

1. You are given the price of a stock on each of the last n days (p_1, p_2, \dots, p_n). If you had bought the stock on day b and sold it on day s (with $1 \leq b < s \leq n$), you would have generated a profit of $p_s - p_b$. Design an $\mathcal{O}(n)$ dynamic programming algorithm that determines which days b and s you should have bought and then sold the stock for maximum profit.
2. You are given an $n \times n$ matrix of integers, representing the values of every location in a grid. You must find a path from the top-left square to the bottom-right square which only moves right or down at each step. Design an $\mathcal{O}(n^2)$ dynamic programming algorithm to find the path with the maximum sum value.
3. Design an $\mathcal{O}(n^2)$ dynamic programming algorithm to find the longest palindromic contiguous substring of an input string.