
CompSci 161 Winter 2023 Problem Set 4

Due date: Friday, February 10 at 10:30 AM. You will need to submit this via GradeScope. Late
problem sets are not accepted.

In CompSci161, your response to each numbered question must be contained within a single piece
of paper. Each numbered question must be responded to on a separate page. When you submit
to GradeScope, you will need to inform the system which page of your scanned PDF contains the
response you want graded. On occasion, we might request you to tag two (or more) parts, even
though we know the two parts will be on the same page; when that happens, it usually means
we are going to grade the parts separately. Failure to follow these directions will be treated as
non-submission for the question(s) affected.

Please review the syllabus and course reference for the expectations of assignments in this class.
Remember that problem sets are not online treasure hunts. You are welcome to discuss matters
with classmates, but remember the Kenny Loggins rule. Remember that you may not seek help
from any source where not all respondents are subject to UC Irvine’s academic honesty policy.

Questions 2 and 3 here, as well as the questions on problem set 5, and also one question on your
topic exam on Friday of week 6, will require a dynamic programming solution. For any such
problem, you must do the following; missing one of these can cost you significant credit.

• Give a clear and precise English definition that describes the function you are implementing.
Not how it works (yet), but rather what it solves.

• Give that function a meaningful variable name. This is not [just] me being pedantic; I have
found it helps students with this topic if they do this. “OPT” is not a meaningful variable
name, nor is “table.” Single letters are not meaningful variable names. Yes, I know you’re
going to read question one first, and yes, I read it too.

• Give a clear recursive formula or algorithm in terms of smaller instances of exactly the same
problem. If you aren’t solving exactly the same problem, you might need to go back to the
previous step.

• Describe the iterative running time correctly. This can either be by writing the iterative
algorithm (in which case, you can point out where the previous part is within the solution),
or by taking your recursive solution, counting the cases, describing the order in which the
table would be filled in, and analyzing the time accordingly.

1. Suppose I am going to choose an integer between 1 and n, inclusive, according to some
probability distribution. For each integer i, I have written pi, the probability that I select i
as the chosen integer. You may assume that

∑n
i=1 pi = 1.

(a) Give an O(n3) time algorithm to compute a 2D-array X, where X[i, j] is the probability
that some integer in the range [i, j] (inclusive) is chosen. You may assume that arithmetic
operations take O(1) time each.

(b) Give an O(n2) time algorithm to solve the problem in part (a). If you are confident that
your answer to this question is O(n2), you may elect to skip the previous part and count
this as your answer to both.

© CompSci 161 Winter 2023– Michael Shindler– University of California, Irvine
This Problem Set may not be reposted without the express written permission of the professor teaching this course.



CompSci 161 Winter 2023 Problem Set 4

2. Professor Shindler gives lots of homework assignments, each of which have an easy version
and a hard version1. Each student is allowed, for each homework, to submit either their
answer to the easy version (and get ei > 0 points) or the hard version (and get hi > 0 points,
which is also guaranteed to always be more than ei) or to submit neither (and get 0 points
for the assignment). Note that ei might have different values for each i, as might hi. The
values for all n assignments are known at the start of the quarter.

The catch is that the hard version is, perhaps not surprisingly, more difficult than the easy
version. In order for you to do the hard version, you must have not done the immediate
previous assignment at all: neither the easy nor the hard version (and thus are more relaxed,
de-stressed, etc). You are allowed to do the hard version of assignment one if you want. Your
goal is to maximize the number of points you get from homework assignments over the course
of the quarter. Give an efficient dynamic programming algorithm to determine the largest
number of points possible for a given quarter’s homework choices.

3. Skittles are small candies; each piece of candy is one of five flavors (grape, lemon, orange,
strawberry, or green). An exciting new party game, Skittle Trader, is sweeping the nation,
and the skills you are learning in CompSci 161 will help you to achieve a high score!

Here are the rules of the game. You are at a party with n of your friends. Each of you has
one piece of Skittles candy. Your friends form a line. You walk down the line, starting at
friend 1 and finishing at friend n. At each friend, you have a choice: do you want to trade
the candy you are holding for the one they are holding?

• If you do not trade candy, your score remains the same.

• If you and the friend have the same flavor candy, you earn one point.

• If you and the friend trade, but you had different flavor types, you lose one point. Your
score can go negative.

You begin the game with zero points. Your goal is to finish the game with the most possible
points.

For purposes of the input to this problem, the Skittles flavors are numbers 0, 1, 2, 3, 4. Your
input to this problem is an array C[1 . . . n], where each C[i] ∈ [0, 4] is the type of candy the
ith friend in line is holding. You also have a parameter for the type of candy you begin the
game with.

If you decide to actually play this game with friends, perhaps to test out your algorithm
before submitting, please use individually wrapped candies instead, such as Starburst. This
is nearly the most disgusting question I have given in a class, second only to the Chicken
McNuggets question from ICS 46.

1This is not the actual policy.

© CompSci 161 Winter 2023– Michael Shindler– University of California, Irvine
This Problem Set may not be reposted without the express written permission of the professor teaching this course.


