CompSci 161 Winter 2023 Unit 2: Dynamic Programming

Weighted Interval Scheduling

Warm-Up: we are given a set of n intervals, numbered 1...n, each of which has a start time s;
and a finish time f;. For each interval, we want to compute a value p[i], which is the interval j
with the latest finish time f; such that f; < s;; that is, the last-ending interval that finishes before
interval 7 starts. If no intervals end before interval i begins, then p[i] = 0.

Give an O(nlogn) time algorithm that computes p[i] for all intervals. You may assume that the
intervals are already sorted by finish time.

The Big Problem: Fed up after the first two quizzes in CompSci 161, your friend has decided
to change majors to one that grades based only on attendance. The only question is which classes
your friend should take in Fall quarter. The classes all meet once a day, at different times and
lengths, and are worth different amounts of credits. Your friend’s goal is to maximize the amount
of credits earned in that quarter without having to skip any classes (as this may interfere with
passing those classes).

Problem Statement: More formally, we are given a set of n intervals, each of which has a start
time s;, a finish time f;, and a value v;. Our goal is to select a subset of the intervals such that no
two selected intervals overlap and the total value of those taken is maximized.

Example Input: Please be aware that sample input will not always be provided in CompSci 161;
one of the educational objectives is for you to be able to solve a problem in the abstract.
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CompSci 161 Winter 2023 Unit 2: Dynamic Programming

Let’s solve this recursively (yay!). We will write a function WIS (:) that returns the optimal number
of credits obtainable among intervals (classes) 1...7. We can then call WIS(n) to figure out the
optimal number of credits obtainable among all intervals.

A key observation here is that your friend will either take class ¢ or your friend won’t take class 7.
WIS(i)

// Base Case:

// If my friend doesn’t take class i:
y

value_if not_taken =

// If my friend takes class i:

value_if_taken =

//return something:

Should we implement it that way? We now have a recursive solution. Think back to the
Fibonacci example earlier in lecture. What will happen if we implement this program this way?
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Iterative Solution

We can now move to have a solution that uses no recursive function calls. Note that our solution
is still conceptually recursive. The iterative solution will also allow us to output which courses to
take, not simply the optimal value.

L[] | v | WIS(p(2)) | WIS(p(4)) + vi | WIS(i — 1) | WIS(i)
0 N/A | N/A N/A N/A 0

1 2

2 4

3 4

4 7

5) 2

6 1

Dynamic Programming is not about filling in tables.
Dynamic Programming is about smart recursion.
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Longest Common Subsequence

Reading: G/T §12.5,

Problem Statement: A subsequence of a given sequence is just the given sequence with zero or
more elements left out. Given two sequences X and Y, we say that a sequence Z is a common
subsequence of X and Y if Z is a subsequence of both X and Y. Our goal is to find the maximum
length common subsequence.

Examples:

X Y | LCS
complete continue cote
exercise  determine | eerie
surface character | race
toward thousand | toad

As with the previous lecture, let’s determine the general recursive solution first. Can you determine
something tautological about the LCS of sequences X and Y7

Example: What is the LCS of the sequences < MO RNING >and < TRIANGLE >7?
M|O|R|N|T|N|G

el Runl Kl qpe g RanlB=vi iy
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Subset Sum

Reading: Erickson, §3.8, G/T §12.6 (related)

Problem Statement: Given a set S of n positive integers, as well as a positive integer T, determine
if there is a subset of S that sums to exactly T

Example 1: S ={2,3,4}, T = 6, the answer is “yes”
Example 2: S ={2,3,5}, T = 6, the answer is “no”
As with all other dynamic programming algorithms, we are going to start with a recursive case and

transform it from there. Remember, dynamic programming is about smart recursion.

e Find a recursive algorithm to determine if a subset of the first n values in the input adds up
to T.

e Finish the process to make this a dynamic programming algorithm, including outputting the
subset of the items for the case when the answer is “yes.” For example, your output on
example one (above) should be “yes, 2, 4” while your output for example two should be “no.”

Here are the tables for the Subset Sum examples.
Example 1: S ={2,3,4}, T =6. Example 2: S ={2,3,5}, T =6.

0/1{213]4|5/6 011{2]3]4|5/6

8 8

12} 12}

{2, 3} {2, 3}
(2,3, 4} {2, 3,5}

What is the running time of the dynamic programming algorithm you gave for SUBSET SUM above?

e Suppose we double the size of .S, but leave T alone. Will your algorithm scale well?

e Suppose we double the number of bits available to represent 71", doubling its size, but leave S
alone. Will your algorithm scale well?

One of the key terms here is pseudo-polynomial. We will discuss the effect that has on efficiency as
the quarter progresses.
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Edit Distance

Reading: Erickson, §3.7

The Edit distance problem is as follows. We are given two strings (not necessarily of equal
length). We want to convert the first string to the other by a sequence of insertions, deletions, and
substitutions. The cost is the number of operations we perform.

For example, if we want to convert FOOD to MONEY, we could do this:
FOOD — MOOD — MOND — MONED — MONEY

One way to visualize this is by alignment:

F O O D
M O N E Y

We define Edit(i, j) to be the minimum cost to convert X[1...4] to Y[1...j].

What happened in the last column?

OIS e Neni=] L] R e
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Offline Optimal Binary Search Trees

Reading: Erickson §3.9, G/T 12.1 (related)

In ICS 46, you saw unbalanced binary search trees. These had O(logn) lookup time under some
conditions, but O(n) lookup time in the worst case. You then saw various forms of balanced binary
search trees: there are structures such as AVL and Red/Black trees that make the “promise” that
any given lookup in the tree would take O(logn) time. We can’t reasonably expect a better worst
case, and these are great data structures for the case when elements can be added to the tree
arbitrarily and we don’t know how often (or even if) we will look up any given element.

Suppose that before building a binary search tree, we knew exactly which elements were going to be
in the tree. If we’re likely to look up any given one with equal probability, or if we don’t know the
likelihood of looking up any given element, we can balance the tree by placing the median element
at the root and recursively building trees in this fashion for the left- and right- subtrees.

But what if we also knew the probability that we’d look up any given element once the tree was
built? This might not produce an optimal binary search tree in terms of the expected value of
the lookup. Suppose we have n keys, k1 ... k,, with probabilities p; ... p, that we will look up the
given elements; each probability p; is positive, and the sum of these is 1.

Here’s an example with n = 7 keys:

1 1 2 3 4 ) 6 7
pi | 13| .21 .11 | .01 | .22 | .08 | .24

Here are two possible binary search trees with those keys:

This tree is balanced This one is less balanced

What is the ezpected lookup cost (in terms of nodes examined) for each of these trees?

Problem Statement: We are given n probabilities, p;...py,; p; represents the probability of
looking up the ith smallest key once the tree is built. Our goal is to build a binary search tree with
the smallest expected lookup cost.

Note that our output must be a binary search tree; we cannot reorder the elements.

Check for understanding: we have computed d;, the depth within the tree of each node. The root
has d; = 1, its children have d; = 2, and so on. What is the expected lookup cost of this tree?
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Creating the Dynamic Programming Algorithm
Let’s compute TreeCost(i,5), which is going to be the cost of the optimal binary search tree

consisting of keys i through j (inclusive). If this is called with j < i, we consider this a null tree
and return 0 (treat this as a base case).

e Which key(s) can be the root of a binary search tree consisting of keys ¢ through 57

e Suppose key r is the root. What is the cost of the search tree, rooted at r, consisting of keys 4
through j7 You may assume that the left- and right- subtrees of r are constructed optimally.

Let’s use that information to create a dynamic programming algorithm. When we’re done, we will
use that information to construct the tree itself.

ki ke ks ki ks ke ke
kl k2 k’g k4 k5 k6 k7 k1 ’ 0.13 | 047 | 0.69 | 0.72 | 1.28 | 1.52 | 2.12
kl ko 0.21 | 043 | 0.46 | 1 1.17 | 1.73
k2 ks 0.11 | 0.13 | 0.47 | 0.63 | 1.19
ky 0.01 | 0.24 | 0.4 0.95
ks ks 0.22 [ 0.38 | 0.92
kea ke 0.08 | 0.4
2 k7 0.24
5
]% The dynamic programming table after the pro-
- gram finishes with the sample input.

The dynamic programming table before any are
filled in. Any spaces that will remain unused are
not pictured.
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Longest Increasing Subsequence

Reading: Erickson, §3.6

Problem Statement: Recall that a subsequence of a given sequence is just the given sequence
with zero or more elements left out. The goal in this problem is to find the longest increasing
subsequence of the given input. For example, if our input is:

130 [ 1020 ][40 [ 60 50|70 90 [ 80 |

Then our longest increasing subsequence is of length six; one such is 10, 20, 40, 50, 70, 80.

Initial Algorithm

Suppose A[0] = —oo (or equivalent for the type of data stored in the input sequence). Let’s write
LISBigger(i, j), which will be the longest increasing subsequence of A[j . ..n| in which every element
is larger than A[1].

What is our top-level call to LISBigger, if we think of this as a recursively implemented solution?
Equivalently, in which element of the memoization table does the solution reside?

Improved Algorithm

Suppose A[0] = —oo (or equivalent for the type of data stored in the input sequence). Let’s write
LISfirst(i), which will be the length of the longest increasing subsequence of Afi...n| that begins
with Al].

What is our top-level call to LISfirst, if we think of this as a recursively implemented solution?
Equivalently, in which element of the memoization table does the solution reside?
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Shortest Paths with Negative Edge Weights

Reading: G/T, §14.3 ; Erickson §9.5

Here, we are trying to find the shortest path in a graph that has weighted edges, some of which
may be negative.

e What is the longest, in terms of the number of edges, that a shortest path could be?
e What would it mean if a shorter path had more edges than that?

e What are the shortest paths ending at T for the following graph?

= O Q| W] | =3
2181888 <<

Let’s define dist(i,v) to be the minimum cost of a v — ¢ path, using at most i edges and find a
recursive algorithm to compute this.

e How can we use less memory?

— Are any table elements unnecessary to store for the full run of the algorithm?

e How can we modify this to produce the shortest path tree?

e How can we detect if there is a negative-cost cycle in G?
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Dynamic Programming on Trees

Reading: Erickson §3.10

Consider the problem of finding an Independent Set in a graph. An Independent Set is a subset of
the vertices with no edges between them. In general, this is a hard problem to solve, even for a
computer.

Suppose instead, though, that the input graph is a tree. Let’s compute MIS(v), the size of the
largest independent set for a subtree rooted at v.

First, give a general recursive formulation to compute MIS(v) for an arbitrary vertex v.

How do we convert this into a resulting dynamic programming solution?

Recommended Problems

These questions will not be collected. Please do not submit your solutions for them. However, these
are meant to help you to study and understand the course material better. You are encouraged to
solve these as if they were normal homework problems, although if discussing these with classmates
would help you learn it better, that is fine, as you are not submitting these for credit.

If you need help deciding which problems to do, consider trying R-12.7, R-12.8, C-12.1, C-12.9,
C-12.16, A-12.1, A-12.2, A-12.3, A-12.4, A-12.6, A-12.10 in the textbook of Goodrich and Tamassia
or Chapter 3, problems 1, 2, 3, 6, 9, 11, 12, 13, 16, 17, 18, 23, 32, 33, 35, 46, or 49 in the textbook
of Erickson. For a big challenge, try question 28 in that chapter.
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