CompSci 162 Spring 2023 Unit 4.1: Introduction to Computational Complexity

Let M be a deterministic Turing machine that halts on all inputs. The running time or time
complexity of M is the function f: N — N, where f(n) is the maximum number of steps that M
uses on any input of length n. If f(n) is the running time of M, we say that M runs in time f(n)
and that M is an f(n) time Turing machine. Customarily, we use n to represent the length of the
input.

Let f and g be functions, f,g : N — R*. We say f(n) is O(g(n)) if positive integers c,ng exist
such that for every integer n > ng, f(n) < cg(n).

Let f and g be functions, f,g : N — Rt. We say f(n) is o(g(n)) if for any real number ¢ > 0, a
number ng exists where f(n) < cg(n) for all n > ng

Analyzing Algorithms

Here is a Turing Machine to recognize L = {a*b* : k > 0}. The machine, My, on input string w:

1. Scan across and reject if any a right of a b

[\)

. Repeat while any a, b still on tape:
3. Scan across, cross off one a, one b

4. If only one letter type remains, reject
Otherwise, accept if neither a nor b remain

Question 1. What is the running time of M;?

(© CompSci 162 Spring 2023— Michael Shindler— University of California, Irvine
This problem set may not be reposted without the express written permission of the professor teaching this course.

CompSci 162 Spring 2023 Unit 4.1: Introduction to Computational Complexity

Let ¢t : N — R™T be a function. Define the time complexity class TIME(¢(n)) be the collection
of languages that are decidable by an O(t(n)) time Turing machine.

Here is another machine, M, that decides L:

1. Scan across and reject if any a right of a b
2. Repeat as long as some of each remain:

3. If total a + b is odd, reject.

4. Cross off every other a, every other b

5. If none of each remain, accept.

And here is yet another, M3. Unlike My and My, however, this one uses two tapes.

1. Scan across and reject if any a right of a b

2. Scan across the as on tape 1 until first b.
While doing so, copy the as onto tape 2.

3. Cross off @ and b, 1 : 1 via two tapes
If all a crossed off after and b remain, reject

4. If all a crossed off, accept. Else reject.

(© CompSci 162 Spring 2023— Michael Shindler— University of California, Irvine
This problem set may not be reposted without the express written permission of the professor teaching this course.

CompSci 162 Spring 2023 Unit 4.1: Introduction to Computational Complexity

In computability theory (unit 3), all reasonable models are equivalent. In complexity theory, this is
not the case: the computational model affects what running times we can achieve. Yet, the choice
of deterministic models does not affect us too much. For example, we could prove the following
relationship between multi-tape Turing Machines and single-tape Turing Machines:

Example: Let t(n) be a function with ¢(n) > n. Show that every ¢(n) time multi-tape Turing
Machine has an equivalent O(¢?(n)) time single-tape Turing Machine

Non-deterministic Running Time

Let N be a non-deterministic Turing Machine that is a decider. The running time of N is the
function f : N — N, where f(n) is the maximum number of steps that N uses on any branch of
its computation on any input of length n.

You might think of this as forking and we need every branch (thread, process, whatever) to ter-
minate before we're done. Despite that analogy, this is not intended as a model of real world
computation. You might want to think about why do we use the maximum number of steps on any
branch instead of fewest, or the fewest that causes an accept?

The relationships between deterministic and non-deterministic running time, however, can be sum-
marized as follows.

Let t(n) be a function with ¢(n) > n. Show that every t(n) time nondeterministic single-tape
Turing Machine has an equivalent 2°¢() time deterministic single-tape Turing Machine

The proof of this involves analyzing the running time for a deterministic Turing Machine that
simulates the branches of the non-deterministic one’s computation tree.

(© CompSci 162 Spring 2023— Michael Shindler— University of California, Irvine
This problem set may not be reposted without the express written permission of the professor teaching this course.

CompSci 162 Spring 2023 Unit 4.1: Introduction to Computational Complexity

The Class P

P is the class of languages that are decidable in polynomial time on a deterministic single-tape
Turing machine. In other words,

P = J TIME(n)
k

Question 2. Does this mean that polynomial differences are not important?

1. P is invariant for all models of computation that are polynomially equivalent to the deter-
ministic single-tape Turing machine.

2. P roughly corresponds to the class of problems that are realistically solvable on a computer.

—_———

-

HAMPATH = {(G, s,t) : G is a directed graph with a Hamiltonian path from s to ¢}
Question 3. What class of running time is the best currently known algorithm to decide HAM-
PATH?

(© CompSci 162 Spring 2023— Michael Shindler— University of California, Irvine
This problem set may not be reposted without the express written permission of the professor teaching this course.

CompSci 162 Spring 2023 Unit 4.1: Introduction to Computational Complexity

Question 4. What type of problem related to HAMPATH can we solve in polynomial time?

COMPOSITES = {x : © = pgq, for integers p,q > 1}
Question 5. What do you need for a verifier?

Question 6. Is this polynomially verifiable?

Question 7. The first polynomial time algorithm discovered that decides PRIMES is the AKS
Primality Test. When was it discovered?

A verifier for language A is an algorithm V' such that A = {w : V accepts (w,c) for some string
c}. We measure the running time of a verifier as a function of the length of w.

Question 8. With respect to the definition for verifier, what does c represent? What does it within
our conversation for HAMPATH? For COMPOSITES?

(© CompSci 162 Spring 2023— Michael Shindler— University of California, Irvine
This problem set may not be reposted without the express written permission of the professor teaching this course.

CompSci 162 Spring 2023 Unit 4.1: Introduction to Computational Complexity

The Class NP

NP is the set of languages that have polynomial time verifiers.
Question 9. What do the letters NP stand for?

Question 10. Give a polynomial time non-deterministic Turing Machine that decides HAMPATH.
Show the running time of it.

The non-deterministic Turing Machine is as follows. As an aside, because n is typically used for
the length of the input string, we cannot reuse it to represent the number of vertices here.

Input: (G, s,t,), where G is a directed graph with nodes s and ¢

1. Write a list of m numbers, p1, ..., pm, where m is the number of vertices in G. Each number
in the list is nondeterministically selected to be between 1 and m.

2. Check for repetitions in the list. If any are found, reject.
3. Check whether s = p; and t = p,,,. If either fail, reject.

4. For each i between 1 and m — 1, check whether (p;,p;11) is an edge of G. If any are not,
reject.

5. If we reach this line, all tests have passed, so accept.

Membership in N'P: A language is in NP iff it is decided by some nondeterministic polynomial
time Turing machine.

If you were to prove this formally, we would convert a polynomial time verifier to an equivalent
polynomial time non-deterministic Turing Machine, and vice versa. A proof appears in the Sipser
text, p.294-295.

The set NTIME(t(n)) = {L : L is a language decided by an O(¢(n)) time nondeterministic Turing
Machine. }

NP = JNTIME(n")
k

(© CompSci 162 Spring 2023— Michael Shindler— University of California, Irvine
This problem set may not be reposted without the express written permission of the professor teaching this course.

CompSci 162 Spring 2023 Unit 4.1: Introduction to Computational Complexity

Clique is in NP

The clique problem is that we are given a graph G and a value k and want to decide if the given
graph has a clique of size k.

Q @ @)

O O O

Question 11. Prove this is in NP by providing a polynomial time verifier.

Input: ((G,k),c)

1. Test whether ¢ is a subgraph with k nodes in G
2. Test whether G contains all edges connecting nodes in ¢

3. If both pass, accept. Otherwise, reject.

Question 12. Prove this is in NP by providing a nondeterministic polynomial time Turing
Machine to decide it.

Input: (G, k)

1. Nondeterministically select a subset ¢ of k nodes of G
2. Test whether G contains all edges connecting nodes in ¢

3. If yes, accept. Otherwise, reject.

(© CompSci 162 Spring 2023— Michael Shindler— University of California, Irvine
This problem set may not be reposted without the express written permission of the professor teaching this course.

CompSci 162 Spring 2023 Unit 4.1: Introduction to Computational Complexity

Subset Sum is in NP
The SUBSET SUM problem is that we are given a collection of numbers x1,...,x; and a target
number t. We want to determine whether the collection contains a subcollection that adds up to ¢.

Example: ({4,11,16,21,27},25) € SUBSET-SUM

Question 13. Prove this is in NP by providing a polynomial time verifier.

Question 14. Prove this is in NP by providing a nondeterministic polynomial time Turing
Machine to decide it.

The Boolean Satisfiability Problem

SAT = {(¢) | ¢ is a satisfiable Boolean formula}.

A boolean formula is a formula of boolean variables using AND, NOT, and OR operators.
A formula is satisfiable if there is an assignation of true/false values (a “TVA”: a “truth value
assignment”) to the boolean variables such that the formula evaluates to true.

We can take a general instance of SAT and write it in the following format:

3-SAT: Given a set X of Boolean variables x1,...,x,; each can be true or false. A term is either
a variable or its negation. We have k clauses, each of 3 terms, disjuncted. A truth assignment for
X is a mapping of each variable z; to true or false. We say an assignment satisfies clause j if it
causes that clause to evaluate to true. Our goal is to find a truth assignment that satisfies every
clause.

For example, ¢ = (22 Va3V ay)(T2VasVT1)(T1VasVas)(T1 Ve Vas) (T3 Ve Ves)(TaVELVTs)
(z1VT2Vas)(r3VTLVEs) (21 VI3VT;) (T2 Ve VTs) (21 Ve VEg) (T Ve Vas) (T1 VT2 Vas) (T Vaa V)

Question 15. What is a satisfying assignment to this?

Question 16. Prove that 3-SAT is in N'P.

(© CompSci 162 Spring 2023— Michael Shindler— University of California, Irvine
This problem set may not be reposted without the express written permission of the professor teaching this course.

