
CompSci 161 Winter 2023 Week 10 : Dynamic Programming: Functional Knapsack and TSP

We have continued to expand our Algorithmic Pizza Parlor stores, and now are going to try to
gain new customers by advertising. We have a budget of B dollars to spend on advertising, and n
possible ways to spend it (billboards, television spots, radio ads, etc). For each possible spending
method i, we can allocate anywhere between 0 and B dollars, but must do so in even increments
of one dollar (we cannot allocate partial dollars). Our marketing department has come up with a
series of functions {fi} to determine how effective (in terms of customers gained) each advertising
method will be. If we spend d dollars on advertising method i, we will gain fi(d) customers. These
functions are all non-decreasing: if d < d′, then fi(d) ≤ fi(d

′). You may assume that fi(0) = 0 for
all i, if you would like.

Given these functions, use dynamic programming to design an algorithm that will determine the
maximum number of new customers we can gain within our budget. Provide the recursive solution
(including the base case), explain briefly why it is correct, and state what the running time of the
iterative algorithm would be.
You do not need to give the iterative algorithm, nor do you need to produce a listing of where to
spend the money – simply have your algorithm find the best possible number of customers gained
within the budget.

Hint: The correct solution is not to figure out where to put the last marginal dollar.

© CompSci 161 Winter 2023– Michael Shindler– University of California, Irvine
This handout may not be reposted without the express written permission of the professor teaching this course.



CompSci 161 Winter 2023 Week 10 : Dynamic Programming: Functional Knapsack and TSP

Traveling Salesperson Problem

Consider the Traveling Salesperson problem. We are given a simple (not necessarily complete)
directed graph. Our goal is to find the Hamiltonian Cycle of lowest total weight.

Example:

v1 v2

v3v4

2

1

7
39

6
4

8

6

Tour Length

v1, v2, v3, v4, v1 22
v1, v3, v2, v4, v1 26
v1, v3, v4, v2, v1 21

The last tour listed is the optimal one for this
input.

A dynamic programming algorithm

In general, we could enumerate every possible tour in time O(n!), although this is probably a poor
idea. Use dynamic programming to produce a better algorithm for this problem. You should not
expect to get a polynomial running time for this problem.

Instead, let’s use dynamic programming, allowing for super-polynomial running time.

Hint 1 : Without loss of generality, every tour “begins” and “ends” at v1. Every such cycle can be
thought of as going from v1 to some vj , going through zero or more vertices along the way, and
then returning to v1 going through the remaining vertices.

Hint 2 : Any subset of vertices can be represented with a bit vector of n bits. The ith bit corresponds
to whether or not vi is included. However, you should focus on the concept, and instead treat this
as if your algorithm can take a parameter of a subset of vertices. The detail of how to represent
the set is important when you implement the algorithm.

© CompSci 161 Winter 2023– Michael Shindler– University of California, Irvine
This handout may not be reposted without the express written permission of the professor teaching this course.


