

In lecture today, we are going to write three proofs.

1. If n is odd, then n^2 is odd.

2. Prove the Pythagorean Theorem:

3. A triple of natural numbers a, b , and c are called a *primitive Pythagorean triple* if a, b , and c have no common factors (other than 1) and satisfy $a^2 + b^2 = c^2$.

Here are some primitive Pythagorean triples (this is not an exhaustive list):

$$\begin{array}{lll} (3, 4, 5) & (5, 12, 13) & (8, 15, 17) \\ (7, 24, 25) & (20, 21, 29) & (9, 40, 41) \end{array}$$

Note that $(6, 8, 10)$ is **not** a primitive Pythagorean triple.

Prove that a and b cannot both be odd in a primitive Pythagorean triple.

For partial credit, prove that a and b cannot both be even in a primitive Pythagorean triple.