CompSci 162 Spring 2023 Unit 3.1: Intro to Turing Machines

A Turing Machine is yet another computational abstraction. Here are the key differences between
a Turing Machine and previously discussed automata:

1. We can read and write to the tape
2. The read-write head can move left or right
3. The tape is infinite

4. Accept and reject take effect immediately
Formally, a Turing Machine is a 7-tuple: (Q,3,T",0, qo, Gaccept s Greject )

1. @ is the set of states
2. X is the input alphabet.

e We also have a blank symbol .
3. T is the tape alphabet

o I’
e X CT

4. 5:QxT = QxT x{L,R}
5. qo € Q is the start state
6. Qaccept 18 the accept state

7. Greject is the reject state
There are two key terms we will need:

e A language is said to be Turing Recognizable if some Turing Machine recognizes it. That
is, there exists some Turing Machine that can hit the accept state for exactly this set of input.
This is sometimes known as recursively enumerable languages.

Question 1. How could a Turing Machine fail to recognize a string?

e A Turing Machine that never enters an infinite loop is called a decider. A decider that
recognizes a language is said to decide it.

(© CompSci 162 Spring 2023— Michael Shindler— University of California, Irvine
This problem set may not be reposted without the express written permission of the professor teaching this course.



CompSci 162 Spring 2023 Unit 3.1: Intro to Turing Machines

Question 2. Give a Turing Machine that recognizes Li = {a2n :n > 0}.

Question 3. Give a Turing Machine that recognizes Ly = {w#w : w € {a,b}*}

Question 4. Give a Turing Machine that recognizes L3 = {a’b/c* : i x j == k and i, j,k > 1}

(© CompSci 162 Spring 2023— Michael Shindler— University of California, Irvine
This problem set may not be reposted without the express written permission of the professor teaching this course.



CompSci 162 Spring 2023 Unit 3.1: Intro to Turing Machines

The following is approrimately what would be one lecture, but one that I think works better in this
format, given our time constraints. More detail about this topic can be found in chapter three of
the Sipser textbook, among other places. Of course, feel free to ask about the topics on this page
and the next, or any other questions you have, on Ed Discussion.

Question 5. Consider a machine definition that is exactly like a Turing Machine, except upon
transition, in addition to the options to move the read/write head left or right, we also have the
option to keep it where it is (“stay put”). How does the set of languages recognizable by this
machine differ from those recognized by a traditional Turing Machine?

Think about what you think is the answer before reading the next two paragraphs.

Answer: Nothing new is gained by this. Note that the “old” style Turing Machines fit into this
already: just because we can stay put doesn’t mean we have to ever use that option. Therefore,
anything the old-style can do, this new style can do also.

Furthermore, nothing new s gained. Suppose I have one of these machines with one or more
“stay put” instructions. I can replace, one by one, each with a transition that moves. Instead of
staying put, that transition now moves right, and instead of its previous destination state, it goes
to one newly created for this purpose. From that newly created state, without affecting the tape,
and regardless of what is on it, move left. This has the same effect as a stay put and fits within the
model of the original Turing Machines.

Question 6. Consider a machine definition that is exactly like a Turing Machine, except instead of
one tape with one read-write head, it can have multiple. How does the set of languages recognizable
by this machine differ from those recognized by a traditional Turing Machine?

This one also is not more powerful. Our current TMs fit within this, as we could choose to create
a machine that has just one. Therefore, anything the old-style can do, this new style can do also
(we didn’t lose anything).

But did we gain anything? No. Suppose I want a Multi-tape TM (MTM) and have a TM. I can
simulate the contents by partitioning the tape with a special separator character. If I ever need to
expand, I can move everything down by one, similar to how is done in Insertion Sort. For each
tape, we can use a special symbol to track the R/W head (and what is underneath it, so a different
“R/W head is here with an a underneath it” from “R/W head is here with a b underneath it.”

This might sound inefficient to you. You might be correct. We will discuss efficiency later; for
now, the question is what can and cannot be computed.

(© CompSci 162 Spring 2023— Michael Shindler— University of California, Irvine
This problem set may not be reposted without the express written permission of the professor teaching this course.



CompSci 162 Spring 2023 Unit 3.1: Intro to Turing Machines

Question 7. Consider a machine definition that is exactly like a Turing Machine, except transitions
can be non-deterministic. With finite state automata, DFAs and NFAs recognized the same set
of languages, while non-determinism allowed PDAs to recognize a larger set of languages than
deterministic PDAs. How does the set of languages recognizable by a non-deterministic Turing
Machine differ from those recognized by a traditional Turing Machine?

It might be a little surprising, but every nondeterministic TM has an equivalent deterministic TM.
The proof idea is to imagine the execution tree produced by a non-deterministic TM, with a branch
on every opportunity for a non-deterministic choice. We can use a multi-tape TM (or equivalent)
to simulate non-determinism and do a BFS of all non-deterministic choices.

A Turing Machine (including the variants we discussed) is not the only model of computation.
Among the others are:

¢ Enumerators, which are like a Turing Machine with a printer. These generate and print all
the strings in a given language.

e Abacus Machines

e Lambda () calculus.

Many other equivalents exist. As a general rule, the equivalent ones can be described by us as doing
only finite amounts of work per step. There are some that are more powerful than Turing Machines,
but have unreasonable descriptions, such as being able to do infinitely much work in a single
step, known as a “supertask.” Just like algorithms can be implemented in different programming
languages, so too with computational models.

This brings me to the Church-Turing Thesis, due to Alonzo Church (via lambda calculus) and
Alan Turing (Turing Machines). The Wikipedia page has an interesting section on this, including
the history and philosophical implications. The Church-Turing thesis essentially says that what
you and I (and many other people) think of as algorithms is exactly what can be computed by
Turing Machines and equivalents.

It might surprise you that the definition of algorithm was not finalized until the 20th century,
despite what we think of as algorithms pre-dating this. When I teach CompSci 161, for example,
one of the algorithms I present dates to the 9th century. The Euclidean Algorithm for ged, which
you probably saw in Discrete Math, is over 2300 years old.

One final item for your consideration: think about why it is worth studying unsolvable problems.
I do not mean this in the context of “Professor Shindler gives really hard homework questions.”
I mean problems that a computer cannot solve, such as testing whether or not a polynomial has
integer roots.

(© CompSci 162 Spring 2023— Michael Shindler— University of California, Irvine
This problem set may not be reposted without the express written permission of the professor teaching this course.



