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The first NP-complete problem

The proof of the first NP-complete problem was done in the early 1970’s by Stephen Cook and
Leonid Levin. They proved that SAT is NP-Complete.

SAT = {⟨ϕ⟩ | ϕ is a satisfiable Boolean formula}.

A boolean formula is a formula of boolean variables using AND, NOT, and OR operators.
A formula is satisfiable if there is an assignation of true/false values (a “TVA”: a “truth value
assignment” to the boolean variables such that the formula evaluates to true.

• We can show that SAT ∈ NP.

• For any problem x ∈ NP, there must be an NTM N that decides x in time nk.

• Therefore, for any input w = w1w2...wn, there is an accepting computation history on w of
length ≤ nk.

• Additionally, the length of the worktape will never exceed nk.

• Imagine an accepting computation history in an nk by nk grid, referred to as a tableau.
# q0 w1 w2 ... wn ... #

# a q1 w2 ... wn ... #

# ... #

• The first row is the starting configuration, the next row is the second configuration, etc. By
the nkth configuration, we are guaranteed to be at an accepting configuration.

• Our algorithm for x is outlined as follows:

1. Create a SAT formula ϕ (in polynomial time) that is satisifiable exactly when it describes
a valid tableau for the problem.

2. If we could solve SAT in polynomial time, then we’d be able to solve ϕ in polynomial
time.

3. The solution to ϕ tells us how to construct the tableau in polynomial time.

4. With the tableau, we know which nondeterminisitic choices the machine makes. We
simulate ϕ using the tableau as a roadmap to identify the solution to x in nk time.
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How to construct ϕ:

• Let C = Q ∪ Γ ∪ {#}. These are the characters that can appear in a cell in the tableau.

• We will have |C| · (nk)2 variables. xi,j,s is true exactly when the ith row and the jth column
in the tableau contains s ∈ C.

• We’ll break ϕ up into pieces: ϕ = ϕcell ∧ ϕstart ∧ ϕaccept ∧ ϕmove.

• Each cell in the tableau contains exactly one character. We describe this logic in ϕcell.

ϕcell =
∧

1≤i,j≤nk

[( ∨
s∈C

xi,j,s
)
∧
( ∧

s,t∈C,s̸=t

[
xi,j,s ∨ xi,j,t

])]

• The length of ϕcell (and the time it takes to construct it) is O((|C| · nk)2).

• The first row in the tableau must be the starting configuration. We describe this logic in
ϕstart.

ϕstart = x1,1,# ∧ x1,2,q0 ∧ x1,3,w1 ∧ x1,4,w2 ∧ ... ∧ x1,n+2,wn ∧ x1,n+3, ∧ ... ∧ x1,nk−1, ∧ x1,nk,#

• The length of ϕstart (and the time it takes to construct it) is O(nk).

• Since this must be an accepting tableau, qaccept must show up somewhere. We describe this
logic in ϕaccept.

ϕaccept =
∨

1≤i,j≤nk

xi,j,qaccept

This leaves us to specify what constitutes a valid move. Does one configuration follow validly from
the previous? We’ll describe this logic in ϕmove:

• We will look at every 2 × 3 window (2 rows, 3 columns) of the tableau, and verify that it is
valid.

• If wi,j contains the logic to indicate whether the window whose top-left coordinate is (i, j) is
valid, then our logic will look like:

ϕmove =
∧

1≤i<nk,1≤j<nk−1

wi,j

• If the contents of the window are a1, a2, ..., a6, then the window logic will look like this:

wi,j =
∨

valid a1,...,a6

xi,j,a1 ∧ xi,j+1,a2 ∧ xi,j+2,a3 ∧ xi+1,j,a4 ∧ xi+1,j+1,a5 ∧ xi+1,j+2,a6
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• Assuming (q2, c, L) ∈ δ(q1, b) and (q4, a, R) ∈ δ(q3, b), here are some examples of valid win-
dows:

a q1 b

q2 a c

a q3 b

a a q4

a a q1
a a b

# b a

# b a

a b a

a b q2

b b b

c b b

• Assuming (q2, a, L) /∈ δ(q1, b), here are some examples of invalid windows:

a b a

a a a

a q1 b

q1 a a

q1 a a

a a q2

a a a

a q1 a

a q1 a

a a a

b q1 b

q2 b q2

• Why are we specifically looking at 2× 3 windows?

• There are |C|6 possible windows, each window can be described in length 6, so wi,j takes
O(|C|6) time to compute and to write.

• There are (nk)2 different wi,j formula, so the length of ϕmove (and the time it takes to construct
it) is O(|C|6 · (nk)2).

Therefore, this reduction takes polynomial-time, completing the proof.
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