CompSci 162 Spring 2023 Unit 1: Introduction

A Brief Review of Functions

A function f from A to B takes as input an element from the set A, and returns an element from
the set B. This is often abbreviated as f: A — B.

Example: f takes as input a nonnegative integer, and outputs its square. We could say f : N — N.
We could also say f : N — perfect squares.

e f: A — B is an injective function if every input maps to a different output. That is, if
f(a) = f(b), then a = b. This is also called a one-to-one function.

e f: A— Bisasurjective function if there is a way to produce every element in B as output.
That is, if b € B, then there is an a € A such that f(a) = b. This is also called a onto
function.

e f: A — B is a bijective function if it is both one-to-one and onto. This is also called a
one-to-one correspondence.

Question 1. Given the above definitions, suppose we have two sets A and B. What can we say
about the existence of a function from A to B in each of the following circumstances? Recall that
| X'| represents the cardinality of the set X.

e |A| = |BjJ; that is, A and B are equinumerable.

o |A] < B

o |A] <|B|

Countable Sets and Establishing Bijections

We use the symbol N to represent the set of natural numbers. Depending on which math book(s)
you read, you might find slightly different definitions of the symbol. For purposes of CompSci
162, this is the set of non-negative integers, or {0,1,2,...}. This set is infinite in size. When you
hand-write aspects for this class, you may wish to simply use V.

Any set A that can be put into one-to-one correspondence with N is said to be countably infinite.
When we write the size of any such set, we write |A| = g, pronounced “aleph null.”
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Let’s determine the size of the following sets. In this class, for all graded artifacts, unless

otherwise stated, you will need to justify any such answer.
Question 2. What is the size of the set of all odd natural numbers. That is, A = {1,3,5,...}?

Question 3. What about the set of integers, Z? Recall that Z = {...,—2,-1,0,1,2,...}.
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Figure 1: Dinosaur Comics # 1575: https://www.qwantz.com/index.php?comic=1575
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Recall that the Cartesian Product of two sets A x B = {(a,b)|la € AAb € B}. That is, the set
of all possible ordered pairs (a,b) where a € A and b € B.

If A={1,2},B={1,3,4} then A x B = {(1,1),(1,3),(1,4),(2,1),(2,3),(2,4)}.

Question 4. What about the set of all ordered triples of N7 That is, N x N x N7

Schroder-Bernstein Theorem

The Schroder-Bernstein Theorem has two parts:

1. Let A and B be arbitrary sets. If there exist injections f : A — B and g : B — A, then there
exists a bijection from A to B.

2. Let A and B be arbitrary sets. If |A| < |B| and |B| < |A|, then |A| = |B].

Question 5. Use the Schroder-Bernstein Theorem to answer the previous question.
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Question 6. Show that the set of rational numbers, Q, is countable.

Question 7. How large is R, the set of real numbers?

The power set of A, written as P(A) or 24 is the set of all subsets of A.
Question 8. Cantor’s Theorem : The power set of any set has cardinality strictly greater than
the original set.
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What is a Formal Language?

What is a String?

I assume you are familiar with a std: :string in C++ and its equivalents in other programming
languages. Please be sure to keep these concepts separate.

An alphabet is a non-empty finite set whose elements are referred to as letters or symbols. A string
is a finite (possibly empty) sequence of symbols over some alphabet. Strings can be concatenated
with other strings or letters.

The symbol ¥ is typically used to denote an alphabet. The number of letters in string w is |w|
and wli] is the ith symbol of w. Unlike std: :strings, the first symbol of w is w[l]. We use w?
to denote the reversal of w. The empty string is denoted e (“varepsilon” for those of you using

TEX).

A string or symbol with a natural number exponent, such as a”, denotes the string consisting of n
concatenated copies of a.

3* is the Kleene Star of 3, the set of all strings over X.

What’s a Language?

Note that this is different from the definition you might get if you wanted to describe English or
Spanish as a “language.”

A language is a set of strings. If X is an alphabet, then every L C ¥* is a language.

Here are some example languages over the alphabet ¥ = {a, b}.

Ly = {a,abb, aaaa}

Ly = {a"|n € N is prime}

Ly = {b"a"b™ | n,m € N and n = m (mod 3) }

L4 = The set of all w € ¥* with at most three a’s

Ls = {a" | n € Nand 3z,y,z € N— {0} such that 2" 4+ y" = 2"}

Question 9. Which of the above five languages are finite? Which are infinite? How infinite?

Note that even the infinite languages above have a finite representation. We can think of the
definitions themselves as strings in a meta language, in this case, a superset of English and formal
mathematics.

Question 10. Are all languages (over a given alphabet) defined by some string in a suitable
meta-language?
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Operations on Languages

Since languages are sets, the traditional set operations can be used. If L and L’ are languages, then
SO are:

L-L={welL|wé¢lL?}
L=Y"—-1L
L* = {wi,wy,...w, | n € Nyw; € L}
Ll ={w |ueLvel’}

Deterministic Finite Automata

Associated reading: Sipser, 1.1, Lewis/Papadimitriou 2.1

Figure 2: Figure 1.4 from Sipser text; a finite automaton with three states

Question 11. What happens if we feed the input string “1101” into the machine in Figure 27

Formal Definition

A finite automaton is a 5-tuple (Q, 2, 0, qo, F') where:

1. @ is a finite set called the states

2. ¥ is a finite set called the alphabet

3. 0:Q x X — Q is the transition function
4. qo € Q is the start state

5. F C Q@ is the set of accept states
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Formal definition of computation

Let M = (Q, 3,6, qo, F') be a finite automaton and let w = wjws ... w, be a string where each w;
is a member of the alphabet ¥. Then we say that M accepts w if a sequence of states ro,71,...,7n
in @ exists with three conditions:

L. ro=qo

2. (5(7’1',’[1)2'4_1) = Ti+1 fori=0...n—1

3. r, €F

Any language recognized by some finite automaton is called a regular language.

Question 12. Formally show that the machine in Figure 2 accepts the string “1101” — this will
likely be the only time you do such a thing.

Question 13. Design a DFA over the alphabet ¥ = {a,b} that accepts all strings with an odd
number of instances of the letter a.
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Regular Languages and Regular Expressions

Given an alphabet X, we can represent a class of languages over 3 by using a special syntax called a
reqular expression®. Any language defined by such is called a regular language, the first important
category we are going to cover in CompSci 162. We assume for this that any alphabet we consider
does not contain the symbols ‘(’, *)’, “*’, ‘U, or ‘0.

There are four rules for a regular expression:

1. Any given character in the language, or ), is a valid regular expression. This means if you
want to include any single character, or the empty string, you may do so.

2. If w and v are both valid regular expressions, (v Uv) is a valid regular expression. This means
that the regular language we are describing includes everything that can be described by
regular expression u or v (or both).

3. If w and v are both valid regular expressions, (uv) is a valid regular expression. This is
concatenation, and means that this regular expression accepts any string described by regular
expression u that is immediately followed by one described by regular expression v.

4. If u is a valid regular expression, (u)* is a valid regular expression. This means that if u

is a valid regular expression, then if you repeat it zero or more times (including none), it is
included by this regular expression?.

This all seems very abstract, so let’s do some exercises instead. For each of these, we assume the

alphabet ¥ is {a, b}.
Question 14. Describe the set of strings accepted by this regular expression: a*ba*.

Question 15. Describe the set of strings accepted by this regular expression: aX*a UbX*bUaUb

Question 16. Give a regular expression for the language that includes every string that has “aab”
as a substring.

Note that some programming languages have a feature they call a “regular expression” that does not always
match these. In CompSci 162, you'll need to use this syntax, or something similar to it, when asked for a regular
expression. Sometimes, a programming language’s “regular expression” is actually a Context-Free Grammar, which
we’ll discuss in the next unit.

2Some programming language have shorthand ways to say “two or more of this RegEx” but we won’t use that
here. Sometimes u(u)* is abbreviated u", which is okay to use in CompSci 162.
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Question 17. Give a regular expression for the language that includes every string wherein every
a is followed by at least one b.

Non-Deterministic Finite Automata (NFA)

We saw deterministic finite automata (DFAs). In these, there was always exactly one valid tran-
sition at each step of computation. We are going to generalize this into the concept of non-
deterministic finite automata, wherein a transition might not be fully determined by the state of
the machine and the next symbol. In fact, it is possible for the machine to be in one, many, or
even no states. Transitions can be symbols or strings, including the empty string. It is also valid to
have an ambiguous transition. I will draw what this looks like in lecture. Lastly, it is also possible
to not have a transition specified.

We say that an NFA M accepts a string if and only if there is a sequence of choices made while
reading the string that leaves the machine in an accept state after reading the string.

Let’s see an example of when this definition helps us.

Question 18. Give an NFA that recognizes the set of strings over 3 = {a, b} where the third-to-last
character in the string is a b. For example, aaabaa is accepted but aabb is not.

Question 19. Give a DFA that recognizes the same set of strings.
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Question 20. What does the technique I used to answer the previous question tell you about the
relationship between the set of NFA-acceptable languages (those for which there is an NFA that
accepts it) and the set of DFA-acceptable languages?

Question 21. Give an NFA over the alphabet ¥ = {a} which accepts all strings whose length is a
multiple of 2 or a multiple of 3 (or both). Do you believe you can draw a DFA that accepts these?
Why or why not?

Equivalence of NFA /DFA-acceptable and Regular Expressions

Question 22. Given a regular expression, draw an NFA that accepts the same set of strings.

Question 23. Given a DFA, how can we convert it to a regular expression?
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Question 24. What does the result of the two previous questions, combined with what we learned
earlier this week, tell us about the relationship between languages accepted by NFAs, DFAs, and
regular expressions?

Question 25. Make an NFA that accepts (abU a)*.

Question 26. Convert the following DFA to a regular expression

Question 27. Prove that regular languages are closed under complementation. That is, if L is a
regular language, then L = ¥* — L is also a regular language.
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What are not Regular Languages?

It may seem so far that lots of families of strings are regular languages. What sorts of things are
not? After all, there are uncountably infinite languages over a given alphabet, and only countably
infinite descriptors. We saw already how to prove a language is regular, now we need to know how
to prove when a language is not regular.

Question 28. Given a regular language, how can you tell (in principle) if it is infinite?

Question 29. Given a regular language, how can you tell (in practice) that it is infinite?

Question 30. What is the pumping lemma3?

Question 31. Use the pumping lemma to prove that {a™b" | n > 1,n € N} is not a regular
language.

3This will be printed in the slides, but I recommend writing it down and referencing what you wrote when you see
the work for the next question. There will be a question on exam 1 that uses it in the same manner that the next
question does. I can’t check that you approach the question this way “during lecture,” but I very much believe you
will learn the material better if you do.
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