{start}$

Regular Languages: Closed under Kleene Star

If L_1 is regular, so is $L_5 = L_1^*$

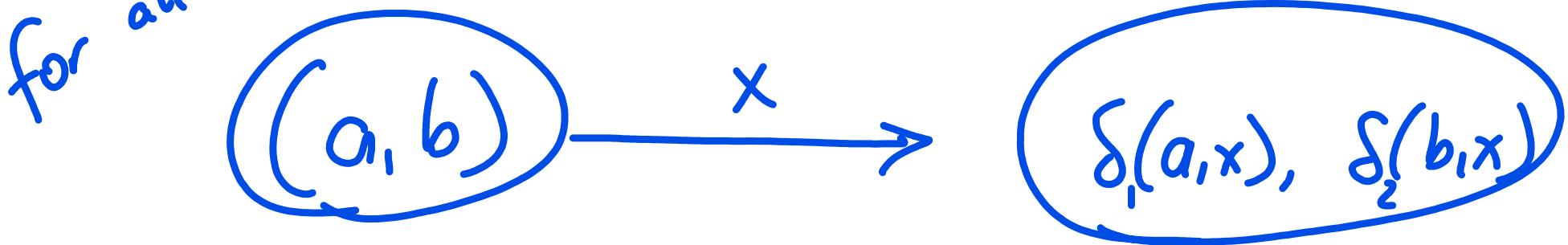
- ▶ Take NFAs N_1
- ▶ Create a new start state
 - ▶ This is an accept state
- ▶ ε transition this to $N_1.start$
- ▶ For each $a \in N_1.accept$
 - ▶ Add ε to $N_1.start$

Regular Languages: Closed under Complement

If L_1 is regular, so is $L_6 = \overline{L_1}$

- ▶ L_1 has a DFA D_1
- ▶ Invert all accept/non-accept states of D_1

Regular Languages: Closed under Intersection

 D_1 D_2 : DFAsIf L_1 and L_2 are regular, so is $L_7 = L_1 \cap L_2$ for L_1, L_2 Build DFA w/ $|D_1 \text{ states}| \times |D_2 \text{ states}|$ statesfor all $x \in \Sigma$ Each is $(s_1 \in D_1, s_2 \in D_2)$ 

accept in (p, q) iff p, q both accept

2nd proof: $L_7 = \overline{L_1} \cup \overline{L_2}$