CompSci 161 Winter 2023 Discussion 5: Divide-and-Conquer (1/24)

1. Consider stooge sort, an inefficient but correct recursive algorithm for sorting an array:

function stoogesort(A[], lo, hi) {

if (A[lo] > A[hil)
swap(A[lo], A[hil);

if (hi - lo + 1 >= 3) {
oneThird = floor((hi - 1lo + 1) / 3);
stoogesort(A, lo, hi - oneThird);
stoogesort(A, lo + oneThird, hi);
stoogesort(A, lo, hi - oneThird);

}

return A;

}

Use the Master Theorem to find the asymptotic runtime complexity of this algorithm.

2. You are given n keycards, each of which is coded with an account ID. Unfortunately, there is
no efficient way to read the IDs off the keycards. In fact, the only operation you can perform
with them is to check whether two keycards match each other or not (which takes ©(1) time).

A keycard is a majority card if it is part of a set of at least /2 that all match each other.
Design an O(nlogn) algorithm that can determine whether there is a majority card and
return one if so.

3. Recall that a complete binary tree is a binary tree where every layer is full, except possibly
the bottom layer. Suppose you are given a complete binary tree where every vertex has a
numerical value associated with it. A vertex is a local minimum if its value is less than or
equal to those of all its neighbors.

Design an O(logn) algorithm that finds a local minimum in a complete binary tree with n
vertices. (Note that this tree is not necessarily a binary search tree!)

(© CompSci 161 Winter 2023- Phillip Nazarian— University of California, Irvine
This handout may not be reposted without the express written permission of the professor teaching this course.



