CompSci 161 Winter 2023 Week 10 : Divide and Conquer: Closest Pair of Points

Closest Pair of Points

Reading: Goodrich/Tamassia §22.4. Suppose we have n points, each of which has an x-coordinate
x; and a y-coordinate y;. Our goal is to find the pair of points p; and p; that are closest together.
The distance between two points is d(p;, p;).

Here is a Brute-Force approach to this problem: ° o
[]
Closest-Pair ..
Input: n points in 2D-space ° °
Output: The closest pair of points. °
min = oo ® o °
fori =2 —ndo ° o e
for j=1—-i—1do
if (v; —2;)®+ (y; — vi)* < min then
min = (z; — z;)* + (y; — v:)° . .
closestPair = ((x4, yi), (z4,95)) °
return closestPair i

What is the running time of this algorithm?

To improve on the running time of the brute-force algorithm, we can try to set up our usual start
for divide and conquer. For convenience, let’s assume the points are sorted by y-coordinate before
we first call this algorithm. We can do this in O(nlogn) time first; if the eventual running time
is Q(nlogn), this won’t matter, and if we achieve o(nlogn) for the rest of the algorithm, this will
dominate the running time.

Closest-Pair
Input: n points in 2D-space
Output: The closest pair of points.
If P is sufficiently small, use brute force. // O(1)
T < median z-value from P
L + any points from P with z-coordinate < z,,
R < any points from P with x-coordinate x,,
Let I; and ls be the closest pair of points in L, found recursively.
Let 1 and r2 be the closest pair of points in R, found recursively.
return whichever pair is closer together // Incorrect but good starting point.

The above algorithm is clearly incorrect; why?

How do we fix it?

How do we fix it while having a better running time than the brute force algorithm?

(© CompSci 161 Winter 2023— Michael Shindler— University of California, Irvine
This handout may not be reposted without the express written permission of the professor teaching this course.

