
CompSci 161 Winter 2023 Week 10 : Divide and Conquer: Closest Pair of Points

Closest Pair of Points
Reading: Goodrich/Tamassia §22.4. Suppose we have n points, each of which has an x-coordinate
xi and a y-coordinate yi. Our goal is to find the pair of points pi and pj that are closest together.
The distance between two points is d(pi, pj).

Here is a Brute-Force approach to this problem:

Closest-Pair

Input: n points in 2D-space
Output: The closest pair of points.

min =∞
for i = 2→ n do
for j = 1→ i− 1 do

if (xj − xi)
2 + (yj − yi)

2 < min then
min = (xj − xi)

2 + (yj − yi)
2

closestPair = ((xi, yi), (xj , yj))
return closestPair

What is the running time of this algorithm?

To improve on the running time of the brute-force algorithm, we can try to set up our usual start
for divide and conquer. For convenience, let’s assume the points are sorted by y-coordinate before
we first call this algorithm. We can do this in O(n log n) time first; if the eventual running time
is Ω(n log n), this won’t matter, and if we achieve o(n log n) for the rest of the algorithm, this will
dominate the running time.

Closest-Pair

Input: n points in 2D-space
Output: The closest pair of points.

If P is sufficiently small, use brute force. // O(1)
xm ← median x-value from P
L← any points from P with x-coordinate ≤ xm
R← any points from P with x-coordinate xm
Let l1 and l2 be the closest pair of points in L, found recursively.
Let r1 and r2 be the closest pair of points in R, found recursively.
return whichever pair is closer together // Incorrect but good starting point.

The above algorithm is clearly incorrect; why?

How do we fix it?

How do we fix it while having a better running time than the brute force algorithm?

© CompSci 161 Winter 2023– Michael Shindler– University of California, Irvine
This handout may not be reposted without the express written permission of the professor teaching this course.


